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Abstract: SARS-CoV-2 seroprevalence was reported as substantially increased in medical personnel
and decreased in smokers after the first wave in spring 2020, including in our population-based
Tirschenreuth Study (TiKoCo). However, it is unclear whether these associations were limited to
the early pandemic and whether the decrease in smokers was due to reduced infection or antibody
response. We evaluated the association of occupation and smoking with period-specific seropositivity:
for the first wave until July 2020 (baseline, BL), the low infection period in summer (follow-up 1, FU1,
November 2020), and the second/third wave (FU2, April 2021). We measured binding antibodies
directed to SARS-CoV-2 nucleoprotein (N), viral spike protein (S), and neutralizing antibodies at
BL, FU1, and FU2. Previous infection, vaccination, smoking, and occupation were assessed by
questionnaires. The 4181 participants (3513/3374 at FU1/FU2) included 6.5% medical personnel
and 20.4% current smokers. At all three timepoints, new seropositivity was higher in medical
personnel with ORs = 1.99 (95%-CI = 1.36–2.93), 1.41 (0.29–6.80), and 3.17 (1.92–5.24) at BL, FU1, and
FU2, respectively, and nearly halved among current smokers with ORs = 0.47 (95%-CI = 0.33–0.66),
0.40 (0.09–1.81), and 0.56 (0.33–0.94). Current smokers compared to never-smokers had similar
antibody levels after infection or vaccination and reduced odds of a positive SARS-CoV-2 result
among tested. Our data suggest that decreased seroprevalence among smokers results from fewer
infections rather than reduced antibody response. The persistently higher infection risk of medical
staff across infection waves, despite improved means of protection over time, underscores the burden
for health care personnel.
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1. Introduction

SARS-CoV-2 antibodies measured in serum of population-based studies’ partici-
pants provide insights into the proportion of individuals who have experienced infection.
SARS-CoV-2 infection-mediated seroprevalence has been reported to be increased for medi-
cal personnel and decreased for smokers in numerous studies [1–10], including two studies
from Germany [11,12] as well as our baseline (BL) assessment of the Tirschenreuth Study
(TiKoCo) [13]. With the exception of [12], these results were based on cross-sectional data
collected shortly after the first pandemic wave (summer 2020) or in fall 2020.

Increased seropositivity among medical personnel during the first infection wave
in Europe is readily explained by higher infection risk due to occupational exposure.
The early pandemic increased infection risk for medical personnel could have been due
to limited knowledge regarding transmission routes or limited availability of protective
gear. Some early studies suggested that health care workers supplied with appropriate
protective gear were not at increased risk for SARS-CoV-2 infection [14]. However, it
is still an open question whether the medical staff was still at increased infection risk
during the second/third wave after widespread introduction of full protective gear at
medical workplaces.

The reasons for the association between smoking and decreased seropositivity are
more elusive. In principle, such results could point towards a reduced risk of infection
among smokers [15,16]. However, any underlying mechanisms for this remain unclear. An
alternative explanation is a decreased antibody response after infection among smokers
compared to non-smokers, in line with a suppressed immune system. Interactions between
smoking and the immune system are widely acknowledged (e.g., [17–19]) and also hy-
pothesized for immune responses to SARS-CoV-2 [7,20]. An evaluation of differences in
antibody response by smoking status is lacking so far. Also lacking are longitudinal studies
evaluating whether the smoking association with seropositivity was persistent over time.

Here, we set out to investigate whether the association between working in a medical
occupation or smoking with seropositivity was persistent across infection waves. We also
aimed to evaluate a possible link between smoking and the development of SARS-CoV-2
specific antibodies after infection or vaccination. For this, we conducted longitudinal
analyses in our cohort study from the Tirschenreuth population, the hardest-hit county in
Germany during the first SARS-CoV-2 wave. We analyzed the association of smoking and
medical occupation status with seropositivity, registered infections, and antibody response
after infection or vaccination for three observation periods: pre-pandemic to July 2020 (first
wave), July 2020 to November 2020 (few infections), and November 2020 to April 2021
(second/third wave).

2. Materials and Methods
2.1. Study Design, Participants, and Setting

The study was designed as a cohort study of the population aged at least 14 years living
in the Tirschenreuth county, Germany, as described previously [13]. Briefly, 6608 individuals
aged at least 14 years, randomly selected via population registries, were invited to study
centers (or to request house visits, if necessary). Of these, 4203 individuals participated
and provided informed written consent (net baseline response 64.3%). The study was
conducted according to the Declaration of Helsinki. Participants provided blood and a
self-completion questionnaire at baseline (BL, between 28 June and 13 July 2020) and two
follow-up examinations, FU1 (16 November–27 November 2020) and FU2 (19 April–30
April 2021) [21].
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Local health authorities registered 1109 SARS-CoV-2 infections in the county until
4 July 2020, 513 additional infections until 18 November 2020, and 3100 additional infec-
tions until 21 April 2021 [21]. For this, we set the cut-off date for registered infection as the
fourth day prior to the median day of the study period at BL, FU1, and FU2 (assuming
time from first symptoms to seroconversion as 12 days [22] and from first symptom to
registration as 8 days [23]). During the 1st wave, all work with personal customer contact
was prohibited except for medical occupations and food service; schools and pre-schools
were closed. Similar restrictions were implemented during the 2nd/3rd wave (allowing
work also for hairdressers and schooling of graduation classes).

2.2. Smoking and Occupational Status Assessed by Questionnaire

Using the pre-sent, written questionnaire in German language, participants provided
information on smoking and occupational status. Specifically, participants were asked at BL,
FU1, and FU2 whether they were currently smoking cigarettes, have previously smoked,
or have never smoked. Current smokers were asked as to how many cigarettes they were
smoking, and ex-smokers about their age when stopping. If participants reported to be
current or ex-smokers previously and later on to be never-smokers, they were classified as
ex-smokers for the later time point. The smoking status in the association analysis reflected
the status at blood draw.

Participants were asked at BL whether they were employed in February 2020 and, if
yes, in which occupation (in case of multiple employments, the occupation with >50% of
their working time). The options were: (i) medical occupation in medical care, care home, or
midwife, (ii) teacher at school or pre-school, (iv) service or cook in food service, (v) cashier
or shop assistant at groceries, (vi) hairdresser, (vii) other service with customer contact, or
(viii) any other. In our analysis on the association of occupation and N-seropositivity as
proxy for previous infection, we were particularly interested in three occupation groups,
namely medical staff, grocery workers, and teachers, as for those groups, an increased
exposure to the SARS-CoV-2 virus in the work setting is well imaginable. Grocery workers
were one of the few occupational groups who were working during the first SARS-CoV-2
wave despite lockdown measures and strong restrictions on work with personal customer
contact. Teachers can be suspected to be at high exposure during the 2nd/3rd wave and
medical staff potentially over the whole period of the pandemic. From this motivation and
with the intention to avoid small subgroups, we classified the occupational status of the
study participants into four distinct groups: the three mentioned as well as a fourth group
of “others” including all other types of self-reported occupations as well as unemployed
individuals. Note that all analyses regarding occupation are restricted to individuals of
working age (20–69 years).

2.3. Assessment of Other Covariates by Questionnaire at BL

Via the questionnaire at BL, as reported previously [13,21], participants were asked
about the number of people living in their household and the highest educational degree in-
cluding university/vocational school. Years of education were summed across educational
steps (set at 6 years for pupils) and dichotomized at ≥13 vs. <13 years; high education thus
corresponded to at least a graduation at the highest school level in Germany (“Gymna-
sium”). From reported alcohol consumption frequency (never, ≤1 per month, 2–4 times
per month, 2–4 times per week, 5–6 times per week, ≥1 per day) and number of drinks
consumed on a typical drinking day (beer 0.33 l, wine 0.125 l, liquor 4 cl), we derived the
average number of daily drinks and “high/low alcohol consumption” (≥2/<2 drinks per
day). We defined “high/low physical activity” (≥2/<2 h per day). Body mass index was
computed using self-reported height and weight.
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2.4. Assessment of Known Infections and Vaccination Status among Participants

By questionnaire, participants were asked whether they had undergone a SARS-CoV-2
test by trained staff (at medical practitioner, test site, or hospital) and whether this test was
positive: ever (BL), since 17 July 2020 (FU1), or since 27 November 2020 (FU2). Self-reported
positive tests were validated by health authorities. At FU2, participants were also asked
whether they were vaccinated against SARS-CoV-2 and, if yes, how often, which vaccine,
and when. Individuals were classified as fully vaccinated, if they had two vaccinations by
Comirnaty (BionNTech, Mainz, Germany), SpikeVax (Moderna, Cambridge, MA, USA), or
Vaxzevria (AstraZeneca, Cambridge, UK) ≥ 14 days before their respective blood draw.

2.5. Blood Processing, Storage, and Serum Antibody Measurements

Sample processing and antibody measurements were reported previously [13,21,24].
Briefly, sampled whole blood was transported daily to the University of Regensburg and
processed on the same day. We measured serum antibodies (i) directed at the SARS-
CoV-2 nucleoprotein (N, Elecsys Anti-SARS-CoV-2, Roche Diagnostics GmbH, Penzberg,
Germany), (ii) the receptor-binding domain (RBD) of the viral spike protein (S, Elecsys
Anti-SARS-CoV-2, Roche Diagnostics GmbH, Penzberg, Germany), and (iii) neutralizing
antibodies. Both Elecsys tests were operated on a COBAS pro e 801 module according
to the manufacturer’s instructions. SARS-CoV-2 neutralization capacity was evaluated
using Vesicular Stomatitis Virus (VSV–∆G*FLuc) pseudotyped with SARS-CoV-2-Spike-
∆ER. Herein, triplicates of a fixed inoculum of 25,000 ffu were neutralized for 1 h with a
2-fold serum dilution series starting at 1 in 20. Luciferase activity was determined 20 h
post-infection of HEK293T-ACE2+ cells using BrightGlo (Promega Corp, Madison, WI,
USA). IC50 values (50% maximal inhibitory concentration) were calculated by curve fitting
in GraphPad Prism 8 software (GraphPad Software, San Diego, CA, USA). N-antibodies
were measured for all individuals at all three time points, S-antibodies for all at FU2 and
for N-positives at any time point, and neutralizing antibodies for N-positives at any time
point and for vaccinated individuals at FU2.

Whereas S-specific binding and neutralizing antibodies offer insights into possible
protection [25], neither can distinguish vaccination from infection. On the other hand,
N-specific antibodies prove previous infection, within the limits of assay sensitivity and
specificity and depending on the durability of antibody responses [21], since the nucleo-
protein (N) is not part of the administered vaccine formulations and therefore, N-specific
antibodies are not developed in reaction to the SARS-CoV-2 vaccination.

Thus, for the main analysis, seropositivity from infection was judged by N-antibody
levels (cutoff = 1.0 Arbitrary Units (AU)/mL): participants N-seronegative at BL and
N-seropositive at FU1 were classified as newly seropositive at FU1, and participants
N-seronegative at FU1 and N-seropositive at FU2 as newly seropositive at FU2. Anti-
body response after PCR-confirmed infection or after full vaccination was based on N-,
S- (S-cutoff = 0.8 Binding Antibody Units (BAU)/mL), or neutralizing antibodies (cutoff
Inhibitory Dose 50 (ID50) = 20, as performed in [24]). For the analysis of antibody response
after a PCR-confirmed infection based on S- or neutralizing antibody measurements at FU2,
we focused on individuals without any vaccination only.

2.6. Statistical Analyses

At each of the three observation periods, we analyzed the association of smoking
or occupational status with (new) N-seropositivity. Participants were included in these
analyses when they had an N-antibody measurement available at the respective time
point (BL, FU1, FU2) and, for FU1 and FU2, when they had N-antibodies measured and
negative at the previous time point. For the smoking association, we restricted this to
participants with information on smoking status at the respective time point. For the
occupation association, we focused on participants at working age (20–69 years old) and
analyzed medical staff, preschool/school teachers, and grocery employees vs. any other
(to avoid small further subgroups). We applied logistic regression (R package mgcv [26])
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using two models: (1) adjusted for age (non-linear using thin-plate regression splines) and
sex, and (2) additionally adjusted for socio-demographic and lifestyle factors as published
previously [13] (only for BL and FU2; too few new seropositives at FU1). We evaluated the
association of number of cigarettes smoked (Winsorized at 30) with (new) seropositivity.
We compared associations for N-based seropositivity with S-based seropositivity (only in
FU2 sera, where S-antibody measurements were available for all participants).

For the smoking association, we conducted additional analyses: (i) we evaluated
antibody response after infection (defined by previous health authority-validated positive
PCR test) by smoking status: we analyzed seropositivity and median levels of N-, S-, and
neutralizing antibodies at FU2 by smoking status. For the S- and neutralizing antibodies,
we restricted this analysis to unvaccinated individuals to exclude distortions due to vaccine-
induced antibodies. (ii) We evaluated fully vaccinated participants at FU2 analyzing S-
and neutralizing antibody levels measured at FU2 by smoking status. (iii) We evaluated
the association of antibody levels with age and time since vaccination using a generalized
additive model (Gaussian model with log-link, non-linear associations with age and time
since vaccination using thin-plate regression splines). We compared this with an extended
model adding smoking status and its interaction with age and time since vaccination and
tested the null hypothesis of “no association of smoking with expected antibody levels”
(approximate F-test).

Finally, we evaluated, for each of the three observation periods, the proportion of
participants with a health authority-validated positive test among those tested by smoking
status and medical occupation and the proportion of tested among all participants.

All statistical analyses were performed in the R environment for statistical computing,
version 4.1.0 (R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Analyzed Participants

These analyses included 4181 participants of the longitudinal Tirschenreuth Study
with valid measurements of N-antibodies at BL (n = 3513 or 3374 with measurements also
at FU1 or FU2, respectively, n = 3177 with measurements at all three time points). At BL,
participants were aged 14 to 102 years, 51.6% women, 20.4% current cigarette smokers, and
8.0% of the 3303 participants aged 20 to 69 years worked in medical occupation (Table 1).
Response at FU1 and FU2 was >80%, as described previously [21], lower among the
younger (e.g., 78% and 79% at FU1 and FU2 for 14–19 year-old vs. 87% and 84% for 70+)
and among current smokers (77% and 71% vs. 87% and 84% among never-smokers), but
not differential by occupation (Supplementary Table S1); the response was higher among
N-seropositives than N-seronegatives at BL (FU1: 94% vs. 83%; FU2: 93% vs. 79%).

SARS-CoV-2 vaccination roll-out in Germany started in late December 2020, yielding
the first fully vaccinated individuals at the end of January. During the early phase of the
vaccination program, individuals at increased risk of severe disease and individuals at
increased risk of exposure were prioritized. As a consequence, we observed increased
fractions of vaccinated individuals at FU2 in the higher age groups (fully vaccinated: 32%
in 70+ vs. 5% in 14–69-year-olds, partly vaccinated: 54% in 70+ vs. 32% in 14–69-year-
olds, Supplementary Figure S1A) as well as among medical personnel and teachers (fully
vaccinated: 39%, 5%, 0%, 2% for medical, teacher, grocery, and other occupation with age
20–69 years; partly vaccinated: 28%, 54%, 28%, 33% for medical, teacher, grocery, and
others, Supplementary Figure S1A). Of note, we did not find differences in vaccine uptake
with respect to smoking status in our data (fully vaccinated: 9%, 10%, 9% for current, ex-,
and never-smokers; partly vaccinated: 35%, 41%, 33% for current, ex-, and never-smokers,
Supplementary Figure S1B).
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Table 1. Participant characteristics at baseline and follow-up. For the participants at baseline (BL)
and the two follow-ups (FU1, FU2), descriptive statistics are shown by characteristics (median and
interquartile range, IQR, or proportions and absolute numbers) [and number of individuals with
valid information]. All characteristics are self-reported, except N-seropositivity (i.e., proportion of
positives for N-specific antibodies, cut-off = 1.0 (AU)/mL).

BL [N = 4181] FU1 [N = 3513] FU2 [N = 3374]

Age, sex (BL) [N = 4181] [N = 3513] [N = 3374]

Median age (IQR) [yrs] 52.0 (35.0–64.0) 53.0 (37.0–64.0) 53.0 (37.0–64.0)
Min, max age [yrs] 14.0, 102.0 14.0, 102.0 14.0, 102.0
Age 14–19 [yrs]: % (n) 5.4 (225) 5.0 (176) 5.2 (177)
Age 20–49 [yrs]: % (n) 40.8 (1707) 38.3 (1345) 38.1 (1284)
Age 50–69 [yrs]: % (n) 38.8 (1624) 41.2 (1449) 41.2 (1389)
Age 70+ [yrs]: % (n) 14.9 (625) 15.5 (543) 15.5 (524)
Women: % (n) 51.6 (2158) 53.0 (1861) 53.7 (1813)

Chronic diseases [N = 4081] [N = 3435] [N = 3300]

Autoimmune: % (n) 7.1 (289) 7.3 (250) 7.4 (243)
Cancer: % (n) 4.9 (202) 5.2 (178) 5.0 (164)
Type 2 diabetes: % (n) 7.6 (312) 7.5 (259) 7.4 (245)
Cardiovascular: % (n) 9.9 (402) 9.6 (331) 9.5 (314)
None of these: % (n) 75.8 (3093) 75.6 (2596) 76.0 (2507)

Education [N = 4085] [N = 3433] [N = 3301]

Median (IQR) [yrs] 11.0 (10.0–14.0) 11.0 (10.0–13.0) 11.0 (10.0–14.0)
≥13 yrs: % (n) 30.0 (1225) 29.5 (1013) 29.8 (985)

Occupation (20–69 years) [N = 3303] [N = 2773] [N = 2652]

Curr. working (BL): % (n) 74.0 (2444) 73.8 (2046) 74.1 (1965)
Medical: % (n) 8.0 (263) 8.1 (224) 8.1 (216)
Education: % (n) 3.7 (121) 3.6 (101) 3.6 (95)
Grocery: % (n) 3.1 (104) 3.2 (90) 3.3 (87)

Smoking [N = 4157] [N = 3493] [N = 3356]

Never smoking: % (n) 54.9 (2282) 56.7 (1981) 57.3 (1923)
Ex-smoker: % (n) 24.7 (1025) 24.6 (860) 24.6 (827)
Current smoker: % (n) 20.4 (850) 18.7 (652) 18.1 (606)

Other lifestyle factors

Alc. drinks, daily: median (IQR) 0.2 (0.0–0.6) [N = 4049] 0.2 (0.0–0.6) [N = 3412] 0.2 (0.0–0.6) [N = 3280]
>2 alc. drinks, daily: % (n) 6.5 (262) [N = 4049] 6.3 (216) [N = 3412] 6.2 (204) [N = 3280]
BMI: Median (IQR) 26.6 (23.7–30.4) [N = 4134] 26.6 (23.7–30.3) [N = 3474] 26.6 (23.7–30.4) [N = 3339]

N-seropositive (BL)

% (n) 8.9 (374) [N = 4181] 10.0 (351) [N = 3513] 10.3 (349) [N = 3374]
% (n), age 14–19 yrs 10.7 (24) [N = 225] 13.6 (24) [N = 176] 13.0 (23) [N = 177]
% (n), age 20–49 yrs 8.6 (146) [N = 1707] 10.0 (135) [N = 1345] 10.4 (133) [N = 1284]
% (n), age 50–69 yrs 9.3 (151) [N = 1624] 9.8 (142) [N = 1449] 10.3 (143) [N = 1389]
% (n), age 70+ yrs 8.5 (53) [N = 625] 9.2 (50) [N = 543] 9.5 (50) [N = 524]
% (n), never-smoker 9.9 (226) [N = 2282] 10.8 (213) [N = 1981] 11.0 (212) [N = 1923]
% (n), ex-smoker 10.3 (106) [N = 1025] 11.4 (98) [N = 860] 11.7 (97) [N = 827]
% (n) current smoker 4.9 (42) [N = 850] 6.1 (40) [N = 652] 6.6 (40) [N = 606]
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3.2. New N-Seropositivity Was Decreased for Smokers and Increased for Medical Personnel in Each
of the Three Observation Periods

For each of the three observation periods (BL after first wave, low incidence between
FU1 and FU2, second/third wave between FU1 and FU2), we evaluated the association of
smoking and occupation status with new N-seropositivity. New N-seropositivity was about
half among current smokers compared to never-smokers for all three observation periods.

Figure 1A: Age- and sex-adjusted odds ratios (OR) were 0.47 (95% confidence intervals,
CI, = 0.33–0.66, p < 0.001), 0.40 (95%-CI = 0.09–1.81, p = 0.22), and 0.56 (95%-CI = 0.33–0.94,
p = 0.02), respectively. Note that the estimate at FU1 shows large uncertainty, as the overall
number of new seropositive cases was rather low, but the point estimate is in line with
results from BL and FU2. The smoking association with N-seropositivity was not observed
for ex-smokers compared to never-smokers (Figure 1A; p ≥ 0.05, Supplementary Table S2).
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Shown are the proportions of new N-seropositives, number of N-seropositives, and number at
risk for each of the three observation periods (BL, June 2020, BL to FU1, June–November 2020,
FU1 to FU2, November 2020–April 2021): (A) for never, ex-, and current smokers (n = 4157 at
BL) and (B) by occupation status (other, grocery employees, preschool/school teachers, medical
staff) restricted to population at working age (20–69-year-olds, n = 3303 at BL). Whiskers represent
95% confidence intervals.

The current smoking association was underscored by a dose–response association when
analyzing the number of daily currently smoked cigarettes at BL and FU2 (BL: OR = 0.75
per 5 cigarettes a day, 95%-CI = 0.65–0.84, p < 0.001; FU2: OR = 0.78, 95%-CI = 0.63–0.93,
p = 0.012, based on a logistic regression model with linear association of the log odds of new
N-seropositivity with the number of cigarettes smoked; not analyzed at FU1, too few new
seropositives). Supplementary Figure S2 shows a decrease in the model-based probability for
new N-seropositivity in association with an increasing number of cigarettes smoked based on
a generalized additive model with logistic link allowing for a potentially non-linear association
with the number of cigarettes smoked.

For medical personnel, new N-seropositivity was doubled for the first wave pe-
riod, also increased during the low-infection period in summer 2020, and threefold in-
creased for the second/third wave period compared to other occupations (excluding
grocery employees and preschool/school teachers (Figure 1B): age- and sex-adjusted ORs
were 1.99 (95%-CI = 1.36–2.93, p < 0.001), 1.41 (95%-CI = 0.29–6.80, p = 0.67), and 3.17
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(95%-CI = 1.92–5.24, p < 0.001), respectively (Supplementary Table S2). There was no sig-
nificant difference in new N-seropositivity for grocery employees or preschool/school
teachers compared to other occupations (p ≥ 0.05, Figure 1B, Supplementary Table S2).

When comparing the smoking and occupation associations with N-seropositivity as
well as S-seropositivity at FU2, we found consistent age-/sex-adjusted ORs for both types
of seropositivity (Supplementary Table S3).

3.3. Associations Were Robust upon Adjustment by Other Factors and across Subgroups

The observed associations of smoking and medical occupation with (new) seropos-
itivity at BL and at FU2 (compared to FU1) remained when adjusted for each other and
for age, sex, education, household size, physical activity, alcohol consumption, and BMI
(Supplementary Figure S3; FU1 not analyzed, too few N-seropositives). This was observed
for all participants and when restricted to working age (20–69 years old).

The smoking association with (new) seropositivity at BL and at FU2 (compared to FU1)
was consistent across subgroups (age < 50/50+, men/women, high/low education, chronic
diseases yes/no, medical occupation yes/no; Supplementary Figure S4 and Table S4).
This indicated no confounding by or interaction with these factors, which are potentially
linked to less smoking or less outside contact (e.g., higher education or chronic diseases).
Specifically, we found a consistent smoking association with reduced N-seropositivity also
among medical staff (11.4% vs. 18.5% new N-seropositives in current vs. never-smokers at
BL, OR: 0.56 95%-CI: 0.25–1.29; 9.3% vs. 13.7% at FU2, OR: 0.65 95%-CI: 0.19–2.20). There
was no evidence for an interaction between medical occupation and smoking status with
regard to infection risk.

3.4. Similar Antibody Response to Infection or to Vaccination for Smokers and Non-Smokers

Since decreased seropositivity for smokers may have derived from a lack of antibody
response among smokers, we explored this further in our data.

First, we evaluated antibody response after infection by smoking status. For this, we
focused on participants with health authority-validated positive PCR tests reported at any
time (until FU2) to define “infected” individuals independent of antibody-based serostatus
and analyzed levels of N-, S-, and neutralizing antibodies at FU2 (for S- and neutralizing
antibodies: restricted to unvaccinated, i.e., participants without any reported vaccine dose).
We found similar median antibody levels by smoking status (Figure 2). The proportion
of seronegatives among these participants with documented positive PCR tests was not
increased among current smokers compared to ex- or never-smokers (N: 9%, 10%, 0% for
never, ex-, and current smokers, respectively; S: 5%, 4%, 0%; neutralizing: 8%, 9%, 9%).

Second, we sought further support of the hypothesis that smokers’ antibody responses
resembled those of non-smokers by evaluating response after vaccination as a general model
for antibody response. We restricted this to participants fully vaccinated without previous
infection (i.e., two vaccinations ≥ 14 days before FU2; N-seronegative at FU2). We found
similar levels of S- and neutralizing antibodies at FU2 by smoking status (Figure 3A,C),
also when accounting for age and time since full vaccination. Model-based estimates of
S- and neutralization antibody levels (expected levels) document the decrease by time
since full vaccination and by age [27], but no impact by smoking status (Figure 3B,D,
F-test p = 0.274 and p = 0.266 for S- and neutralizing antibodies, respectively). Since
time since full vaccination was relatively short (up to 100 days, German vaccination roll-
out since 27 December 2020) and the dose was standardized, this is an ideal model for
antibody response.
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Figure 2. Antibody levels at FU2 among individuals with positive PCR test by smoking status. Shown
are antibody levels at FU2 among individuals with positive PCR test in the study period (reported
positive and health authority-validated, until April 2021, n = 237, including 28 current smokers):
(A) N-specific antibodies, (B) S-specific antibodies (restricted to unvaccinated participants), (C) neu-
tralizing antibodies (restricted to unvaccinated). Dotted line marks threshold for binary seropositivity.
Indicated are sample size, median antibody level, number (%) of individuals seronegative for the
respective antibodies. N-specific antibodies: Arbitrary Units (AU)/mL; S-specific antibodies: Binding
Antibody Units (BAU)/mL; Neutralizing antibodies: Inhibitory Dose 50 (ID50).
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Figure 3. Quantitative antibody levels after vaccination by smoking status among uninfected. Shown
are results regarding S-specific and neutralizing antibodies at FU2 among fully vaccinated individuals
(i.e., second vaccination more than 14 days before blood draw) who were N-seronegative at FU2
(n = 287, including 51 current smokers). Panels (A,C): measured levels (dotted line = threshold for
binary seropositivity), sample size, median antibody level, number (%) of individuals seronegative for
the respective antibodies. Panels (B,D): expected antibody levels from a generalized additive model
with covariates age (non-linear), time since vaccination (non-linear) and smoking status including
interactions with age and time since vaccination. We did not find evidence for associations of expected
antibodies with smoking status (Approximate F-test comparing this model to the corresponding
model without smoking status and interactions: p = 0.274 and p = 0.266 for S-specific and neutralizing
antibodies). S-specific antibodies: Binding Antibody Units (BAU)/mL; Neutralizing antibodies:
Inhibitory Dose 50 (ID50).

Overall, we found no evidence that current smokers developed fewer quantitative
antibodies after infection or vaccination or that smokers were more likely seronegative than
ex-/never-smokers based on three different serological tests.

3.5. Fewer Infected among Current Smokers Than among Non-Smokers in Each of the Three
Observation Periods

As a third piece of evidence, we analyzed the proportion of participants who had
tested positive for SARS-CoV-2 infection among those who reported a test for the respective
observation period by smoking or medical occupation status. Interpreting these proportions
is challenged by the potentially varying testing intensity by smoking or medical occupation
status and over time. We thus began by evaluating the fraction of tested participants for the
three observation periods (i.e., until BL, between FU1 and FU2, and between FU1 and FU2):
among all participants, the fractions tested were 12.1%, 27.2%, and 45.0%, respectively; this
documented the increased testing intensity over time. These testing fractions were similar
for current smokers, but medical staff were tested markedly more often (Figure 4A).

Next, we evaluated the proportion of positive tests (i.e., health authority-validated)
among tested participants by observation period: this proportion was substantially lower
among current smokers than among never-smokers for each of the three observation periods
(Figure 4B): age-/sex-adjusted OR = 0.36 (95%-CI = 0.15–0.85), 0.22 (95%-CI = 0.03–1.81),
and 0.58 (95%-CI = 0.33–1.00), respectively (Supplementary Table S5). These ORs were
in line with the above noted odds for new seropositivity, as was the lack of association
for ex-smokers compared to never-smokers (p ≥ 0.05). Together with the similar testing
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intensity by smoking status, the lower proportion of positive tests among current smokers
supported the idea of fewer infections among current smokers.
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Figure 4. Fraction of tested and positive tested participants by smoking status and occupation.
We evaluated the 4143, 3512, and 3337 participants with information on testing and test results
for the three observation periods (BL, June 2020, BL to FU1, June–November 2020, FU1 to FU2,
November 2020–April 2021), respectively. Shown are (A) the % tested and (B) the % tested pos-
itive (health authority-validated) by smoking status and occupation (other, grocery employees,
preschool/school teachers, medical staff; restricted to working age, i.e., 20–69-year-olds). Whiskers
represent 95% confidence intervals.

The observed increased testing intensity among medical occupations (see above)
can distort the comparison of the proportion of tested positives among medical staff
compared to other participants. In addition, the higher seropositivity for medical personnel
is realistically attributable to more infections and requires no further support. Still, we
compared the proportion of positive test reports among those tested between medical
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staff vs. “other”: we found little difference (Figure 4B; age- and sex-adjusted ORs = 1.09,
0.73, 1.52, p = 0.81, 0.69, 0.12, Supplementary Table S5). Thus, the proportion of positive
tests among those tested does not reflect the increased odds of infection among medical
occupation participants.

4. Discussion

Based on longitudinal data from our population-based study well through the third
SARS-CoV-2 wave in spring 2021, we demonstrated persistent, substantially increased
seropositivity among medical personnel during the first and the second/third waves, while
seropositivity was reduced by about half in current smokers.

The finding of increased seropositivity among medical staff can be attributed to the
increased exposure to SARS-CoV-2 at the workplace and thus increased infection proba-
bility. Our data thus underscore that the increased infection probability for medical staff
was still observable and substantial also in the second/third wave when full protective
gear was available and installed. While further evaluations are necessary also for the
infection waves based on SARS-CoV-2 Delta and Omicron variants, our results indicate that
increased infection risk of medical staff was not solely an issue of the early pandemic and
requires continued attention. Our conclusion of increased infection risk among health care
workers results from the significantly higher frequency of infection-related antibodies in
medical staff compared to other occupational groups. Occupational groups were assessed
by self-report via questionnaire. The group of medical personnel was defined broadly as
individuals who worked in medical care, in nursing homes, or as midwives. There can
be considerable within-group heterogeneity in the extent of exposure and risk of infection
depending on the respective medical field (e.g., intensive care, general practitioner), oc-
cupational role (physician, nurse, midwife), extent of patient contact, number of working
hours, etc. Due to the population-based sample of our participants, the proportions of the
specific medical subspecialties among participants roughly reflect the proportions in the
medical staff population, and our effect estimates can be considered an average across these
subspecialties. A detailed work history and meticulous quantification of patient contact
would be warranted in future studies in order to quantify the occupational infection risk
more specifically and to identify those at highest risk.

The finding of decreased seropositivity among smokers requires more detailed consid-
eration of potential bias and possible reasons. The observed association of smoking with
decreased seropositivity was strong, stable across timepoints and subgroups, persistent
when adjusted for potential confounding factors, and underscored by a dose–response
association. The observed association with odds ratios around 0.5 were similarly observed
in previously published seroprevalence studies of different designs [1–12]. Altogether, this
supports a genuine relationship between smoking and lower seropositivity.

A possible bias can derive from differential participation with respect to smoking
and the outcome of interest. We did observe reduced follow-up participation among
current smokers compared to never-smokers, but both at a relatively high level with 77%
vs. 87% participation at FU1 and 71% vs. 84% at FU2. Our outcome was new seropositivity
among those never seropositive until the start of the respective observation period [21].
When comparing the proportion of new seropositives between smokers and non-smokers,
this is unbiased under random dropout among smokers and non-smokers with respect to
new seropositivity. If there were more dropouts among newly infected current smokers than
among newly infected never/ex-smokers, e.g., due to a more severe COVID-19 disease
among smokers preventing further participation in the study, this could lead to a bias
towards the observed association. Since the serostatus of dropouts is unobserved, this
cannot be ruled out in principle. However, since severe COVID-19 disease is relatively
rare and age-dependent, we would not expect such a bias to yield a false association in the
observed magnitude and stability across age groups.

Lower seropositivity among smokers can derive from lower infection probability or
from lower antibody response. In order to fully explain the strong association, antibody
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response for smokers would need to be substantially decreased, basically nulled for ~50%
of smokers. In our data, smokers and never-smokers showed similar levels of antibody
response after infection in a variety of antibody tests. For this analysis, we defined “infec-
tion” by having had a previous positive PCR test validated by health authorities, yielding
237 participants with validated infection independent of serostatus. This supports the
hypothesis that the decreased seropositivity among smokers observed here and by oth-
ers was not explained by differential antibody response after infection, but rather due to
fewer infections.

We also evaluated antibody levels after vaccination by smoking status in a further
287 participants under the notion that vaccination-induced antibody generation is a role
model for infection-induced generation where the “exposure” dose is standardized and
time since “exposure” is known. A recent meta-analysis [20] concluded that active smoking
may negatively impact humoral response to COVID-19 vaccines, although the study-
specific evidence was conflicting and pathophysiologic mechanisms remain elusive. Our
population-based study does not provide evidence of mitigated vaccine-induced antibody
response in current smokers vs. never-smokers. More and larger longitudinal study data
are required to disentangle this puzzle. Further data are also necessary to understand the
decline of vaccine- or infection-induced antibodies and a potentially differential decline
by smoking status. However, in order to yield an association of smoking and reduced
seropositivity as strong as that observed here and by others, with odds ratios around 0.5,
such a smoking-related faster decline would need to be strong and rapid, e.g., to the extent
of zero antibodies for at least 50% of smokers within 5 months, since our time interval
between infection and blood draw was no more than 5 months.

In contrast to the lack of any support for differential antibody response by smoking
status, our data indicated lower infection probability for smokers when evaluating individ-
uals who reported previous SARS-CoV-2 testing: comparing current with never-smokers,
the odds of a positive PCR test among individuals having been tested was similarly re-
duced as the odds of seropositivity, and this was consistent across the three observation
periods. Together with the fact that the probability of having been tested did not vary
much by smoking status, the magnitude of the observed smoking association with both
seropositivity and PCR-detected infection was in line with a ~50% decreased infection risk
for smokers.

Together, our data suggest that lower seroprevalence among smokers is due to lower
infection risk. The reason for this is still elusive. This might be behavioral or biological.
Decreased risk of infection among smokers can derive from a smoking-specific behavioral
pattern, e.g., leaving indoor gatherings to smoke outside. However, there is no evidence
that the association is modulated by socio-demographic or health-related factors: we found
similar associations of smoking and seropositivity across age groups, between men and
women, with high or low education, individuals with chronic disease or without, and
among individuals in medical occupation or not. Our results imply that any behavioral
pattern of smokers leading to reduced infection risk was stable across such subgroups and
across infection waves, rendering this explanation less plausible.

If the reason for the smoking association is biological, it might be smoking-related
differential gene expression [28]. Transcriptomics data from a bronchial epithelial cell
air-liquid interface model showed a significant, selective reduction of membrane ACE-2
expression following smoking exposure, which directly correlated with nicotine deliv-
ery [29]. This model also highlighted differential regulation of genes known to be involved
during the viral internalization process. Complementary, genome-wide association studies
revealed genetic loci associated with infection susceptibility [30,31]. Respective pathways
might overlap with biological pathways modulated by smoking. For example, identified
loci near MUC4 and MUC16 were supported by genetic variants that increased mucin ex-
pression in cilial lung tissue that might be protective for infection [31]. Cigarette smoking is
known to be associated with increased expression of certain mucins in human airways, such
as mucin 1 and 4 [32], mucin 5A and C [33] or MUC16 [34]. Early analysis in MUC4−/−
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mouse models suggest a protective role of mucin 4 during coronavirus pathogenesis [35,36].
It is perceivable that the decreased infection probability for smokers stems from a pathway
pinpointed by these or other genetic association signals.

If substantiated, smoking will certainly never be a preventive option against infection
due to the severe well-known effects on cancer and cardiac risk. Particularly MUC4 over-
expression has been associated with various types of cancer [37,38], which underscores
the need for a rigorous evaluation of eventually infection-protective pathways for severe
adverse effects. Nevertheless, unraveling the reasons for this apparently protective associa-
tion of smoking with SARS-CoV-2 infection will provide important, potentially biological,
insights and might help identify protective paths.

The strength of our study is the population-based longitudinal approach covering
individuals aged 14 to 102 and the infection occurrence over more than 1 year. Further
strengths are detailed participant information on socio-demographic and lifestyle factors
as well as several types of antibody measurements. When using antibody status as an
indicator of previous viral infection, it is important to consider the potential existence of
vaccine-induced antibodies. In the case of SARS-CoV-2, this is particularly important as
the early vaccination campaign had to deal with initially limited vaccine availability by
prioritizing individuals at increased risk of severe disease and individuals at increased risk
of exposure, such as medical staff. In line with this, we observed a larger proportion of
medical staff fully vaccinated until April 2021 than other individuals at working age. Using
N-specific seropositivity as a marker for a previous infection and restricting the analysis of
S- or neutralization antibodies to unvaccinated individuals enabled the focus on infection-
related antibodies for our association analyses without vaccination-related distortions.

Limitations of our study are typical to cohort studies, including non-perfect response
at BL and FUs. However, our response was rather high with 64% at BL and >80% at FUs.
The time between BL and FU1 assessments captured a period of low incidence with overall
few new infections during summer 2020, yielding low power for detecting statistically
significant associations with new seropositivity at this time point of our study. It is nev-
ertheless interesting and noteworthy that we observed consistent, albeit not statistically
significant associations at FU1. Another limitation is that infection occurrence was pre-
dominantly assessed based on serostatus with limited knowledge of the infection date
or viral dose, as for other seroprevalence studies. Our analyses of individuals who had
undergone community-based PCR testing allowed for insights independent of serological
tests. A strength of seroprevalence studies is that they capture symptomatic as well as
asymptomatic infections and are independent of the community testing strategy and its
changes over time. The presented results allow for a comparison of risk factors for the
winter 2020/21 infection wave with the first infection wave in spring 2020. Our data do not
stretch into the current Omicron-induced infections. However, given the multiple infections
on top of a mostly vaccinated population at the current time point, these previous pandemic
results enable an isolated view of mainly single, first-time infections and might serve as a
role model for SARS-CoV-2 infections in principle. Further results from studies with longer
follow-up into the current pandemic situation are warranted, but will be substantially
complicated by the mix of infections.

5. Conclusions

Altogether, our results are in line with the notion that smoking-related pathways—behavioral
or biological—overlap with infection-protective pathways that eventually might inspire
behavioral measures and also the development of novel therapeutics. Our results also
highlight a continued high infection risk for medical personnel well into winter 2021 despite
full protection gear in place.
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