
Citation: He, L.; Huang, Y.; Xie, Z.;

Guan, W.; Zeng, Y. Adsorption

Characteristics of Iron on Different

Layered Loess Soils. Int. J. Environ.

Res. Public Health 2022, 19, 16653.

https://doi.org/10.3390/

ijerph192416653

Academic Editors: Paul B.

Tchounwou and Tianrong He

Received: 19 October 2022

Accepted: 8 December 2022

Published: 11 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Adsorption Characteristics of Iron on Different Layered
Loess Soils
Li He 1, Yonghui Huang 2, Zhigang Xie 3,*, Wei Guan 3,* and Yao Zeng 4

1 College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China
2 Chengdu Drainage Co., Ltd., Chengdu 610000, China
3 Chongqing Key Laboratory of Environmental Materials & Remediation Technologies,

Chongqing University of Arts and Sciences, Chongqing 402171, China
4 Environment Monitoring Station of Dadukou District, Chongqing 400084, China
* Correspondence: 20000001@cqwu.edu.cn (Z.X.); 20140006@cqwu.edu.cn (W.G.)

Abstract: In view of the problem of Fe3+ pollution in an iron sulfur mine, different layers of loess
soil in the Bijie area were used for adsorption to alleviate the mine wastewater pollution by natural
treatment. The effects of the initial concentration of Fe3+, adsorption time and pH value on the
adsorption performance of top, core and subsoil layers of loess soils were studied by the oscillatory
equilibrium method, and the adsorption mechanism of these three soils was analyzed through a
kinetic adsorption experiment and infrared spectroscopy. The results showed that the adsorption
capacity of Fe3+ was improved by increasing the initial concentration and reaction time, but the
adsorption rate of the adsorption capacity of Fe3+ was reduced. The adsorption rate of Fe3+ in the
subsoil layer was faster than that in the other two layers. The higher the pH, the higher the adsorption
capacity. After the pH was higher than 3.06, it had little effect on the adsorption capacity, but the
adsorption rate increased. The first-order kinetic equation, second-order kinetic equation and Elovich
equation were suitable for iron adsorption kinetics of three soils. The fitting correlation coefficient of
the second-order kinetic equation was close to one, indicating the main role of chemical adsorption.
The adsorption rate constant of the subsoil layer was about two times and three times that of the core
soil layer and the topsoil layer. The Langmuir model can better fit the isothermal adsorption process.
The results of infrared spectroscopy of soil showed that the content of soil organic matter played an
important role in the adsorption capacity of Fe3+. The subsoil layer had a higher concentration of
organic matter and more abundant functional groups, so the adsorption capacity of Fe3+ was the
highest. The results could provide a theoretical basis for the removal of iron in acid mine wastewater.

Keywords: soil adsorption; mine wastewater; loess soil; kinetics

1. Introduction

China is rich in pyrite resources, the main components of which are marcasite, pyrite
and pyrrhotite. Various forms of Fe, under the action of microorganisms (ferrobacillus
ferrooxidant) and O2, generated acid mine wastewater during the mining process. Ac-
cording to some report, the concentration of Fe3+ in acidic mine wastewater was more
than 1000 mg·L−1, and the high concentration of iron ion and its complex made the mine
wastewater reddish brown in color, seriously threatening the water quality safety of surface
water and underground water [1]. A large amount of acid mine wastewater flowed into
the nearby farmland to form coal rust fields, resulting in a large area of soil pollution and
affecting the growth of rice and other food crops [2]. When the concentration of iron in
water is 0.1–0.3 mg/L, the color, smell and taste of water will be affected [3]. Thus, the limit
value of Fe in <Standards for drinking water quality> (GB5749-2022) is 0.3 mg/L. If the
iron in the sewage is too high, it will inhibit the activity of microorganisms and even cause
microbial death. When the iron in the wastewater reaches 5 mg/L, the sludge precipitation
and fermentation in the sedimentation and digestion tank will also be affected.
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Traditional acid mine wastewater treatment methods include active treatment based
on alkaline neutralization and passive treatment based on reduction treatment using sulfate
reducing bacteria (SRB) [4,5]. Although the active treatment method was simple to operate
and achieve, simultaneously adjusting pH and precipitating iron ions, the cost of adding
large dosage of alkaline reagents was high, and the chemical sediment needed to be
removed regularly. The passive treatment method using SRB bacteria can achieve the
reduction of the sulfate ions; on the one hand, the acidity was reduced, and on the other
hand, FeS precipitation was generated through the reaction between S2− and iron ions to
remove iron ions. However, the sewage treatment process required the construction of
sewage ponds, and the treatment cycle was long, which was not suitable for small-scale
wastewater treatment.

Soil as a natural adsorbent was often used in the adsorption studies of heavy metal
ions such as plumbum [6–8], cadmium [9], arsenic [10], copper [11], chromium [12] and
zinc [13]. Although there was no published paper on soil adsorption of iron, He et al. [14]
used red clay and bentonite to treat metal in mine wastewater, including iron. According
to the preliminary investigation, there are a large number of abandoned small coal mines
in Bijie, Guizhou Province, and the mine wastewater and coal rust fields are seriously
polluted. There is a very common phenomenon in nearby villages that the mine wastewater
is filtered through the soil and used for vegetable irrigation. According to ICP measurement,
Fe3+ filtered by soil can meet the standard of <The reuse of urban recycling water-Quality
of farmland irrigation water> (GB 20922-2007). However, the treatment conditions and
mechanism are still unclear.

However, there were few studies on the adsorption of iron ions. Soil can be divided
into the top, core and subsoil layers, and each layer of soil had different physical and
chemical properties such as organic matter content and particle size composition, which
showed different adsorption characteristics for metal ions. In this research, taking the top,
core and subsoil layers of yellow soil in Bijie area as samples, the adsorption characteristics
of ferric iron for different layers of soil were studied in the laboratory. Finally, the infrared
spectrum characterization of the soils before and after adsorption were carried out to
provide a theoretical basis for the removal of iron in acid mine wastewater.

2. Materials and Methods
2.1. Reagents

Ammonium ferrous sulfate ((NH4)2Fe(SO4)2·6H2O)), sulfuric acid (H2SO4), hydrochloric
acid (HCl), hydroxylamine hydrochloride (HONH3Cl), ammonium acetate (CH3COONH4),
acetic acid (CH3COOH) and phenanthroline (C12H8N2·H2O) were provided with Aladdin
Co., Ltd. (Shanghai, China). Besides, all the reagents were analytically pure and dissolved
using the deionized water. Taking the top, core and subsoil layers of yellow soil in Bijie
area as samples, the physical and chemical properties of each soil were presented in Table 1.
The soil sample was dried in the dark, the sundries in soil sample was removed, and the
soil sample was grounded before analyzing these samples.

Table 1. The physical and chemical properties of each soil.

Soil Sample pH Organic
Matter (%)

CEC
(cmol·kg−1)

Background Value
of Iron (mg·kg−1)

Background Value of
Manganese (mg·kg−1)

Granulometric Composition
(%)

Clay Particle Sand

Top layer 5.88 5.7 12.16 38.21 2.52 35.534 33.542 30.924
Core layer 3.86 4.6 9.97 38.6 8.87 37.439 32.769 29.792

Subsoil layer 6.24 6.14 13.47 42.79 23.76 39.646 31.690 28.664

2.2. Characterization and Analysis

The soil organic matter was determined using colorimetry through hydration thermal
oxidation of potassium dichromate. The pH of the soil was determined by soil and water
at the ratio of 2.5:1, and the pH of the soil was measured by A FE28 pH meter (Meter,
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New York, NY, USA). The concentrations of cation exchange capacity (CEC) in soil were
measured by flame photometry. Soil particle distribution was measured by a malvern
laser particle size analyzer (Mastersizer 2000, Malvern, UK). The soil before and after
adsorption was characterized by FTIR spectrometer (IRPrestige-21, Shimadzu, Tokyo,
Japan). The concentrations of iron and manganese in soil were determined by atomic
absorption spectrophotometry (AA-80, Shimadzu, Japan), and the concentration of iron
ions in wastewater was determined by phenanthroline spectrophotometry (UV-5900PC,
Shanghai Yuanxi, Shanghai, China).

2.3. Adsorption Experiments

We weighed 4 g soil and put it into 100 mL centrifuge tubes, then added 70 mL of the
ammonium ferrous sulfate solution into the reactor (the concentrations for the solution
were 50 mg·L−1, 100 mg·L−1, 200 mg·L−1, 300 mg·L−1 and 400 mg·L−1). After a 20 min
reaction in the oscillator and being centrifuged for 10 min, a 1 mL water sample was taken
into a 50 mL conical flask. Then, all the centrifuges were shaken well and reacted in the
oscillator for 40 min, then centrifuged for 10 min. Next, a 1 mL water sample was taken in
a 50 mL conical flask. We repeated the operation and a 1 mL water sample was taken for
60 min, 90 min and 180 min, respectively. The influence of initial pH (2.48, 3.06 and 4.02)
on adsorption performance of soil was analyzed.

The adsorption capacity of iron in soil was calculated according to the following
Equation (1):

Q =
(C0 − C)× V

m
(1)

where Q was the amount of soil adsorption of heavy metals, mg·g−1; C was the equilibrium
concentration of heavy metals in the solution, mg·L−1; C0 was the initial concentration of
heavy metals in the solution, mg·L−1; V was the volume of liquid at equilibrium, L; m was
the mass of soil samples, g.

The equilibrium adsorption kinetics model of metal ions on soil surface was most
widely used, such as the first-order reaction adsorption equation, second-order adsorption
equation and Elovich equation, which were shown, as following, respectively [15]:

ln(qm − q) = lnqm − kt (2)

t/q = 1/(kqm
2) + t/qm (3)

q = b + klnt (4)

where t was reaction time, minute; q represented the adsorption amount of Fe3+ (mg·g−1)
when the reaction time was t; qm represented the maximum saturated adsorption amount
of Fe3+ (mg·g−1); b and k were the constants.

Langmuir and Freundlich isotherm adsorption models are selected for calculation.
The formulas are shown in (5) and (6).

Ce/qe = Ce/qm + 1/(b × qm) (5)

lnqe = lnK + (1/n) × lnCe (6)

where qe is the equilibrium adsorption quantity (mg/g), Ce is the equilibrium concentration
(mg/L); b and K is the model fitting constant; 1/n is the anisotropy index.

3. Results and Discussion

3.1. Effect of Initial Concentration of Fe3+ on Soil Adsorption Capacity

The effect of the initial concentrations of Fe3+ (50 mg·L−1, 100 mg·L−1, 200 mg·L−1,
300 mg·L−1 and 400 mg·L−1) on the adsorption capacity of the three layers of soil was
shown in Figure 1. The adsorption capacity of each layer of soil was increased gradually
with the increase of the initial concentration of Fe3+ and reaction time; oppositely, the



Int. J. Environ. Res. Public Health 2022, 19, 16653 4 of 12

adsorption rate was slower. For the top layer, the adsorption equilibrium was reached
at 20 min when the initial concentration of Fe3+ was lower than 200 mg·L−1. However,
the adsorption equilibrium was reached at about 60 min when the concentration of the
initial concentration of Fe3+ was higher than 200 mg·L−1. For the core layer, the adsorption
equilibrium was reached at 20 min when the initial concentration of Fe3+ was lower
than 100 mg·L−1. The adsorption equilibrium was reached at 40 min when the initial
concentration of Fe3+ was 200 mg·L−1. However, the adsorption equilibrium was reached
at about 60 min when the concentration of the initial concentration of Fe3+ was higher than
300 mg·L−1. For the subsoil layer, the adsorption equilibrium was reached at 40 min when
the initial concentration of Fe3+ was lower than 300 mg·L−1. However, the adsorption
equilibrium was reached at about 60 min when the concentration the initial concentration
of Fe3+ was higher than 400 mg·L−1. The maximum adsorption capacity of the three soils
was about 6 mg·g−1 when the initial concentration of Fe3+ was 400 mg·L−1. In general, the
subsoil layer had a faster adsorption rate for the high concentration of Fe3+ than the other
two soils. Moreover, the adsorption capacity had been increasing with the increase of the
initial concentration of Fe3+, indicating that the adsorption site for iron in each layer was
much higher than 400 mg·L−1.
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Figure 1. Effect of initial concentration of Fe3+ on adsorption capacity of the three layers of soil:
(a) top layer of loess soils; (b) core layer of loess soils and (c) subsoil layer of loess soils. (4 mg of soil,
pH = 4.20, 25 ◦C).

3.2. Effect of Initial pH on Soil Adsorption Capacity

The effect of the initial pH (2.48, 3.06 and 4.20) on the adsorption capacity of the three
layers of soil was shown in Figure 2. In general, the higher pH value, the higher adsorption
capacity of the soil. The adsorption capacity was not changed obviously when the pH value
was higher than 3.06, but the adsorption rate was affected by the pH value. The adsorption
rate of the subsoil layer at a pH value of 4.20 was faster than that at a pH value of 3.06, but it
showed little effect on the adsorption rate of top layer and core layer of soil. The adsorption
equilibrium was reached at about 60 min for both the top layer and core layer when the
pH value was 4.20, and the maximum adsorption capacity was 4.5 mg·g−1, whereas the
adsorption equilibrium was reached at about 40 min for the subsoil layer, and the maximum
adsorption capacity was 4.38 mg·g−1. The results showed that the maximum adsorption
capacity of the three soils were very similar, but the adsorption rate of the subsoil layer was
obviously faster than that of the other two soils, which was consistent with the result in
Figure 1.
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Figure 2. Effect of initial pH (2.48, 3.06 and 4.20) on the adsorption capacity of the three layers of 
soil: (a) top layer of loess soils; (b) core layer of loess soils and (c) subsoil layer of loess soils. (4 mg 
of soil, initial concentration of Fe3+ was 300 mg·L−1, 25 °C). 

Surface charge and the functional groups on the soil surface and Fe3+ form would be 
influenced by the pH value, which influenced the adsorption equilibrium [16]. Cation 
exchange was the main mechanism of soil adsorption of heavy metals. In general, more 
H+ would compete with the adsorption site of Fe3+ in the solution at a lower pH value, 
resulting in a lower adsorption capacity of Fe3+ under the condition of low pH. Therefore, 
comparing these initial pH value, the pH value of 4.20 was more conducive to the 
adsorption process of soil. 

3.3. Analysis of Adsorption Kinetics 

Figure 2. Cont.
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Figure 2. Effect of initial pH (2.48, 3.06 and 4.20) on the adsorption capacity of the three layers of soil:
(a) top layer of loess soils; (b) core layer of loess soils and (c) subsoil layer of loess soils. (4 mg of soil,
initial concentration of Fe3+ was 300 mg·L−1, 25 ◦C).

Surface charge and the functional groups on the soil surface and Fe3+ form would
be influenced by the pH value, which influenced the adsorption equilibrium [16]. Cation
exchange was the main mechanism of soil adsorption of heavy metals. In general, more H+

would compete with the adsorption site of Fe3+ in the solution at a lower pH value, resulting
in a lower adsorption capacity of Fe3+ under the condition of low pH. Therefore, comparing
these initial pH value, the pH value of 4.20 was more conducive to the adsorption process
of soil.

3.3. Analysis of Adsorption Kinetics

The adsorption kinetics of the three layers of soil (top layer, core layer and subsoil layer)
were analyzed under conditions where the initial concentration of Fe3+ was 300 mg·L−1

and the initial pH was 4.20. As shown in the Figure 3, the adsorption of Fe3+ in soil could
be divided into two stages of fast and slow, which was a common phenomenon of the
adsorption reaction. Experimental data were fitted with the first-order kinetic equation,
second-order kinetic equation and Elovich equation, and the fitting results were shown in
Table 2.
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Table 2. Adsorption kinetic parameters.

Soil

Elovich Equation
q = b + klnt

First-Order Kinetic Equation
ln(qm − q) = lnqm − kt

Second-Order Kinetic Equation
t/q = 1/k qm

2 + t/qm

b k R2 k qm
(mg·g−1)

Qm
(mg·g−1) R2 k qm

(mg·g−1)
Qm

(mg·g−1) R2

Top layer, −1.1147 1.2185 0.9196 0.0538 5.6644 4.5981 0.9931 0.01129 5.3447 4.5981 0.9836
Core layer −0.7135 1.1079 0.9288 0.0839 6.7524 4.4406 0.8261 0.01503 4.9900 4.4406 0.9914

Subsoil layer 0.6375 0.8327 0.8725 0.0729 3.9484 4.3838 0.9718 0.03627 4.5998 4.3838 0.9983

qm was the theoretical value of the equilibrium adsorption capacity; Qm was the measured value.

The fitted correlation coefficients R2 of the kinetic equation were shown in Table 2 and
showed that the adsorption of Fe3+ on each layer of soil was correlated with the three kinetic
equations. Moreover, the adsorption of Fe3+ on soil was most consistent with the second-
order kinetic equation. The correlation coefficient R2 of second-order kinetic equation was
close to one, and the theoretical value of maximum adsorption capacity was very close
to the measured value. For the first-order kinetic equation, the correlation coefficient R2

was between 0.82 and 0.99. And for the Elovich equation, correlation coefficient R2 was
between 0.87 and 0.93. These results indicated that the adsorption of iron ions in the three
soils was mainly by chemical adsorption, and chemical adsorption was the main step to
control the adsorption rate.

The second-order kinetic fitting curve was shown in Figure 4. The second-order kinetic
adsorption constant for the subsoil layer was about two and three times of that in the core
layer and the top layer, respectively. Meanwhile, the adsorption rate of the subsoil layer
was significantly faster than that of the other two layers, which was consistent with the
results of Sections 3.1 and 3.2. Some research reported that appropriately increasing organic
matter content in soil could enrich the chemical groups and promote the adsorption effect
of heavy metals [17,18]. According to the results in Table 1, the organic matter content and
CEC of the subsoil layer were higher than those of the other two layers, so the subsoil layer
showed better adsorption capacity.
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3.4. Analysis of Isothermal Adsorption Kinetics

The isotherm adsorption curves were shown in Figure 5. The results of fitting test
data with the Freundlich model and the Langmuir model are shown in Table 3. The
slope of isotherm adsorption curves of three soils decreased with the increase of the
concentration of equilibrium solution and finally became flat, which was a typical L-shaped
adsorption [19]. The reason may be that the metal at low concentration first combines with
the high adsorption site of the soil and then gradually combines with the low adsorption
site of the soil after the high adsorption site is gradually saturated, and finally the ions in
the soil and solution gradually reach a dynamic equilibrium.

The Langmuir equation assumes that the adsorption is monolayer adsorption on a
uniform surface, and the Freundlich equation assumes that the adsorption is multilayer
adsorption on a heterogeneous surface [20].
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Table 3. Adsorption Isothermal Parameters.

Soil
Langmuir Equation

Ce/qe = Ce/qm + 1/(b × qm)
Freundlich Equation

lnqe = lnK + (1/n) × lnCe

qm b R2 K 1/n R2

Top layer 0.4138 0.5519 0.8885 10.0232 1.5761 0.4722
Core layer 0.5230 5.1787 0.9142 0.2437 1.7919 0.489

Subsoil layer 6.3980 0.5543 0.9798 2.2739 0.3555 0.4468

According to Table 3, the Langmuir model can better fit the isothermal adsorption
process of Fe3+ in the three soils, which indicates that the adsorption process is mainly a
monolayer adsorption process. This is consistent with the research results of Xu et al. [21].

The fitting constant 1/n can reflect the adsorption strength [22]. In the Freundlich
model, 1/n of the subsoil was between 0–1, indicating that the adsorption reaction of the
subsoil to iron ions was the easiest to carry out [23].

3.5. FTIR Analysis of Soil before and after Adsorption

The infrared spectra of the three soils before and after Fe3+ adsorption were shown in
Figure 6. The three soils all belonged to yellow soil, so the characteristics of the infrared
spectra were very similar. The wide absorption bands near 3430 cm−1 and 1028~1032 cm−1

were typical infrared spectrum absorption characteristic peaks of 2:1 clay minerals, indicat-
ing that there was a large amount of montmorillonite in the soil [24,25]. The absorption
band at 694 cm−1 was a typical infrared spectrum absorption characteristic peak of kaolin-
ite. The infrared spectrum of yellow brown soil with quartz double peaks of 798 cm−1 and
778 cm−1 were ascribed to the Si-O group, and the characteristic peak at 3700~3100 cm−1

was ascribed to the -OH stretching vibration band. The peak at 1630 cm−1 belonged to
the C=C group and the peak at 1870 cm−1 was belonged to the C=O group, which were
characteristic peaks of organic components in soil. The above functional groups in soil
provided favorable conditions for the adsorption of Fe3+ through chemical adsorption. The
absorption peaks at 798 cm−1 and 778 cm−1 in the core and subsoil layers were significantly
enhanced, indicating the adsorption between the Si-O group and Fe3+ [26,27]. The C=O
and -OH groups in the subsoil layer were weakened and disappeared obviously after the
adsorption, indicating that the chemical adsorption in the subsoil layer was very obvious,
and the adsorption performance was better than that in the top and core layer.
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4. Conclusions

The adsorption capacity of Fe3+ in each soil layer was increased gradually with the
increase of initial concentration and reaction time. The maximum adsorption capacity of
Fe3+ in these three soils was about 6 mg·g−1 when the initial concentration of Fe3+ was
400 mg·L−1. The adsorption rate of subsoil layer at pH 4.20 was faster than that at pH 3.06,
but it showed little effect on the adsorption rate of top and core soil. More H+ ions would
compete with the adsorption site of Fe3+ in the solution at a lower pH value, resulting in a
lower adsorption capacity of Fe3+ under the condition of low pH. Therefore, the pH value
of 4.20 was more conducive to the adsorption process of soil. Moreover, the adsorption of
Fe3+ on soil was most consistent with the second-order kinetic equation. The correlation
coefficient R2 of second-order kinetic equation was close to one and the theoretical value
of maximum adsorption capacity was very close to the measured value. The Langmuir
model can better fit the isothermal adsorption process. These results indicated that the
adsorption of iron ions in the three soils was mainly by chemical adsorption, and it was
the main step to control the adsorption rate. The organic matter content of the subsoil
layer was high, and it contained rich functional groups such as C=O and -OH groups.
The infrared spectrum results showed that the peaks of the subsoil layer were weakened
and disappeared obviously after the adsorption, and the chemical adsorption effect was
obvious. Functional groups in soil provided favorable conditions for the adsorption of
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Fe3+ through chemical adsorption. The C=O and -OH groups in the subsoil layer were
weakened and disappeared obviously after the adsorption, indicating that the chemical
adsorption in the subsoil layer was very obvious.
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