Association between Physical Activity Levels and Brain Volumes in Adults Visiting Radio-Imaging Center of Tertiary Care Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Physical Activity Assessment
2.4. Image Acquisition
2.5. Image Pre-Processing
3. Results
3.1. Baseline Characteristics
3.2. Physical Activity among the Participants
3.3. Association between Brain Volumes, Physical Activity, and Sedentary Behavior
4. Discussion
Limitations and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- González, K.; Fuentes, J.; Márquez, J.L. Physical Inactivity, Sedentary Behavior and Chronic Diseases. Korean J. Fam. Med. 2017, 38, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.C.; Willumsen, J.; Meheus, F.; Ilbawi, A.; Bull, F.C. The Cost of Inaction on Physical Inactivity to Public Health-Care Systems: A Population-Attributable Fraction Analysis. Lancet Glob. Health 2022, 11, e32–e39. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Crichton, J.P.; Esteban-Cornejo, I.; Solis-Urra, P.; Mora-Gonzalez, J.; Cadenas-Sanchez, C.; Rodriguez-Ayllon, M.; Migueles, J.H.; Molina-Garcia, P.; Verdejo-Roman, J.; Kramer, A.F.; et al. Association of Sedentary Behavior with Brain Structure and Intelligence in Children with Overweight or Obesity: The ActiveBrains Project. J. Clin. Med. 2020, 9, 1101. [Google Scholar] [CrossRef] [PubMed]
- Siddarth, P.; Rahi, B.; Emerson, N.D.; Burggren, A.C.; Miller, K.J.; Bookheimer, S.; Lavretsky, H.; Dobkin, B.; Small, G.; Merrill, D.A. Physical Activity and Hippocampal Sub-Region Structure in Older Adults with Memory Complaints. J. Alzheimers Dis. 2018, 61, 1089–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddarth, P.; Burggren, A.C.; Eyre, H.A.; Small, G.W.; Merrill, D.A. Sedentary Behavior Associated with Reduced Medial Temporal Lobe Thickness in Middle-Aged and Older Adults. PLoS ONE 2018, 13, e0195549. [Google Scholar] [CrossRef]
- Bergman, F.; Matsson-Frost, T.; Jonasson, L.; Chorell, E.; Sörlin, A.; Wennberg, P.; Öhberg, F.; Ryberg, M.; Levine, J.A.; Olsson, T.; et al. Walking Time Is Associated With Hippocampal Volume in Overweight and Obese Office Workers. Front. Hum. Neurosci. 2020, 14, 307. [Google Scholar] [CrossRef]
- Maasakkers, C.M.; Melis, R.J.F.; Kessels, R.P.C.; Gardiner, P.A.; Olde Rikkert, M.G.M.; Thijssen, D.H.J.; Claassen, J.A.H.R. The Short-Term Effects of Sedentary Behaviour on Cerebral Hemodynamics and Cognitive Performance in Older Adults: A Cross-over Design on the Potential Impact of Mental and/or Physical Activity. Alzheimers Res. Ther. 2020, 12, 76. [Google Scholar] [CrossRef]
- Maasakkers, C.M.; de Heus, R.A.A.; Thijssen, D.H.J.; Melis, R.J.F.; Gardiner, P.A.; Claassen, J.A.H.R. Objectively-Measured Activity Patterns Are Associated with Home Blood Pressure in Memory Clinic Patients. J. Alzheimers Dis. 2020, 74, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Lenroot, R.K.; Giedd, J.N. The Changing Impact of Genes and Environment on Brain Development during Childhood and Adolescence: Initial Findings from a Neuroimaging Study of Pediatric Twins. Dev. Psychopathol. 2008, 20, 1161–1175. [Google Scholar] [CrossRef]
- Takeuchi, H.; Taki, Y.; Hashizume, H.; Asano, K.; Asano, M.; Sassa, Y.; Yokota, S.; Kotozaki, Y.; Nouchi, R.; Kawashima, R. The Impact of Television Viewing on Brain Structures: Cross-Sectional and Longitudinal Analyses. Cereb. Cortex 2015, 25, 1188–1197. [Google Scholar] [CrossRef] [Green Version]
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Magnon, V.; Vallet, G.T.; Auxiette, C. Sedentary Behavior at Work and Cognitive Functioning: A Systematic Review. Front. Public Health 2018, 6, 239. [Google Scholar] [CrossRef]
- Arnardottir, N.Y.; Koster, A.; van Domelen, D.R.; Brychta, R.J.; Caserotti, P.; Eiriksdottir, G.; Sverrisdottir, J.E.; Sigurdsson, S.; Johannsson, E.; Chen, K.Y.; et al. Association of Change in Brain Structure to Objectively Measured Physical Activity and Sedentary Behavior in Older Adults: Age, Gene/Environment Susceptibility-Reykjavik Study. Behav. Brain Res. 2016, 296, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Prev. Med. 2007, 45, 247–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010.
- Watts, P.; Hayee Shahid, M.; Bertotti, M.; Tobi, P. Social, Cognitive, Behavioural and Neighbourhood Characteristics Associated with Sedentary Time in Men and Women Living in Deprived Neighbourhoods. Eur. J. Sport Sci. 2017, 17, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Hartman, Y.A.W.; Karssemeijer, E.G.A.; van Diepen, L.A.M.; Olde Rikkert, M.G.M.; Thijssen, D.H.J. Dementia Patients Are More Sedentary and Less Physically Active than Age- and Sex-Matched Cognitively Healthy Older Adults. Dement. Geriatr. Cogn. Disord. 2018, 46, 81–89. [Google Scholar] [CrossRef]
- Dillon, K.; Prapavessis, H. REducing SEDENTary Behavior Among Mild to Moderate Cognitively Impaired Assisted Living Residents: A Pilot Randomized Controlled Trial (RESEDENT Study). J. Aging Phys. Act. 2020, 29, 27–35. [Google Scholar] [CrossRef]
- Kurita, S.; Doi, T.; Tsutsumimoto, K.; Hotta, R.; Nakakubo, S.; Kim, M.; Shimada, H. Cognitive Activity in a Sitting Position Is Protectively Associated with Cognitive Impairment among Older Adults. Geriatr. Gerontol. Int. 2019, 19, 98–102. [Google Scholar] [CrossRef]
- Labonté-LeMoyne, E.; Jutras, M.-A.; Léger, P.-M.; Sénécal, S.; Fredette, M.; Begon, M.; Mathieu, M.-È. Does Reducing Sedentarity With Standing Desks Hinder Cognitive Performance? Hum. Factors 2020, 62, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Varma, V.R.; Chuang, Y.F.; Harris, G.C.; Tan, E.J.; Carlson, M.C. Low-Intensity Daily Walking Activity Is Associated with Hippocampal Volume in Older Adults. Hippocampus 2015, 25, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise Training Increases Size of Hippocampus and Improves Memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dissertations, J. Ilona Ruotsalainen The Association of Physical Activity and Aerobic Fitness with Brain Structure and Functional Connectivity in Adolescents; 2020; ISBN 9789513983277. Available online: https://www.jyu.fi/edupsy/fi/tohtorikoulu/psykologian-tohtoriohjelma/valmistuneet-vaitoskirjat/978-951-39-8327-7_vaitos_2020_11_13.pdf (accessed on 18 November 2022).
- Pani, J.; Reitlo, L.S.; Evensmoen, H.R.; Lydersen, S.; Wisløff, U.; Stensvold, D.; Håberg, A.K. Effect of 5 Years of Exercise Intervention at Different Intensities on Brain Structure in Older Adults from the General Population: A Generation 100 Substudy. Clin. Interv. Aging 2021, 16, 1485–1501. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.; Sharp, D.J. The Role of the Posterior Cingulate Cortex in Cognition and Disease. Brain 2014, 137, 12–32. [Google Scholar] [CrossRef] [Green Version]
- Voss, M.W.; Erickson, K.I.; Prakash, R.S.; Chaddock, L.; Malkowski, E.; Alves, H.; Kim, J.S.; Morris, K.S.; White, S.M.; Wójcicki, T.R.; et al. Functional Connectivity: A Source of Variance in the Association between Cardiorespiratory Fitness and Cognition? Neuropsychologia 2010, 48, 1394–1406. [Google Scholar] [CrossRef] [Green Version]
- Moored, K.D.; Chan, T.; Varma, V.R.; Chuang, Y.F.; Parisi, J.M.; Carlson, M.C. Engagement in Enriching Early-Life Activities Is Associated with Larger Hippocampal and Amygdala Volumes in Community-Dwelling Older Adults. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2020, 75, 1637–1647. [Google Scholar] [CrossRef]
- de Rezende, L.F.M.; Rey-López, J.P.; Matsudo, V.K.R.; Luiz, O.D.C. Sedentary Behavior and Health Outcomes among Older Adults: A Systematic Review. BMC Public Health 2014, 14, 33. [Google Scholar] [CrossRef] [Green Version]
- Voss, M.W.; Heo, S.; Prakash, R.S.; Erickson, K.I.; Alves, H.; Chaddock, L.; Szabo, A.N.; Mailey, E.L.; Wójcicki, T.R.; White, S.M.; et al. The Influence of Aerobic Fitness on Cerebral White Matter Integrity and Cognitive Function in Older Adults: Results of a One-Year Exercise Intervention. Hum. Brain Mapp. 2013, 34, 2972–2985. [Google Scholar] [CrossRef] [Green Version]
- Rusinek, H.; de Santi, S.; Frid, D.; Tsui, W.H.; Tarshish, C.Y.; Convit, A.; de Leon, M.J. Regional Brain Atrophy Rate Predicts Future Cognitive Decline: 6-Year Longitudinal MR Imaging Study of Normal Aging. Radiology 2003, 229, 691–696. [Google Scholar] [CrossRef]
Demographics | Total (n = 150) |
---|---|
Age group | Below 20 years n = 9 |
20–30 years n = 32 | |
30–40 years n = 31 | |
40–50 years n = 39 | |
50–60 years n = 39 | |
Mean age based on physical activity levels | Low physical activity = 39.59 |
Moderate physical activity = 40.01 | |
Vigorous physical activity = 31.6 | |
Gender (n) | Male n = 86; Female n = 64 |
Height mean (SD) | 162.1 (6.73) |
Weight mean (SD) | 62.53 (11.78) |
Education n (%) | Schooling = 83 (55.3%) |
Graduate = 61 (41.3%) | |
Post-graduate = 5 (3.3%) | |
Employment status n (%) | Unemployed n = 77 (52%) |
Employed n = 73 (48%) | |
Job experience n (%) | More than 5 years = 63 (42%) |
Less than 5 years = 9 (6%) | |
Not applicable = 78 (52%) | |
Cardiovascular risk factors | |
BMI mean (SD) | 23.7 (4.15) |
Waist circumference mean (SD) | 33.2 (2.9) |
Mean arterial pressure mean (SD) | 93.3 (6.59) |
SBP mean (SD) | 122.07 (10.63) |
DBP mean (SD) | 78.91 (5.66) |
T2DM n (%) | 6 (4%) |
Hypertension n (%) | 12 (8%) |
Medications n (%) | (9.3%) |
Lifestyle factors | |
Alcohol consumption n (%) | 9 (6%) |
Smoking n (%) | 4 (2.67%) |
Brain Volume | Vigorous (β, p < 0.05) | Moderate (β, p < 0.05) | Light (β, p < 0.05) | TPA (β, p < 0.05) | Sitting (β, p < 0.05) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Left hippocampus | −0.328 | 0.049 * | 0.04 | 0.813 | −0.007 | 0.97 | 0.710 | 0.021 * | −0.053 | 0.586 |
Right hippocampus | −0.207 | 0.236 | −0.03 | 0.236 | −0.018 | 0.929 | 0.564 | 0.079 | −0.002 | 0.988 |
Left PCC | −0.235 | 0.173 | 0.173 | 0.323 | 0.206 | 0.314 | 0.311 | 0.322 | −0.01 | 0.922 |
Right PCC | −0.227 | 0.189 | 0.116 | 0.508 | 0.08 | 0.696 | 0.368 | 0.244 | −0.006 | 0.95 |
Left AMYG | −0.265 | 0.112 | 0.143 | 0.398 | 0.043 | 0.828 | 0.505 | 0.099 | −0.101 | 0.303 |
Right AMYG | −0.006 | 0.971 | 0.075 | 0.666 | −0.004 | 0.986 | 0.354 | 0.258 | −0.007 | 0.944 |
Left PHG | −0.227 | 0.164 | 0.143 | 0.387 | −0.039 | 0.839 | 0.564 | 0.06 | −0.066 | 0.493 |
Right PHG | −0.126 | 0.447 | 0.129 | 0.446 | 0.017 | 0.931 | 0.424 | 0.164 | 0.022 | 0.82 |
Total volume | −0.04 | 0.81 | 0.088 | 0.603 | −0.071 | 0.721 | 0.314 | 0.303 | −0.05 | 0.609 |
Gray matter volume | −0.175 | 0.286 | 0.093 | 0.575 | 0.002 | 0.99 | 0.475 | 0.388 | −0.04 | 0.677 |
White matter volume | −0.067 | 0.695 | 0.061 | 0.695 | 0.01 | 0.961 | 0.388 | 0.213 | −0.091 | 0.369 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raja, D.; Ravichandran, S.; Chandrasekaran, B.; Kadavigere, R.; Babu, M.G.R.; Almeshari, M.; Alyahyawi, A.R.; Alzamil, Y.; Abanomy, A.; Sukumar, S. Association between Physical Activity Levels and Brain Volumes in Adults Visiting Radio-Imaging Center of Tertiary Care Hospital. Int. J. Environ. Res. Public Health 2022, 19, 17079. https://doi.org/10.3390/ijerph192417079
Raja D, Ravichandran S, Chandrasekaran B, Kadavigere R, Babu MGR, Almeshari M, Alyahyawi AR, Alzamil Y, Abanomy A, Sukumar S. Association between Physical Activity Levels and Brain Volumes in Adults Visiting Radio-Imaging Center of Tertiary Care Hospital. International Journal of Environmental Research and Public Health. 2022; 19(24):17079. https://doi.org/10.3390/ijerph192417079
Chicago/Turabian StyleRaja, Deepika, Sneha Ravichandran, Baskaran Chandrasekaran, Rajagopal Kadavigere, M. G. Ramesh Babu, Meshari Almeshari, Amjad R. Alyahyawi, Yasser Alzamil, Ahmad Abanomy, and Suresh Sukumar. 2022. "Association between Physical Activity Levels and Brain Volumes in Adults Visiting Radio-Imaging Center of Tertiary Care Hospital" International Journal of Environmental Research and Public Health 19, no. 24: 17079. https://doi.org/10.3390/ijerph192417079
APA StyleRaja, D., Ravichandran, S., Chandrasekaran, B., Kadavigere, R., Babu, M. G. R., Almeshari, M., Alyahyawi, A. R., Alzamil, Y., Abanomy, A., & Sukumar, S. (2022). Association between Physical Activity Levels and Brain Volumes in Adults Visiting Radio-Imaging Center of Tertiary Care Hospital. International Journal of Environmental Research and Public Health, 19(24), 17079. https://doi.org/10.3390/ijerph192417079