
Citation: Tai, S.; Li, Y.; Yang, L.; Zhao,

Y.; Wang, S.; Xia, J.; Li, H.

Magnetic-Transition-Metal Oxides

Modified Pollen-Derived Porous

Carbon for Enhanced Absorption

Performance. Int. J. Environ. Res.

Public Health 2022, 19, 16740.

https://doi.org/10.3390/

ijerph192416740

Academic Editor: Lingxin Chen

Received: 31 October 2022

Accepted: 12 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Magnetic-Transition-Metal Oxides Modified Pollen-Derived
Porous Carbon for Enhanced Absorption Performance
Shuyun Tai 1,2, Ying Li 1,2, Ling Yang 1,2, Yue Zhao 1,2, Sufei Wang 1,2, Jianxin Xia 1,2 and Hua Li 1,2,*

1 Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic
Affairs Commission, Beijing 100081, China

2 College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
* Correspondence: lihua@muc.edu.cn; Tel.: +86-158-1057-5580

Abstract: In our work, the transition-metal-oxide precursor (TMO@BC, M = Fe, Co, Ni) has been
loaded on the pollen carbon by the hydrothermal method and annealed at different temperatures to
generate a composite material of metal oxide and pollen carbon in this study, which can effectively
prevent agglomeration caused by a small size and magnetism. The XRD patterns of the samples
showed that the as-synthesized metal oxides were γ-Fe2O3, CoO, and NiO. In the 20 mg/L methyl
orange adsorption experiment, the adsorption amount of CoO@C at 500 °C reached 19.32 mg/g
and the removal rate was 96.61%. Therefore, CoO@C was selected for the adsorption correlation-
model-fitting analysis, which was in line with the secondary reaction. The pseudo-second-order
kinetic model (R2: 0.9683–0.9964), the intraparticle diffusion model, and the Freundlich adsorption
isotherm model indicated that the adsorption process was the result of both physical and chemical
adsorptions, and the judgment was based on the electrostatic action. The adsorption and removal
efficiency of ciprofloxacin (CIP) by changing the pH of the reaction was about 80%, so the electrostatic
attraction worked, but not the main factor. Recovered by an external magnetic field, the three-time
recycling efficiency was still maintained at more than 80%. This novel biomass-derived magnetic
porous carbon material embedded with transition-metal-oxide nanoparticles is highly promising for
many applications, especially in the field of environmental remediation.

Keywords: transition-metal oxide; biochar; adsorption; recycling

1. Introduction

The frequent detection of emerging contaminants (ECs) in wastewater, drinking water,
and groundwater has attracted wide attention from the international community as an
enormous challenge for water-pollution control [1]. The residual and refractory organics
from industrial manufacture and the daily life of humans flow down the sewage system
through arbitrary discarding or excretion, which enter into natural water and cause sig-
nificant detriments through runoff, diffusion, and percolation [2]. The adsorption for
pollutant removal from wastewater is a widely and effectively applied method with han-
dleability, nonsecondary pollution, low-cost, and energy consumption [3]. The powder
adsorbents that provide a large contact area are mainly suspended in the reaction system,
which leads to the cumbersome recovery and exorbitant expenditure; moreover, the way
to improve the recycle efficiency of the nanoabsorbent is also one of the key issues in
practical applications [4,5].

Transition-metal oxides (TMOs) are a popular category reagent towards contamination
control due to their favorable adsorption and diffusion properties, benign environmental
compatibility, and excellent chemical and thermal stability [6–9]. Among these materials,
the transition-metal-oxides (TMO) nanocrystals of Fe, Co, and Ni in the fourth row of
the periodic table have been extensively studied in the past decades due to their mag-
netic properties [10,11]. Yu and coworkers [12] synthesized a novel Au-graphene oxide
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(GO)–Co3O4 hollow sphere (Au/GO-Co3O4) and examined its process affected by adsorp-
tion in antibiotic-resistance genes (ARGs). Gallo et al. [13] prepared superparamagnetic
nanosorbents based on iron oxide by the addition of a porogenic material and calcination
for the adsorptive removal of lead and methyl orange from water. A superparamagnetic
phenomena of TMOs could be generated by modulating their size to the nanometer, which
can diminish the interactions between particles, simultaneously separating and recycling
readily with the addition of a low-gradient magnetic field [14].

Research related to carbonaceous adsorbents with a high specific surface area and
abundant pore structures has increased in the past decades, such as activated carbon,
graphite, charcoal and rice char, etc. [15,16] Niu et al. fabricated the CoO/g-C3N4 by an
impregnation–calcination method for tetracycline (TC) removal, which exhibited a high-
adsorption capacity and fast-adsorption kinetic for TC [17]. Esra et al. [18] synthesized a
magnetic activated carbon (AC) (Fe-AC) for the effective removal of Methylene Blue (MB)
by means of adding the iron oxide to the AC obtained by the ZnCl2 activation of acorn shell.
Biochars are carbon-rich materials made from heating biomass in a little-or-no-oxygen
atmosphere at relatively low temperatures (<700 ◦C), which is regarded as an environ-
mentally friendly adsorbent for pollutant removals such as oxytetracycline, polycyclic
aromatic hydrocarbon, and polychlorinated biphenyls [19–27]. Magnetic biochars could
be formed by introducing transition-metal oxides (Fe, Co, Ni) into biochar matrices by the
hydrothermal method, the sol-gel method, the dielectrophoresis method, and so on, which
are effective strategies to recycle the powder and avoid the magnetic agglomeration of
nanometal oxides [28–31].

In this study, a widely sourced green biomass carbon made from pollen was used
as the carrier of transition-metal-oxide (Fe, Co, Ni) nanoparticles, and the network of
hollow skeletons after carbonization was fully utilized to provide a larger contact area
for Fe2O3/CoO/NiO to prevent the agglomeration of nanoparticles. The results indicate
that the composite prepared by hydrothermal method has a large specific surface area;
meanwhile, the biochar interacts with the transition-metal oxides, which exhibits the
much enhanced adsorption performance of Fe2O3/CoO/NiO@C. The paramagnetic and
ferromagnetic manifestation of Fe2O3/CoO/NiO@C materials still appear after loading
pollen carbon, which can be separated under the condition of an external magnetic field,
recycled, and maintain a superior removal rate after the reaction.

2. Experimental Section
2.1. Chemicals

Fe(NO3)3·9H2O, Co(NO3)2·6H2O, and Ni(NO3)2·6H2O (99.5%) were obtained from
Sigma-Aldrich (China). Methanol, NaOH, HCl, anhydrous ethanol (99.7%), ethylene
glycol, methyl orange (MO), and sodium citrate were purchased from Sinopharm Chem-
ical Reagent Co., Ltd. (Beijing, China). Norfloxacin (NOR) and ciprofloxacin (CIP)
were provided by Solarbio (China). Rape pollen were purchased from Qinghai, China.
All of the chemicals were of analytical grade and used without further purification.
Deionized water was used for all synthesis and treatment processes. Deionized water
(resistivity > 18.2 MΩ cm/25 ◦C) was obtained from a Millipore water system (Millipore
Corp. Bedford, MA, USA) at room temperature.

2.2. Preparation of Fe2O3/CoO/NiO@C Composites

Carbonized pollen were prepared by the following processing: 2.5 g rape pollen were
added into a beaker and mixed with 30 mL distilled water, treated for approximately
10 min in an ultrasonic bath, then washed completely with 30 mL of absolute ethanol with
the above step and placed in an 80 ◦C oven to dry. The dried pollen were added into
mixed with 40 mL distilled water. The mixture solution was ultrasonicated before being
transferred into a 50 mL Teflon-lined autoclave. The autoclave was then heated and kept
in an oven at 180 ◦C for 24 h. The obtained brown–black precipitates were washed by
deionized water and ethanol and then dried at 60 ◦C overnight in a vacuum.
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Fe2O3/CoO/NiO@C were prepared by the following process: 0.1 g carbonized pollen,
2 mmol transition metal nitrate, and 1 mmol sodium citrate were added into the mixture of
40 mL ethylene glycol and distilled water (1:1), then prepared under vigorously continuous
magnetic stirring for 30 min at an indoor temperature, and ultrasonicated for 15 min in the
ultrasonicator. The mixture solution was transferred into an autoclave, then heated and
kept in an oven at 180 ◦C for 15 h. The precipitates were washed with deionized water
and ethanol and then dried at 60 °C in an oven. The dried sample was taken out and
put into a tube furnace, then annealed from room temperature to calcination temperature
of 400, 450, and 500 ◦C at a heating rate of 5 ◦C/min in the N2 flow for 2 h, termed
as the Fe2O3/CoO/NiO@C-400, Fe2O3/CoO/NiO@C-450, and Fe2O3/CoO/NiO@C-500,
respectively. The schematic diagram of hydrothermal method for Fe2O3/CoO/NiO@C is
presented in Figure 1.
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Figure 1. Schematic diagram of the hydrothermal method for Fe2O3/CoO/NiO@C.

2.3. Characterization Methods

The surface morphology of the composites were characterized by scanning electron
microscopy (SEM, Hitachis-4800). The crystallinity of the materials were investigated using
the XD-3 X-ray diffractometer with a Cu target (Kα radiation, λ 1

4 1.5406 Å) from 20◦ to 80◦.
Fourier transform infrared (FT-IR) spectra of the products were collected using a Vertex
70 v with KBr pellets. The Brunauer–Emmett–Teller (BET) surface areas of all prepared
photocatalysts and N2 adsorption–desorption isotherm data were carried out by the ASAP
2460 Surface Area and Porosity Analyzer.

2.4. Exploration of the Performance of Adsorption

The adsorption performance of the Fe2O3/CoO/NiO@C powders was evaluated by
the removal of MO. Several parameters have been changed individually for further ex-
ploration. An amount of 50 mg of the samples at different calcination temperatures were
used to adsorb the MO/CIP/NOR solution (20 mg/L, 50 mL) in a dark condition, respec-
tively. Approximately 4 mL of aqueous solution was collected at certain time intervals,
centrifuged at a speed of 5000 r/min for 15 min, and filtered with a 0.22 µm syringe filter.
The concentration of samples was monitored by a UV–vis spectrophotometer (TU-1901)
at their characteristic wavelengths (λMO = 464 nm, λCIP, λNOR = 272 nm). The degradation
rate was calculated by Equation (1):

Removal rate (%) =
(C0 − Ct)

C0
× 100% (1)

where C0 (mg/L) and Ct (mg/L) are the initial and at time t concentrations of the pollutant,
respectively. As the most important data related to adsorption kinetic and equilibrium
studies, the corresponding adsorption capacity was computed by Equation (2) [28,29]:

qt =
(C0 − Ct)V

m
(2)

where V (L) is the initial volume of pollutant solution and m (g) denotes the mass of
the adsorbent.
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2.5. Kinetic Models and Adsorption Isotherms

The kinetic adsorption experiments were performed by adding 50 mg of the CoO@C-
500 into the 20, 50, and 80 mg/L MO concentration solutions at 298.15 K. The initial MO
concentrations of the solution were in the range of 10–100 mg/L in the isotherm adsorption
experiments. In order to investigate the adsorption behavior of the synthesized CoO@C-
500, the pseudo-first order, pseudo-second order, Elovich kinetic models, and intraparticle
diffusion model were fitted by the experiment data, as well as the Langmuir and Freundlich
isotherm models to further assure the style of adsorption.

The adsorption rate of the pseudo-first-order kinetic is proportional to the concentra-
tion change value. The linear form of the pseudo-first-order kinetic model was calculated
by Equation (3) [32]:

ln(qe − qt) = ln qe − k1t (3)

The adsorption process is controlled by chemical mechanisms, including the elec-
trons shared and transfer between adsorbents and adsorbates in the pseudo-second-order
kinetic model. The linear form of the pseudo-second-order kinetic model was given by
Equation (4) [33]:

t
qt

=
1

k2qe2 +
t
qe

(4)

where qe (mg/g) and qt (mg/g) are the adsorption capacity at equilibrium at time t (min),
respectively, and k1 (min−1) and k2 (g/mg·min−1) are the pseudo-first-order and pseudo-
second-order rate constants, respectively.

The Elovich kinetic equation is one of the heterogeneous diffusion models describing
the chemisorption process, defined as Equation (5) [32]:

qt =
1
b

ln(ab) +
1
b

ln t (5)

where a (mg/g·h) is the initial sorption rate, and the value of ( 1
b ) is indicative of the available

number of sites for adsorption.
The intraparticle diffusion model is controlled by internal diffusion and external diffusion.

The linear form of the intraparticle diffusion model is calculated by Equation (6) [34]:

qt = kit1/2 + C (6)

where Ki (mg/g·min1/2) is the intraparticle diffusion rate constant and C is the boundary
layer thickness.

The isotherm adsorption experiments were used to explore the mechanism of adsorp-
tion by analyzing the relationship between the equilibrium adsorption concentration and
the equilibrium adsorption capacity. The Langmuir and Freundlich adsorption isothermal
equation (Formulas (7) and (8)) were used to fit the experimental data [35].

qe =
kLqmCe

1 + kLCe
(7)

qe = kFCe
1/n (8)

where Ce (mg/L) is the equilibrium concentration of MO, qe (mg/g) is the adsorption
capacity at equilibrium, and qm (mg/g) is the maximum monolayer adsorption capacity.
KL (L/mg) is the Langmuir model constants, KF [mg·g −1·(L·mg−1)1/n] is the Freundlich
model adsorption coefficient, and 1/n is the adsorbent surface heterogeneity index.

2.6. Recycled Application of CoO@C-500

In this study, 50 mg of the adsorbent was taken in 50 mL MO with initial concentration
of 20 mg/L and stirred for 150 min to attain equilibrium. Then, the adsorbent was washed
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with distilled water, and the desorption of the adsorbed molecules was carried out using
methanol. The adsorption–desorption process was repeated for three cycles.

3. Results and Discussion
3.1. Morphologic Features and Structural Analysis

The crystal structures of the samples obtained at different annealing temperatures were
characterized by XRD, and the results are shown in Figure 2. The XRD patterns of Fe2O3,
CoO, NiO, and the pollen carbon at different calcination temperatures are shown in Figure
S1. The spectral curve fluctuated more than the pure metal oxides due to the intervention
of doped-amorphous carbon. The composition of the crystal changed obviously with the
increasing of the annealing temperature from 400 ◦C to 500 ◦C. As illustrated in Figure 2a,
the XRD patterns of the samples showed that the as-synthesized metal oxides were γ-
Fe2O3. The Fe2O3@C showed diffraction peaks at 30.2◦ (220), 35.6◦ (311), 43.3◦ (400), 53.7◦

(422), 57.3◦ (511), and 62.9◦ (440). As displayed in Figure 2b, the CoO@C crystal plane
diffraction 2θ angle corresponded to 37.8◦ and 42.5◦, according to the standard card of
PDF#43-1004, which indexed to the (111) and (200) crystal faces of the CoO nanoparticles,
respectively. Figure 2c exhibited the XRD patterns of the as-prepared NiO@C samples,
where the diffraction peaks corresponded to the (111), (200), and (220) lattice planes of NiO,
respectively (JCPDS no. 47-1049). In addition, part of the CoO and NiO was converted into
Co and Ni nanoparticles on account of the synergistic reduction of carbon and hydrogen
during the annealing. The diffraction peaks were more intense and narrower at 500 ◦C,
implying the high crystallinity of Fe2O3@C, CoO@C, and NiO@C, as shown in Figure 2d.
Therefore, the samples calcined at 500 °C were selected for the detailed characterization.
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tures, and the Fe2O3/CoO/NiO@C-500 (d).

The microstructures of the Fe2O3@C, CoO@C, and NiO@C samples were characterized
by SEM (Figure 3). As shown in Figure 3a,b, the Fe2O3 sample possessed a particle size
around 40 nm with the aggregation, which mainly grew microspheres and clusters formed
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by the accumulation of dense microspheres. As marked in Figure 3c,d, the CoOs were
microsphere-type nanostructures and part of the samples were dumb-bell-shaped after the
combination of the two microspheres. The microspheres were self-assembled by smaller
spherical particles, and the average size of the large sphere was about 400 nm and the size
of the nanosphere ranged from 5 to 10 nm. The reticulated surface of the pollen particles
were adhered by a large number of CoO and embedded in the carbon skeleton, which
could provide more adsorption sites to enhance the adsorption capacity. The SEM images
for the NiO in Figure 3e,f show clearly flake clusters and microsphere morphologies. It can
also be seen from Figure 3e that there were some nanospherical particles of about 20 nm at
the edge of the cluster morphology.
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Figure 3. SEM images of Fe2O3@C-500 (a,b), CoO@C-500 (c,d), and NiO@C-500 (e,f).

The specific surface was applied to characterize the performance, surface state, and
pore structure of the composites sample. The N2 adsorption/desorption isotherms and
corresponding BJH (Barrett–Joyner–Halenda) pore-size-distribution curves of the Fe2O3@C-
500, CoO@C-500, and NiO@C-500 samples are shown in Figure S2. As displayed in
Figure S2a,c, the adsorption isotherm of the Fe2O3/NiO@C-500 conformed to the V-shaped
isotherm, which was concave. The adsorption layers that reached saturated vapor pressure
were limited, and the capillary coagulation led to a rapid rise in the medium-pressure part,
accompanied by a hysteresis loop. The N2 adsorption/desorption isotherms of CoO@C-500
are shown in Figure S2b, which reveal that the isotherms with a distinct hysteresis loop at
a lower-relative-pressure (0.4 < P/P0 < 1) range could be identified as the typical type IV
curve with H2-type according to the definition of the IUPAC classification and the implied
the existence of mesopores. It could be seen that the Dp of Fe2O3/CoO/NiO@C-500 was 20,
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4.3, and 3.9 nm, as shown in Table 1, beyond that the specific surface area of Fe2O3@C-500,
CoO@C-500, and NiO@C-500, which was 44.28, 118.44 and 184.20 m2/g, respectively.

Table 1. Pore-structure characteristics of adsorbents.

Samples Dp (nm) SBET (m2/g)

Fe2O3@C 20 44.28
CoO@C 4.3 118.44
NiO@C 3.9 184.20

3.2. Adsorption Properties

The adsorption performances of Fe2O3/CoO/NiO@C were evaluated by monitoring
the degradation of the MO in the solution (Figure 4). The adsorptive removal of the
MO increased from 34.28% to 72.97% on Fe2O3@C with the increasing of the annealing
temperature from 400 to 500 ◦C, as shown in Figure 4a. However, the adsorption efficiency
was limited by its small specific surface area. As illustrated in Figure 4b, the removal rate
of 71.03%, 94.37%, and 96.26% was absorbed by CoO@C at 400 ◦C, 450 ◦C, and 500 ◦C,
respectively. Actually, the adsorption equilibrium has been basically reached after 60 min
of reaction. The adsorption removal curves of 20 mg/L MO on NiO@C is shown in
Figure 4c. The maximum adsorption efficiency on NiO@C ranged from 70.24% to 92.76%
with annealing temperature increases owing to the large specific surface area and the
good adsorption capacity.
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The hemicellulose and cellulose in the biomass were pyrolyzed to form pores as the
temperature increases, which in turn affected the adsorption effect [36]. It was found
that the much-enhanced adsorption effects of Fe2O3/CoO/NiO@C-500 more than the
pure transition-metal oxides and pollen carbon, as shown in Figure 4d. The adsorption
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rate of the MO on the pure Fe2O3/CoO/NiO-500, uncalcined pollen carbon, and C-500
was 59.79%, 85.5%, 74.02%, 10.11%, and 16.86%, respectively. The specific surface area
and adsorption sites of the adsorbents increased due to the addition of the pollen carbon
skeleton. Meanwhile, the reduction of some metal oxides into metal elements at high
temperatures also improved the removal capacity of the pollutant.

The initial pH of the solution could affect the degree of dissociation of the chemical
functional groups on the surface of the adsorbent [37]. The structures of the pollutant
and the pollen carbon would be destroyed in strong acid and alkali environments, and
CoO@C-500 was used to adsorb 20 mg/L ciprofloxacin (CIP) and control the pH of the
solution at the range of 4–9 by HCl and NaOH. Antibiotics with complex structures were
selected to explore the influence of pH because methyl orange is sensitive to ambient pH
as a common acid-base indicator. The maximum removal rate of the CIP on CoO@C-500
was 80.83% and the equilibrium adsorption amount was 16.17 mg·g−1 when the pH value
was 6.0, as shown in Figure 5. A great deal of investigations have reported the percentage
removal of contaminants increased as a function of the adsorbent dosage before reaching a
saturation value, which is often attributed to the abundant availability of the vacant sites
at higher dosages [38–40]. Norfloxacin (NOR) is the same quinolone antibiotic as CIP and
is widely used to deal with bacterial diseases in organisms. The effect of the adsorbent
dosage of Fe2O3/CoO/NiO@C-500 for the degradation of 20 mg/L of NOR is shown in
Figure S3. The results show that 15.07%, 27.18%, and 51.89% of NOR are absorbed by 25 mg
Fe2O3@C-500, CoO@C-500, and NiO@C-500 for 100 min, respectively, whereas 32.01%,
57.01%, and 86.54% of NOR are absorbed by 50 mg Fe2O3/CoO/NiO@C-500 with the
same conditions.
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rium adsorption capacities (b).

3.3. Adsorption Kinetics and Equilibrium Studies

CoO@C annealed at 500 ◦C was selected for the adsorption correlation model fitting
analysis because of its favorable reaction and removal rate. The experimental data were
applied for simulating the four models of pseudo-first-order and pseudo-second-order
kinetic models, the Elovich model, and the intraparticle diffusion model to explore the
effect of the initial pollutant concentration. The fitting results of the pseudo-first-order
and pseudo-second-order kinetic models are shown in Figure 6a–c. The slope, correlation
coefficient, and equilibrium adsorption capacities are shown in Tables 2 and 3. It can be
seen that the pseudo-second-order model with the correlation coefficient of 0.9683–0.9964
is more suitable for the experimental data by contrast with the pseudo-first-order model
(R2: 0.8961–0.9957) and the Elovich model (R2: 0.9231–0.9971). The pseudo-second-order
equation contains adsorption processes such as membrane diffusion, particle diffusion,
and surface adsorption, and it is not a single-diffusion model [41]. The pseudo-secondary
model controls the adsorption process based on chemical mechanisms, including electron
sharing and electron transfer, with the adsorbate and the adsorbent [42].
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Table 2. Kinetic parameters for the adsorption of MO on CoO@C-500.

C0 (mg/L)
qe ., exp

(mg·g−1)

Pseudo-First-Order Pseudo-Second-Order

k1
(1/min)

qe , calc
(mg·g−1) R2 k2

(g·mg−1)
qe , calc

(mg·g−1) R2

20 19.3486 0.0426 16.5008 0.9957 0.0492 19.4767 0.9964
50 43.0392 0.0259 29.7807 0.9547 0.0202 47.2763 0.9957
80 58.5185 0.0226 52.3151 0.8961 0.0122 61.4439 0.9683

Table 3. Elovich model parameters of MO on CoO@C-500.

C0 (mg/L) qe ., exp (mg·g−1)
Elovich

k3 qe , calc (mg·g−1) R2

20 19.3486 3.5277 20.5962 0.9231
50 43.0392 7.2263 48.4091 0.9971
80 58.5185 16.5083 63.4468 0.9738
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The intraparticle diffusion equation was used to fit dynamic data for the in-depth
analysis of the diffusion mechanism and practical control steps on CoO@C-500. As shown
in Figure 6d and Table 4, the higher kd1 reflected on the surface diffuses faster and the ad-
sorption rate is larger, and the linear segment did not go through the origin, demonstrating
that the adsorption process is controlled by the surface adsorption along with the pore
diffusion. For the second linear segment, the kd2 decrease might be due to the increase of
the boundary-layer effect and mass-transfer resistance on the intraparticle diffusion process.
At the third stage, the solid–liquid phase distribution was gradually balanced and the
adsorption process reached equilibrium, which led to the further reduction of kd3 [43–45].

Table 4. Intraparticle diffusion model parameters of MO on CoO@C-500.

C0
(mg/L)

kd1
(mg/g·min1/2)

kd2
(mg/g·min1/2)

kd3
(mg/g·min1/2) (R1)2 (R2)2 (R3)2

20 2.71989 0.24046 0.01676 0.98909 0.89561 0.98587
50 6.69038 1.44694 0.01394 0.75175 0.98824 0.95756
80 8.01921 5.18212 0.01124 0.99853 0.99605 0.96564

The results fitted with the Langmuir and Freundlich isothermal equations are shown
in Figure 6e,f and Table 5. The MO solution with concentration range of 10–100 mg/L was
used as the target pollutant at 298 K, then 50 mg of adsorbent was added and stirred for
180 min. The Freundlich isothermal equations (R2: 0.9462) are more suitable for analyzing
the isothermal adsorption behavior than the Langmuir isothermal equations (R2: 0.8796,
RL: 0.0107–0.09731) according to the above fitting data, which indicates the uniform surface
adsorption and the suitability for physical and chemical adsorption.

Table 5. Adsorption isotherms parameters of MO on CoO@C-500.

T (K)
qe., exp

(mg·g−1)

Langmuir Freundlich

KL RL
qm

(mg·g−1) R2 KF n R2

298 19.3486 0.9246 0.0107–0.09731 23.46 0.8796 20.2468 1.9724 0.94618

3.4. Magnetism and Stability

The reusability and regeneration of the adsorbent is an important economical factor
for practical utility. We reused the CoO@C-500 after consecutive adsorption experiments to
study the regeneration of the adsorbent. As shown in Figure 7a, the adsorption efficiency
of CoO@C remained almost above 80% after three cycles, which indicates that the CoO@C
exhibited high stability and reusability. Figure 7b shows that CoO@C-500 rapidly gathered
near the magnet within 2 min under the condition of the applied magnetic field, indicating
that this material can be recycled easily.

3.5. Possible Mechanism Analysis

According to the result from pseudo-second-order kinetic models, internal diffusion
model, and Freundlich isothermal equations, CIP adsorption by CoO@C-500 involved both
physisorption and chemisorption. On the basis of the N2 adsorption–desorption result,
the specific surface area of CoO@C-500 is 118.44 m2/g, which could provide adsorption
sites for uptaking the CIP. The adsorption process is in connection with the electrostatic
attraction, π bond accumulation, hydrogen bond formation, and hydrophobic interaction
generally [46]. The adsorption of MO by CoO@C-500 is not only connected with the
mesoporous adsorption in the adsorbent, but also related to the electrostatic interaction
between the adsorbent and the surface charge of the adsorbent. The MO usually exists
in the form of sulfate with a substantial negative charge in an aqueous solution, and the
large amount of positive charge around CoO causes the electrostatic attraction of MO [47].
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The FT-IR spectra of CoO@C at the wavenumber between 400 and 4000 cm−1 is shown in
Figure S5. The absorption peak at 3415 cm−1 might be the characteristic vibration of the
-OH group. The region between 2924 and 2854 cm−1 was related to the C-H groups and
the peaks at 1642 and 519 cm−1 belong to the C=C and Co-O groups. The influence of pH
on CoO@C adsorption of CIP was inconspicuous in the process of exploring the influence
of pH on CIP adsorption, indicating that electrostatic attraction was not the dominant
factor. The main driving forces for adsorption are the hydrogen bonds formed and the
interactions of the π–π bond between the pollen carbon and hydroxyl groups on the CIP
and NOR surface.
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4. Conclusions

A novel adsorbent of Fe2O3/CoO/NiO@C was successfully fabricated via a solvother-
mal method and applied to the removal of MO/CIP/NOR. The characterization results
showed that the hollowed-out pollen carbon framework was covered with the transition-
metal-oxide nanoparticles. The large surface area and high pore volume of metal oxides
provide more active sites for the adsorption. Several factors affecting the adsorption were
explored and which produced a favorable adsorption capacity. A faintly acidic condition
was considered as the best pH condition for the CIP adsorption. The pseudo-second-order
model, intraparticle diffusion model, and Freundlich adsorption isotherms model have
proved that the adsorption is controlled by both physical and chemical mechanisms. It
is effortless and timesaving to separate the adsorbent with an external magnetic field by
taking advantage of the magnetism of Fe2O3/CoO/NiO@C.
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and differential pore size distributions in a semi-logarithmic scale of Fe2O3@C-500 (a), CoO@C-500
(b) and NiO@C-500 (c); Figure S3. Adsorption degradation of Norfloxacin with 25 mg and 50 mg
Fe2O3@C-500 (a), CoO@C-500 (b) and NiO@C-500 (c); Figure S4. Removal efficiency of 20 mg/L MO
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CoO@C-500 (a), FT-IR of the MO (b), CIP (c) and NOR (d) before and after adsorption by carbon.
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