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Abstract: Sediment is an important part of the aquatic ecosystem, which involves material storage
and energy exchange. However, heavy metal pollution in sediment is on the increase, becoming an
important concern for the world. In this paper, the state-of-art in situ remediation technology for
contaminated sediment was elaborated, including water diversion, capping, electrokinetic remedia-
tion, chemical amendments, bioremediation and combined remediation. The mechanisms for these
techniques to reduce/immobilize heavy metals include physical, electrical, chemical and biological
processes. Furthermore, application principle, efficiency and scope, advantages and disadvantages,
as well as the latest research progress for each restoration technology, are systematically reviewed.
This information will benefit in selecting appropriate and effective remediation techniques for heavy
metal-contaminated sediment in specific scenarios.
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1. Introduction

Global metal production accounts for 7–8% of global energy consumption, which
has a huge impact on the use of energy in the world [1]. In the 20th century, the use
of metals grew rapidly. Of these, steel had the world’s largest yield in 2009, with over
1.2 billion tons, followed by aluminum and copper, with about 30 million and 24 mil-
lion tons, respectively [1]. Until 2021, global crude steel production has reached up to
1.9 billion tons, according to World Steel Association. In the processes of primary metal
production, serious local environmental impacts such as air emissions (greenhouse gases,
sulfur dioxide, etc.), mine waste, groundwater pollution and loss of biodiversity can be
caused [2–4]. Furthermore, in some developing countries, the end-of-life recycling rates for
many metals are too low due to a lack of recycling infrastructure and technology [1]. Thus,
large amounts of metal-containing waste are exposed to the environment, which creates
severe risks to human health and environmental toxicity.

In an aquatic environment, sediment is considered both a source and sink for pollu-
tants (like heavy metals). Heavy metals are non-degradable, and excessive concentrations
of heavy metals can seriously disturb the ecosystem. Particularly, heavy metals in sediment
can be assimilated, absorbed and accumulated by benthic organisms, which further ampli-
fied along the food chains, and eventually harm human health through the consumption of
fishery products [5]. Many studies have found excessive exposure to heavy metals may
lead to disruptions in gene expression, damage repair processes and enzymatic activities,
increasing the risks of related diseases and cancers [6]. For example, arsenic (As) exposure
can result in skin, liver, prostate and kuffer cell cancers through cell damage, oxidative
stress and DNA damage [6,7]. Cadmium (Cd) can lead to kidney injuries, bone damage
and various cancers (e.g., ovarian cancer and breast cancer) via disruption of components
of the cellular antioxidant system, calcium metabolism and endocrine system [6,8,9]. So it
is very important to treat heavy metal contamination.
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Heavy metals cannot be effectively biodegraded, and their toxicity and bioavailability
depend on their types and forms. Thus, the main purpose of heavy metal remediation in
contaminated sediment is to reduce the metal contents and biological toxicity. At present,
two remediation strategies have been adopted to remedy the heavy metal-contaminated
sediment on the basis of whether sediment is dredged from the riverbed or not. Those are ex
situ remediation technology and in situ remediation technology [10]. In situ remediation is
suitable for sediments that are slightly contaminated, with the merits of being cost-effective
and causing less natural disturbance, including water diversion, capping, electrokinetic
remediation, chemical amendments and bioremediation [11,12]. Faced with the complexity
of pollutants in the real environment, combined technology is often used [12]. In this paper,
the state-of-art in situ remediation technology for contaminated sediment was elucidated.
Particularly, application principle, efficiency and scope, advantages and disadvantages, as well
as the latest research progress of each restoration technology, are systematically introduced.
It is expected that this information will assist in the selection of appropriate and effective
remediation techniques for heavy metal contaminated sediment in special scenes.

2. Heavy Metals in Sediment
2.1. Sources of Heavy Metals

There are two primary sources of heavy metals in the environment; those are natu-
ral sources and anthropogenic activities. Natural causes cover sea-bed volcanic activity,
atmospheric convection, rivers or erosion, and the main anthropogenic sources exist in
various industries (such as present and former mining activities, electroplating, electronic
and metal-finishing industries) [13,14], the excessive use of fossil fuels [15] and agricultural
activities (like pesticides and fertilizers comprising As, Pb and Cd) [16]. In aquatic systems,
atmospheric bulk deposition of pollution-derived atmospheric particles is an important
source, particularly in regions that have suffered from heavy air pollution in the past [17].
Additionally, surface runoffs (including urban runoffs, agricultural runoffs and stormwater
runoffs) and discharges of contaminated groundwater or industrial wastewater contribute
greatly to heavy metal pollution in the freshwater ecosystem [18,19]. Since heavy metals are
transported into the water, a small portion is dissolved in the water and the other portion
(>90%) is trapped in sediment by adsorption, hydrolysis, and forming solid compounds
with carbonate, sulfate and sulfur [20]. Thus, the sediment becomes the ultimate sink for
heavy metals, which can be several orders of magnitude higher than in the overlying water.

2.2. Distribution and Transformation of Heavy Metals

The distribution of heavy metals depends not only on the terrestrial inputs but also on
the physicochemical and biological characteristics of that system. The total metal concentra-
tions can be a good indicator for source assessment, whereas bioavailability and toxicity of
metals are related to their chemical forms in the sediment [21,22]. The primary forms for the
metal in sediment are soluble, ion-exchangeable, Fe-Mn oxides, organic matters/sulfides
and carbonates [23]. Chemical forms of exchangeable carbonate and Fe-Mn oxides are
weak to bind with heavy metals, which can be readily ingested by organisms [24,25]. When
metals are adsorbed by crystal or completely bound to organic matter/sulfides, they exhibit
low potential bioavailability and toxicity [26,27]. Interdependently, the loading of metals
has correlated with the transformation between metal species [28].

The partitioning of metals between sediment and porewater at the sediment–water
interface is governed by the reactions of sorption/desorption and dissolution/precipitation,
redox and acidification, which is strongly affected by pH, sulfides, organic matter, iron
hydroxides, redox conditions and so on [20,29,30]. At low pH, the negative surface charge
of organic matter, clay particles and Fe-Mn-Al oxides is reduced, and carbonates, sulfides
and Fe-Mn oxide fractions are dissolved, while high pH promotes the formation of stable
complexes with metals [31–33]. When carbonate is present in sediment, it not only settles
the metal directly but also acts as an effective buffer against pH reduction [34]. In the
surficial sediments, the process of organic matter degradation, the acid volatile sulfide
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oxidation and the other reduced species (such as NH4
+, Mn2+, Fe2+ and HS−) oxidation

can result in pH decreased, which causes the mobilization of the heavy metals [35,36].
Meanwhile, the environmental behavior of organic matter on metals in sediment mainly
includes adsorption, complexation and chelation [37,38]. Dissolved organic ligands often
form soluble metal complexes, but the complexation of metal to insoluble organic ligands
can reduce metal availability [38]. On the other hand, organic matter provides a food
source for microorganisms and indirectly affects metal’s fate. In eutrophic environments,
the availability of organic matter and sulfate concentrations are often abundant; sulfate-
reducing bacteria exploit simple organic molecules and obtain energy by reducing sulfate
to sulfides that are potentially bound to metals in anoxic sediments [39]. In these processes,
acid volatile sulfides (AVS) can form thermodynamically stable metal sulfide precipitates
with Simultaneously Extracted Metals (SEM; Cu, Pb, Cd, Zn, Ni, Cr and Ag) to reduce metal
bioavailability [40,41]. On the other hand, metal sulfides may be oxidized with oxygen
increasing resulting in the mobilization of metals in the sediment [42]. Therefore, the fate
of metals in sediments is phase-specific under changing environmental conditions.

3. In Situ Remediation Technology

In situ remediation refers to the means that directly treat contaminated sediment with-
out removing them from rivers, lakes, or harbors by various techniques. According to the
different remediation principles, in situ remediations can be divided into physical remedia-
tion, chemical remediation, bioremediation and combined remediation. In situ treatment is
a less disruptive method with the advantages of practicability, cost-effectiveness and rapid
implementation.

3.1. Physical Remediation

Physical remediation is to directly or indirectly repair heavy metal pollution in sedi-
ment by physical means and some specific engineering techniques. In situ physical repair
techniques mainly include in situ capping, electrokinetic remediation and water diversion.

Capping means leaving pollutants in place and isolating them from overlying water
by proxy compartments to reduce resuspension and bioavailability [43]. Passive capping
commonly employs the inert materials of sand, clay, silt, organic carbon and crushed
stone on geotextiles [44]. However, when it is applied to shallow areas, sensitive habitats
and marine environments, the toxic risk of pollutants remain [44]. Active capping is
another option that the capping materials can react with sediments pollutants to encourage
degradation or sequestration [45]. Active capping materials often involve ion exchange
resins, clay minerals, apatite, activated carbons (AC) or alumina, biochar (BC), barite,
chitosan, red mud, mesoporous support and geopolymers (e.g., alkali-activated blast-
furnace-slag (BFS-GP), metakaolin geopolymer (MK-GP)) (Table 1) [44,46]. Even so, passive
capping is a mature technology, whereas active capping is relatively new, and only a few
pilot-scale experiments have been reported [44]. In situ capping minimizes the movement
of contaminated sediments and their impact on the overlying water, but some capping
materials (e.g., AC) are harmful to benthic macrofauna resulting in a substantial decrease
(up to 90%) in the diversity, abundance and biomass of benthic species [47].
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Table 1. Studies of in situ active capping and chemical amendments for heavy metal contaminated
sediment in recent years.

Sediment Adsorbent Heavy Metal Appling Method Findings Reference

The Hyeongsan River
estuary, South Korea

Zeolite, AC/zeolite,
AC/sand and
zeolite/sand

Hg Capping

Capping with AC/zeolite,
AC/sand, and zeolite/sand

reduced >90% of the Hg after 2
months.

[48]

Pudong New District,
Shanghai, China

Apatite, apatite/calcite
mixture Cd Capping

The reduction efficiencies of Cd by
the apatite capping and

apatite/calcite mixture capping on
day 22 were 92.7% and 98.8%,

respectively.

[49]

Lake Kivijärvi, Finland BFS-GP granules Fe, Zn, Ni, Cr Mixing
The amendment effectively reduced
the mobility of Fe, Zn, Ni, and Cr by

about 50–90%.
[50]

The Gunneklev fjord,
Norway

Lignite AC (A-AC, 5%)
and activated BC (A-BC,

5%)
Hg Mixing

The A-AC and A-BC amendments
strongly reduced the available

MeHg-concentration in porewater
(by 87% for A-AC and by 93% for

A-BC after 12 months).

[51]

A Baltic Sea bay,
Sweden

Al, Polonite
(calcium-silicate) and

AC
Cd, Zn Mixing

Al injection into anoxic sediments
completely reduced the release of
Cd (97%) and Zn (95%). Polonite

mixed with AC reduced the release
of Cd (67%) and Zn (89%).

[52]

A Former Mining Pit
Lake, Arkansas, USA

Limestone, bentonite
clay and gravel Zn Capping

A three-layer cap consisting of
limestone (top) + bentonite clay

(middle) + gravel (bottom) was the
most effective.

[53]

Wulong River, China
BC and nano-Fe2O3

modified BC
(nFe2O3@BC)

Cd Capping

Both BC and nFe2O3@BC capping
inhibited Cd release from sediment

(reduction rates >99%), and
nFe2O3@BC capping has better

effectiveness.

[54]

An estuary pond within
a former chlor-alkali

plant, China

AC/bentonite,
AC/kaolin and

AC/montmorillonite
Hg Capping

The caps with AC (3%) + bentonite
(3%) and AC (3%) + kaolin (3%)

reduced total Hg concentration in
overlying water by 75–95% after

75-d operation.

[55]

The estuary of Sungai
Kuala Perlis, Malaysia

Bentonite, kaolin and
sand Pb Capping

Bentonite, kaolin, and mixture of
bentonite with kaolin effectively

reduced the release of Pb.
[56]

Guangdang River,
Yantai, China

BC and BC-nanoscale
zero-valent iron

(nZVI/BC)
Cd Mixing

BC and nZVI/BC reduced the
released Cd concentrations by

31–69% and 26–73%, respectively.
[57]

Puhuitang Creek,
Shanghai, China

Calcium nitrate and
phosphate Zn, Pb and Cu Mixing

Over 50% of mobile Zn, Pb, and Cu
might be reprecipitated in

sediment.
[58]

The South River in
Virginia, USA Hardwood BC Hg Capping

80% of the Hg was retained on the
biochar without promoting Hg

methylation.
[59]

Xiangjiang River, China Fe3O4, (α + γ)-Fe2O3,
and αFe2O3

Cd Mixing
(α + γ)-Fe2O3 exhibited better

performances than the other iron
oxides.

[60]

Maozhou River, China CaCO3, Ca(OH)2,
zeolite, kaolin, FeCl2

Cr, Ni, Cu Mixing
Stabilization effect can be ordered

as CaCO3 > zeolite > FeCl2 > kaolin
> Ca(OH)2.

[61]

A
mercury-contaminated

site, USA

Mn(IV)-oxide phases
pyrolusite or birnessite Hg Mixing

Reaction of Mn(IV) oxide with pore
water should poise sediment

oxidation potential at a level higher
than favorable for Hg methylation.

[62]

A polluted reservoir,
China.

Natural zeolite
(N-zeolite) Pb, Cd, Mn, Zn Capping

The inhibition rates of Cd, Pb, Mn,
and Zn were 35.7%, 85.7%, 65.6%

and 57.8%, respectively.
[63]

Lake Pyhäjärvi and
Lake Kivijärvi, Finland

BFS-GP, MK-GP,
exfoliated vermiculite Al, Cu, Fe, Cr, Zn, Ni Capping

BFS-GP was suitable for Al, Cu, Fe
and Ni; MK-GP for Cu, Cr and Fe;

and vermiculite for Al and Zn.
[46]

The Yellow Sea, Korea Dredged materials Cr, Hg, Ni, Cu, Zn,
Cd, Pb Capping

The largest decreases were detected
in Cr and Hg (≥ 80%), followed by
Cd (74%), Cu and Zn (68%), Ni and

Pb (10%).

[64]

Nanfei River, Hefei,
China

Rice husk biochar
(RHB) Cu Capping

RHB can maintain the
concentrations of Cu below the

national criterion at pH = 5 and 7.
[65]

Electrokinetic remediation applies an electric potential gradient or a low direct cur-
rent to induce a low electric current across contaminated soil/sediment through a pair
of electrodes and transports contaminants to the electrodes (Figure 1) [66]. The main
relevant phenomena occurring in electrokinetic remediation are electroosmosis, electromi-
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gration, electrolysis and electrophoresis so that heavy metals can be removed by adsorption,
electrodeposition and precipitation or co-precipitation [67]. There are some side effects,
such as thermal effects, crystallization effect, electrode corrosion and focusing effect (the
formation of hydroxide precipitate), which are becoming the main challenges of electroki-
netic technology [68]. The current studies, though, have provided some solutions. For
instance, the focusing effect can be overcome by controlling the pH, polarity exchange
technique, ion exchange membranes, approaching anodes, the superimposed electric field
and adding electrolytes (such as chelators and surfactants) [69–73]. The crystallization
effect and electrode corrosion can be relieved by adding citric acid or polyaspartic acid
and coating electrically conductive polymers, respectively [74,75], while the mechanism
of thermal effects is still unclear. On the other hand, EKR combined with other remedy
techniques are more effective; for example, EKR-bioremediation requires low energy and
improves the growth of plants and the spread of microorganisms. EKR-PRB simultaneously
achieves pollutants removal, degradation or recycling from soil/sediment [68,76]. In terms
of improving energy utilization efficiency and developing self-powered technology, pulsed
electric fields (FE), solar power and microbial fuel cells have been extensively studied [68].
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Figure 1. Schematic diagram of EKR (The most important electron transfer reactions at electrodes is
the electrolysis of water).

Water diversion is to introduce clean water to polluted areas so that contaminant
concentrations are diluted and the water self-purification process is accelerated [77]. There
are many factors affecting this process, such as diverted discharge, diversion routes, wind
direction/magnitude and ways of managing diversion projects [78,79]. Generally, long-
term diversion with a low flow rate is better than short-term diversion with a high flow
rate, and a low nutrient concentration of diverted water is also important [78–80]. Hydro-
dynamic and water quality models are introduced to simulate the transport of pollutants,
the flow movement, water level changes and the effectiveness of water transfer projects,
including HEC-RAS, MKIE11, MIKE 21 FM, EFDC, FVCOM and other models [79,81–85].
This technique improves water exchange and the reoxygenation rate, which is especially
suitable for polluted lakes [81]. Successful examples are Moses Lake, Xihu Lake, Tianyinhu
Lake and Dongshan Lake [78,81,86,87]. Water diversion responds quickly to pollutants,
but the diverted water needs to be reasonably distributed to avoid the occurrence of dead
water zones [78].

3.2. Chemical Remediation

Chemical remediation is to add chemical additives to stabilize heavy metals. Commonly,
chemical additives include phosphate, clay minerals, biochar, sulfide, silicocalcium materials,
iron-based materials, aluminum salts, industrial residue and nanomaterials (Table 1). The
mechanisms for immobilizing heavy metals involve adsorption, oxidation, reduction, ion
exchange, complexation and precipitation and other reactions [88]. Chemical remediation is
quick, simple, easy to apply and relatively economical, but the introduction of large quantities
of other chemicals can easily cause secondary pollution to the environment.

Phosphate compounds include soluble phosphates and insoluble phosphates. Soluble
phosphates, such as phosphoric acid, ammonium, sodium, potassium phosphates and
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hydrogen ordihydrogen, can react with metal ions to form insoluble metal phosphate
salts [89]. Insoluble phosphates, such as hydrargyrite and the apatite family (hydroxyla-
patite), are frequently encountered examples. In particular, hydroxylapatite is the most
cost-effective reactive media for most metals and radionuclides to form mineral deposits
that are not bioavailable [89]. Excessive or improper use of phosphate may lead to water
eutrophication and other risks [90]. Clay minerals are a kind of abundant natural minerals,
in which bentonite, montmorillonite, attapulgite, kaolinite, sepiolite and zeolite are the
most widely used due to their high specific surface areas (SSA), cation exchange capacity
(CEC) and swelling/expanding capacity [91]. The methodologies of organic modification,
acid modification, thermal modification and nano zero-valent iron (nZVI) modification
can improve their adsorption capacities [91]. At the same time, modification adds addi-
tional costs, and new chemical agents also increase environmental threats; for instance,
organoclays between 5 and 100% v/v have adverse effects on crustaceans [45]. Biochar is
produced by carbonization or pyrolysis of various materials (such as wood, feces, leaves
and animal manure) [92]. The performance of biochar can be enhanced by steam activation,
magnetization, oxidation and digestion treatment to reach remediation requirements [92].
However, extensive application of biochar can lead to a decrease in the unconfined compres-
sive strength and shear strength of the soil [93]. Sulfide minerals (such as FeS2, FeS, Na2S,
Na2S2O3 and dithiocarbamate) have been recognized as important scavengers for heavy
metals [94]. For example, iron sulfide (FeS) displays a disordered tetragonal mackinawite
structure with a highly reactive surface [95], which is very effective in immobilizing metal
ions such as Hg2+, Cd6+, Cu2+, Pb2+, Mn2+, Zn2+, Ca2+, Mg2+ and Ni2+ [96–98]. Mercury
can be immobilized by FeS through surface complexation, substitution into metastable
FeS compounds and precipitation of HgS(s) [99,100], and Chromium(VI) can be reduced
into chromium(III) by a source of Fe(II) and S(-II) species as electron donors from FeS [96].
Furthermore, amendments of silicocalcium materials (e.g., CaO and MgO), iron-based
materials (e.g., Fe0, Fe2O3, Fe3O4 and Fe(OH)3), aluminum salts (e.g., aluminum chlo-
ride and aluminum polychloride), industrial residue (e.g., steel slag) and polymers (e.g.,
alkali-activated materials and biopolymers) also can reduce the bioavailability of metals
effectively, applying as the pilot- or full-scale in sediment remediation [12,43,101,102].

Nanomaterials include carbon nanomaterials (nanoscale biochar materials, nano black
carbon, multiwalled carbon nanotubes and C60), metal-based nanomaterials (nanoscale
zero-valent iron (nZVI) and metallic oxide nanomaterials) and nano mineral materials [103].
In recent years, novel nanomaterials have emerged due to their superior performance in
environmental pollution cleanup. For instance, metal-organic frameworks (MOFs) are
formed by coordination bonds of metal ion precursors and organic ligands, which have rich
functional groups and designable structures that can capture various heavy metal ions [104].
MXenes is a two-dimensional transition metal carbide or nitride material with advantages
of excellent conductivity, high specific surface area, rich surface functionalities, mechanical
flexibility and hydrophilicity, and their adsorption capacity for heavy metals depends upon
their surface terminal groups (-OH, -F, and -O) and interlayer spacing [105]. Graphitic
carbon nitride (g-C3N4) is a two-dimensional metal-free semiconductor that has multiple
surface features and abundant functional groups (e.g., -NH2/-NH-/=NA-), making it a
promising adsorbent for pollutant elimination [80,106]. Although nanomaterials have
great potential to remedy heavy metal contamination, they are rarely used in commercial
applications. As a new type of environmental remediation materials, nanomaterials have
great uncertainties and should be used with caution. Nanomaterials can easily enter the
environment and living cells due to their tiny size. The nanomaterials used to remedy
sediments are not easily separated after restoration, resulting in secondary pollution and
adverse effects on benthic microbial communities and aquatic organisms [107].

3.3. Bioremediation

Bioremediation involves phytoremediation and microbial remediation. Phytoremedia-
tion is to use of plants and their related rhizosphere microorganisms to remove, degrade or
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fix a variety of contaminants in contaminated soil, sediments or waters [108]. It is an opera-
tionally simple, cost-effective (25% less than other remediation techniques) and a promising
clean-up solution for a wide variety of contaminated sites despite some restrictions (e.g.,
the climatic and geological conditions, low biomass, slow growth rate) [109]. Microbial
remediation is the use of microorganisms to reduce, eliminate, contain and transform
pollutants in contaminated environmental media (e.g., sediment) [110]. The advantages
of microbial remediation are safe, simple and effective, but it is time-consuming, and the
remediation effect is difficult to predict [12].

Phytoremediation strategies for heavy metal pollution mainly include phytovolatiliza-
tion, phytostabilization and phytoextraction. The mechanisms involve the production of
root exudates that enhance heavy metals mobility and the production of metal-chelating
agents (e.g., metallothionines, phytochelatins and antioxidant compounds) [111]. Phyto-
volatilization means that pollutants are absorbed by the roots, transferred to the leaves
and volatilized through the stomata (transpiration), in which toxic metals are converted
to less toxic and volatile compounds (such as Hg). The divalent cation Hg2+ can be re-
duced to elemental mercury by bacteria to enhance the volatilization ability of associated
plants [112]. However, the volatilized metals can be advected by winds and transported
a considerable distance, finally returning to land by atmospheric bulk deposition [113].
Plants have the capability to isolate or fix/stabilize contaminants in the rhizosphere by
absorption at the root surface or precipitation within the root zone. This process is called
phytostabilization [111,114]. The plants must have dense rooting systems, a relatively
long life and self-propagating capacity [108]. Frequently, phytostabilization is used in
combination with chemical stabilization, and the ideal amendments are nontoxic, easy
to produce and inexpensive, including lime, phosphate, biochar, biosolids, compost and
manure [115–117]. However, pollutants need to be monitored regularly to ensure optimal
stability conditions, and soil/sediment amendments are required to be applied regularly
to maintain their effectiveness [118]. Phytoextraction refers to the pollutants are absorbed
by root systems of plant and then translocated and concentrated to the aboveground har-
vestable parts [119]. In this process, hyperaccumulators are particularly important, which
must have characteristics of high biomass production, fast growth and easy harvesting
and cultivation [120]. The criteria used for hyperaccumulators are > 100 mg/kg for Cd;
>1000 mg/kg for Cu, Ni, and Pb; >10,000 mg/kg for Mn and Zn in plant shoots (all ac-
cumulations are dry weight) [12]. There are approximately 500 known hyperacculator
taxa covering 45 angiosperms families, and the number is still increasing, among which
about 25% come from Brassicaceae [119,121,122]. Commonly used hydrophyte for sediment
remediation includes Hydrilla verticillata, Elodea Canadensis, Phragmites australis, Eichhornia
crassipes, microalgae, mangrove plant and so on (Table 2). The metals that exit as free ions,
soluble complexes and in an ion exchange state are considered available for plant uptake,
which depends on soil-associated factors and plant-associated factors [122]. The addition of
chelating agents to form metal chelates prevents the deposition and adsorption of metals in
the soil/sediment, thus maintaining the availability of plants. Synthetic/natural chelating
agents include citric acid, oxalic acid, amino acid, ethylenediaminedisuccinic acid (EDDS),
ethylene diamine tetraacetic acid (EDTA), ethylenediamine-N, nitrilotriacetic acid (NTA)
and gibberellic acid (GA) [123–126]. On the other hand, microbial communities sourced
from contaminated soil/sediment and plant root-soil interface (rhizosphere communities)
are commonly applied to improve metal phytoextration [127]. The mechanisms is to in-
crease bioavailability of heavy metals in the soil/sediment and/or promote plant growth.
Additionally, genetic engineering that transferred of genes (e.g., metal uptake, translocation,
and sequestration) into candidate plants has great potential to improve phytoremediation,
but there are still some risks for technical economic and ecological impacts [114].
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Table 2. Bioremediation for heavy metal contaminated sediment/soil in recent years.

Sediment/Soil Biosorbent Type Heavy Metals Findings Reference

Wangyu River, Jiangsu
Province, China

Hydrilla verticillata and Elodea
canadensis Cd

The bio-concentration factors (BCFs) of both
macrophytes exceeded 1.0. Two keystone

bacteria (Pedosphaeraceae and genus
Parasegetibacter) posed significant potential for

promoting plant growth and tolerating Cd
bio-toxicity.

[128]

Coastal sites along the Red
Sea, Saudi Arabia Mangrove plant Cd, Cr, Cu, Ni, Pb, Zn Sediment-to-plant transfer coefficient values

were >1. [129]

Wonorejo Estuary, Surabaya,
Indonesia Mangrove plant Pb

The most effective mangrove involved in the
accumulation of Pb was Avicennia. alba

(BCFs: 1.13–90).
[130]

Lake Burullus, Egypt Phragmites australis Ni, Pb
The highest monthly Ni and Pb standing stock

were 18.2 and 18.4 g/m2, respectively. The
translocation factor of Ni and Pb was >1.

[131]

The coast of Rayong province,
Thailand Mangrove plant Mn, Pb, Cr, Cu, Zn

The removal efficiency of heavy metals
contaminated in sediment occurred in descending
order of Mn > Pb > Cr > Cu > Zn (93.11%, 80.42%,

70.03%, 67.09% and 52.50%, respectively).

[132]

A wastewater pond,
Philippines

Fugi (Rhizopus sp., Mucor sp. and
Trichoderma sp.) Cd, Cu, Fe, Zn

Rhizopus sp. was the most tolerant to all the
heavy metals tested with the minimum

inhibitory concentrations (MIC) of 5 mM < Cd
≤ 6.5 mM, 10 mM < Cu ≤ 15 mM, 30 mM < Fe

≤ 35 mM and 25 mM < Zn ≤ 30 mM.

[133]

Yuepu industrial area,
Shanghai, China

Fugi (Fusarium fujikuroi, Fusarium
solani, Trichoderma citronoviridae

and Trichoderma reese)
Cd, Cr, Cu, Pb, Hg, Ni

The highest biosorption capacity of Pb was
exhibited by Trichoderma citronoviridae, while
Trichoderma reesei showed the best absorption
capacity of Cu, followed by Fusarium solani.

[134]

The Lerma-Chapala Basin,
Mexico

Bacteria (mainly including Delftia
and Pseudomonas) Zn, As, Ni

The bacteria showed high heavy metal
resistance, especially to Zn, As and Ni, which

could be employed in the
bioremediation process.

[135]

Sangan iron ore mine, Iran Cyanobacteria (Oscillatoria sp. and
Leptolyngbya sp.) Cr, Fe, Ni, As, Pb, Cu

Cyanobacteria inoculation decreased the
available concentration of Pb and Ni. The

maximum metal removal efficiency was 32%.
[136]

Kitchener Drain, Nile Delta
Eichhornia crassipes, Ludwigia

stolonifera, Echinochloa stagnina,
Phragmites australis

Cd, Pb, Ni

Phragmites australis accumulated the highest
concentrations of Cd (57.5 mg/kg) and

(109.0 mg/kg), while Eichhornia crassipes
accumulated the highest concentration of Pb

(277.4 mg/kg).

[137]

Shipbreaking area,
Bangladesh Mangrove plant Zn, Pb, Cu, Cr

Acanthus ilicifolius showed hypermetabolizing
capabilities for most metals, and Avicennia alba

showed hypermetabolizing capabilities for
Cu, Zn, and Fe.

[138]

Jaran Bay and Onsan Bay,
Korea Seagrass Zostera marina Cd, Zn, Hg

Zostera marina transplants accumulated a great
amount of heavy metals in their tissues, which

have the phytoremediation potential for the
heavy metal-contaminated sediments.

[139]

The western watershed,
Thailand

EDTA and diethylenetriamine
pentaacetic acid (DTPA) combined

with Water Hyacinth
Cd Water hyacinth accumulated Cd of

112.73 mg/kg in root within 3 months. [140]

Suyeong Bay, Korea
Phaeodactylum tricornutum,

Nitzschia sp., Skeletonema sp., and
Chlorella vulgaris

Cu, Zn

Chlorella vulgaris grew under red LED and
exhibited the highest Cu and Zn removal

capacities with values of 17.5 × 10−15 g Cu/cell
and 38.3 × 10−15 g Zn/cell, respectively.

[141]

Microbial remediation strategies for heavy metal pollution mainly include biosorption,
bioaccumulation, biotransformation, bioprecipitation and bioleaching [12]. Microbial types,
including archaea, bacteria, cyanobacteria and fungi, are potentially used for soil/sediment
remediation for heavy metals (Table 2). Biosorption is a physicochemical process that
microorganisms adsorb metals by electrostatic force, ion or proton displacement, com-
plexation or chelation [142]. The interaction between functional groups of microbial cell
surface and metals is non-metabolism dependent, so the dead biomass can be used as
sorbents [143]. Bioaccumulation is a metabolically-active process in which microorganisms
transport metals into their intracellular space and sequester them with proteins and peptide
ligands (i.e., storage system) [110,142]. The importer system is a translocation pathway that
is formed through the lipid bilayer, where channels (passive diffusion), secondary carriers
and primary active transporters affect metals uptake [142]. Bioaccumulation is a slow
and irreversible process in the cell wall and lipid membrane are physically or chemically
destroyed when heavy metals are obtained [142]. Biotransformation covers the transition
of metal valence states to alter their mobility, bioavailability and toxicity, whose processes
include reduction and oxidation, methylation and demethylation, and hydrogenation [144].
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For example, metal-reducing bacteria can directly enzymatic reduce soluble heavy metals
to insoluble or immobile forms [110]. Metal precipitation may occur when heavy metals
react with extracellular polymers or anions (such as sulfides or phosphates) from microbial
metabolites, which is called bioprecipitation [110,145]. Further, bioleaching means metallic
cations dissolved from insoluble ores by biological oxidation and complexation processes,
which is an innovative and low-carbon technology for metal extraction [146,147]. In order to
improve the efficiency of microbial remediation, gene engineering and nanobioremediation
technology have come into being [142,148]. For instance, genetically encoded metal-binding
proteins and enzymatically produced metal-binding peptides and polymers can enhance
the storage of heavy metals [142]. Nanobioremediation is a combined technology that
nanoparticles are applied as immobilization carriers enhancing the microbial mechanisms
of environmental cleanup [148].

3.4. Combined Remediation

Heavy metal pollution in sediment is complex and cannot be completely solved by a
single remediation technology. Thus, combined remediation with two or more remediation
technologies encourages the realization of their full potential and improves remediation
efficiency. Generally, combined remediation concludes physical-chemical remediation,
chemical-biological remediation, phyto-microorganism remediation and other group reme-
diation (combined more than three methods) [12]. Physical-chemical remediation is a con-
ventional method with characteristics of high efficiency and high cost, including electroki-
netic combined remediation (such as electrokinetic-acidification/flocculant/adsorption/ion
exchange membrane/permeable reactive barrier), combined remediation by chemical leach-
ing and ultrasonic/microwave–chemical combined remediation [149]. Biological-related
combined methods have obvious advantages of low cost and small impact on the eco-
logical environment, but they are time-consuming and unstable in remediation efficiency.
Chemical-biological combined remediation contains phyto-stabilizing agent combined
remediation and phyto-activator combined remediation, which promotes the processes of
phytostabilization and phytoaccumulation. Phyto-microorganism remediation is mainly
to repair contaminated sediment through the symbiotic system between microorganisms
and plants. Evidence that P-solubilizing microorganisms and siderophores produced by
microorganisms can increase heavy metal-mobilization and phytoextraction [150]. Fur-
thermore, group technology (combined with more than two remediation technologies) is
becoming a trend in sediment remediation, but it has not been widely applied in prac-
tice [12].

4. Conclusions and Prospect

Heavy metal pollution in rivers and lakes has become an important concern in the
world. Most of the metals that flow into rivers are stored in sediments and ingested
by aquatic life, so sediment remediation is necessary. Due to the complexity of heavy
metal pollution and the particularity of different pollution sites, the selection of treatment
methods is also different.

In situ remediation is simple, effective and low cost, but contaminants always ex-
ist and have a risk of re-release. Physical remediation is traditional and widely used,
but the emerging active capping is still in the experimental stage and requires further
research. Chemical remediation has a relatively single function, and composite additives
are usually used for multi-heavy metal complex pollution. The remediation amendments
themselves have certain environmental risks, so it is particularly important to explore green,
environmentally-friendly and multi-functional remediation materials. Bioremediation is a
great potential application technology with no secondary pollution. However, this tech-
nique is currently at its fledging stage; thus, understanding the mechanisms to improve
tolerance and extraction efficiency for plants and microorganism is necessary to further
research and development. These techniques can be combined to improve remediation
efficiency, which is always the trend in research.
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Porobić, A.; et al. Risk assessment of heavy metal exposure via consumption of fish and fish products from the retail market in
Bosnia and Herzegovina. Food Control 2021, 133, 108631. [CrossRef]

6. Kim, H.S.; Kin, Y.J.; Seo, Y.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J. Cancer
Prev. 2015, 20, 232–240. [CrossRef] [PubMed]

7. Tsai, T.L.; Kuo, C.C.; Hsu, L.I.; Tsai, S.F.; Chiou, H.Y.; Chen, C.J.; Hsu, K.H.; Wang, S.L. Association between arsenic exposure,
DNA damage, and urological cancers incidence: A long-term follow-up study of residents in an arseniasis endemic area of
northeastern Taiwan. Chemosphere 2021, 166, 129094. [CrossRef] [PubMed]
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