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Abstract: Time series data collected in clinical trials can have varying degrees of missingness, adding
challenges during statistical analyses. An additional layer of complexity is introduced for missing data
in randomized controlled trials (RCT), where researchers must remain blinded between intervention
and control groups. Such restriction severely limits the applicability of conventional imputation
methods that would utilize other participants’ data for improved performance. This paper explores
and compares various methods to impute high-resolution temperature logger data in RCT settings.
In addition to the conventional non-parametric approaches, we propose a spline regression (SR)
approach that captures the dynamics of indoor temperature by time of day that is unique to each
participant. We investigate how the inclusion of external temperature and energy use can improve the
model performance. Results show that SR imputation results in 16% smaller root mean squared error
(RMSE) compared to conventional imputation methods, with the gap widening to 22% when more
than half of data is missing. The SR method is particularly useful in cases where missingness occurs
simultaneously for multiple participants, such as concurrent battery failures. We demonstrate how
proper modelling of periodic dynamics can lead to significantly improved imputation performance,
even with limited data.

Keywords: imputation; randomized controlled trials; thermal comfort; spline-regression;
machine learning

1. Introduction

There is no ideal way of dealing with missing data, and all methods have potential
shortcomings [1]. When undertaking data analysis, the presence of missing values results
in complications and errors during modelling. It can lead to reduced power in statistical
tests and potential for increased bias in results. On the other hand, replacing missing values
with imputed estimates can contaminate the dataset with ‘modelled’ estimates that may
lead to misleading or unreliable results.

Our research is motivated by a real-world case of missing data that occurred during a
multi-year randomized controlled trial (RCT) study consisting of 250 dwellings. Halfway
through the study, many of the data loggers that were used to collect and record indoor
temperature and humidity readings had their batteries depleted without the researchers’
knowledge. While this issue was rectified during the trial, it resulted in large continuous
blocks of missing data for many of the dwellings in the study.

An extensive suite of methods already exists for imputing missing time series data.
Some of the popular techniques include expectation-maximization by Dempster et al. [2],
nearest neighbour by Vacek and Ashikaga [3] and multiple imputation by Rubin [4]. In
recent years, studies have introduced more advanced multivariate methods such as Neural
Networks and Multiple Imputation by Chained Equations (MICE) for the imputation of
multivariate time series data [5–8]. All these methods apply an across-record imputation
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approach which are generally deemed superior to within-record univariate imputation
methods, for dealing with cross-sectional data or when there is insufficient information
within time-series records to carry out within-record imputation. However, when there
is sufficiently large within-record data available, this research shows that within record
imputation methods can offer superior results.

Even though across-record imputation methods are often considered superior, they
are often unsuitable for handling missingness in data collected for RCT studies due to
the requirement to maintain anonymity between intervention and control and across
records collected. Applying conventional across-record multivariate imputation methods
would mean that records from both groups would be used for imputation of each record,
mixing the effect between control and intervention groups, and reducing the ability to
find statistical significance. This is especially problematic for clinical trials, which typically
have intra-group correlation (measured with intraclass correlation coefficient (ICC) of
no more than 0.1 [9]. As such, testing for the effect of intervention using improperly
imputed data can considerably reduce the chance of observing a statistically significant
intervention effect.

One approach to bypass this problem would be to use univariate time series imputa-
tion methods that capture inter-time correlations, such as Seasonally Split Missing Value
Imputation (SSMVI) by Moritz and Bartz-Beielstein [10]. However, this approach would
not take advantage of the correlation between indoor records and external environmental
conditions (e.g., temperature and humidity).

We propose a spline regression approach that addresses the gap between conventional
univariate and multivariate time series imputation methods for addressing missing data
under the constraint of RCTs. The proposed approach models within-record correlations in
the form of daily seasonality, and controls for the correlation between indoor and outdoor
temperature that are consistent across the entire sample.

The benefit of this approach is twofold. As stated previously, it preserves the assump-
tion of independence between records for statistical tests that compare two groups, such as
the Mann–Whitney U test. For example, in the context of an RCT it would be inappropriate
to impute an indoor temperature data of one dwelling using temperature readings from
other dwellings, as this would violate the assumption of independence between dwellings
and compromise the comparison between control and intervention groups. Therefore, the
proposed approach resolves the problem of an unobserved treatment effect that would
result from using conventional between-record multiple imputation methods.

Second, it allows for capturing the within-variable seasonality characteristics in a simi-
lar fashion to univariate time-series methods, while also capturing the contemporaneous
(across-sample) characteristics of external temperature and humidity, leading to overall
higher imputation performance.

The remainder of this paper is as follows. Section 2 describes the background of the
underlying research and data characteristics. Section 3 describes the implementation of the
spline regression model, as well as introducing other conventional imputation methods for
comparison. Section 4 describes the preparation of the dataset for this study, followed by
an assessment of the results in Section 5 and conclusion in Section 6.

2. Background

The data used in this paper were collected from a multi-year RCT in Australia that
investigates the impact of housing upgrades on winter thermal comfort, occupant health
improvements and energy efficiency. The program targets 1000 low-income households
in the western suburbs of Melbourne and Goulburn Valley in the state of Victoria, repre-
senting urban and rural regions, respectively. Both regions have a temperate climate, with
temperatures dropping to 5 ◦C and below during winter nights. The research program
allowed up to $3500 to be spent on labour and materials per home and was fully paid
by the state government. Upgrades can include insulation, draught stopping, improved
heating systems and window furnishings. The hypothesis of this research is that houses
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with upgrades (intervention) will have higher indoor temperature and lower relative hu-
midity during winter than houses without upgrades (control). During 2019, 250 households
(125 control and 125 intervention) each had a data logger installed in their main living area
to measure indoor temperature and humidity at 30-min intervals. Electricity consumption
was recorded at 30-min intervals through a smart meter with data provided by the elec-
tricity Distribution Network Service Provider (DNSP). External temperature and humidity
recordings at 30-min intervals were taken from the nearest weather station and provided
by the Bureau of Meteorology. The data collected for this study can be summarized as
Table 1 below.

Table 1. Summary of data available for imputation.

Variable Description Source

External temperature External temperature xj at time j, in ◦C The Australia Bureau of Meteorology

Internal temperature Internal temperature ti,j household i at time j, in ◦C
Data logger for household i

Indoor humidity Internal humidity hi,j of household i at time j, in %

Electricity consumption Electricity consumption ei,j of household i at time j, in kWh Energy utility for household i

During winter 2019, it was discovered that a number of data loggers had depleted
batteries and therefore had stopped recording temperature and humidity data. The length
of missingness discovered ranged from several days to several months. Many of the loggers
that had been reported as having stopped were replaced, and temperature and humidity
data for these homes resumed.

An ideal imputation method would attempt to restore the missing values by analysing
the characteristics and properties of the observations, records, and variables within the
dataset as well as their relationship with other datasets. In our RCT, the missing internal
temperature data presents four characteristics that constrain the applicability of methods
available: (1) across-record characteristics (2) across-variable characteristics, (3) within-
variable characteristics and (4) missingness characteristics.

Across-record characteristics. Each dwelling within the dataset is considered as a
separate unique record. Theoretically, dwellings with similar characteristics will exhibit
similar internal temperature profiles. Statistically matching or clustering dwellings with
similar characteristics across records in the sample can be used to estimate missing internal
temperatures. This method exploits the heterogeneity between homes to predict internal
temperatures for homes that have similar characteristics. However, to cluster dwellings
in this way, it would be important to match on group status (control vs. intervention),
information that is not made available to researchers. This approach would also violate
the assumption of independence between the records when performing later statistical
comparisons between the control and intervention study groups.

Across-variable characteristics. The primary determinant of internal indoor tempera-
ture is external temperature. As all dwellings belong to neighbouring suburbs, we use ex-
ternal temperature and humidity readings from a common weather station; we assume that
external temperatures do not vary across the sample. Lower external temperature drives
internal temperature down, moderated by passive insulation, active heating, and occupant
presence. Across variable characteristics a statistical relationship between internal tempera-
ture and external temperature would be found to estimate missing internal temperatures.

Within-record characteristics. Internal temperature, humidity, and electricity consump-
tion data at 30-min intervals represent the within-record characteristics for a dwelling. An
occupants’ presence/absence status, as well as their behaviour, plays a significant role in
shaping energy consumption patterns, and by extension the indoor temperature patterns
of the dwelling throughout the week. For example, a house consisting of two full-time
workers may only heat their home during the evening on weekdays, and throughout the
weekend. A house occupied by low-income retirees may be heated throughout the week.
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Given this, the unique characteristics of different patterns emerging within the internal
temperature record could be used for imputation of missing time periods. For example,
weekends or specific time periods could be specified within a panel dataset to improve
model estimates. It should be noted that occupancy status was not collected as part of the
study, but can be inferred from energy consumption patterns or included using dummy
variables for different time-periods (e.g., weekends).

Missingness characteristics. An additional challenge posed for our study is the degree
to which the missing values can be considered Missing Completely at Random (MCAR),
Missing at Random (MAR) or Not Missing at Random (NMAR). This ‘missingness’ of the
data depends on the depth of analysis required. For example, at a record level the dwellings
with data-records that had flat batteries can be considered randomly distributed across the
sample as there are no systematic differences between those impacted and not impacted by
flat batteries. In addition, for those impacted by flat batteries, the duration of missingness
and when the logger was replaced can also be considered random. The point at which a
battery goes flat is not random, as there is a higher likelihood of batteries going flat as time
passes, thus it can be assumed to follow a typical Weibull distribution. Additionally, the
sequence of missingness within a record (e.g., half-hourly temperature readings) cannot
be considered MAR as missingness occurs chronologically within the temperature and
humidity sample. This is important as it may determine the type of imputation method that
can be chosen. For example, if the imputation method is seeking to estimate the average
internal temperature across winter for a particular dwelling, using other variables and
datapoints across the sample, then MAR could be a legitimate assumption (ignoring the
effects of comparing averages that have been estimated from different sized samples). If the
aim of the imputation method is to replace each of the half-hourly temperature readings
within the sample, then the data would need to be considered MCAR, however owing to
the fact that missing temperature and humidity readings happened chronologically over
time they cannot be considered MCAR. This characteristic constrains the availability of
options for imputation.

3. Methodologies
3.1. Related Works on Time Series Imputation

For the past two decades, there has been a growing range of studies dealing with
imputation of missingness in time-series data. As understanding of relationships between
multiple related time series can exceed the information available from a single time series,
additional focus has been placed on addressing missingness in multivariate datasets. This
is further driven by the advancements in data storage and processing capacity allowing for
simultaneous collection of high-resolution time series data, thus making multivariate time
series datasets more prevalent than ever before.

Traditional methods such as simple deletion or mean imputation have been superseded
by methods such as multiple imputation and maximum likelihood, which are readily avail-
able in various statistical software packages [4,11]. However, when used on cross-sectional
data such methods do not fully utilize information found in the temporal relationships
within data records. They also have difficulties in imputing missingness in outputs of
dynamic systems that result from combinations of linear and nonlinear effects [12]. In
more recent years, more advanced approaches have been introduced to directly tackle
the temporal aspects of multivariate imputation. One approach is autoregressive (AR)
modelling. Liu and Molenaar [12] introduced vector autoregressive (VAR) models with
one-step-ahead predictions, and Parrella, et al. [13] applied spatial-dynamic autoregressive
models to impute missing values across a cluster of air pollution monitors. To better capture
the complex distributions found in multivariate times series new machine-learning (ML)
based approaches, such as generative adversarial networks (GAN) and recurrent neural
networks (RNN) show promise [14,15]. Machine-learning methods require only an implicit
assumption about the relationships between model variables, treating the system of inputs
as a black-box.
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In this study, we seek to find the optimal approach for imputing missing values
by comparing explicit autoregressive techniques to flexible implicit machine learning
techniques. There are many studies that model and analyse household energy consumption
and corresponding indoor conditions. Such energy modelling techniques attempt to derive
a universal model to describe the thermal properties resulting from building, occupancy
and thermal changes over time [16,17]. Few models, however, have been developed with
the aim of imputing incomplete high-resolution indoor temperature, humidity or electricity
consumption records. As our goal is to maximize imputation performance, our approach
focuses on imputing missing values by predicting internal temperatures over time using
the information available. The next section describes each of the conventional imputation
methods compared with a detailed overview of the proposed spline regression method.

3.2. Methodologies Considered for This Study

Ten different models were considered for imputation of missing indoor temperature
and humidity datapoints, as listed in Table 2 below. Six conventional imputation method-
ologies were compared against four variations of the spline regression imputation proposed
by this study. The variables used for each model are described in the table below.

Table 2. List of imputation methodologies considered for this study.

Methodology Variables Used

Type Name Tint Text Energy Time Occupancy

Baseline Mean imputation (MI) � - - - -

Multivariate Multiple imputation by chained equations (MICE) � � � - �

Univariate time series
Pattern sequence forecasting (PSF) � - - - -

Seasonal split (SS) � - - - -

Machine learning k-nearest neighbour (KNN) � � � � -

Linear regression t a~x b (R0) � � - - -

Spline regression

t~sp(hour c) d (SR1) � - - � -

t~sp(hour) + x (SR2) � � - � -

t~sp(hour) + x + energy e (SR3) � � � � -

t~sp(hour) + x + (energy) x (occupancy f) (SR4) � � � � �

a t—internal temperature in degree Celsius. b x—external temperature in degree Celsius. c hour—time
of day in hour, from 0 to 24. d sp—cubic spline function. e Energy–electricity used every half hour, in
Watts. f Occupancy—dummy variable (present/absent) based on energy use. Note: all datapoints are in
half-hour intervals.

3.2.1. Conventional Methodologies

Mean imputation. This method generates a single value, typically by mean or mode,
to replace missing temperature data. This can lead to bias and underestimation of standard
errors if data are not MCAR. This would give the same mean value as the method of just
ignoring missing observations, but standard errors in this assessment would be different
owing to the difference in the sample size. This method will be performed to demonstrate
the lower limit of imputation performance.

Multiple Imputation of Chained Equations (MICE). This method uses other variables
and records from the dataset (between-record) to predict the missing values. It therefore
draws on the characteristics of other dwellings (e.g., temperature, energy consumption,
building characteristics, demographics, etc.) to predict internal temperatures. This method
is now well established and follows a standardised process for imputation. Multiple
imputation presents several problems. Firstly, data must be MAR or MCAR. Secondly,
in our RCT context where missingness will occur in both the control and intervention
groups, using multiple imputation without controlling for group may bias the results or
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lose the differentiation between groups. However, controlling for the dwelling being part
of the control or intervention group would require the analysis to be unblinded before the
end of the study-period. This does not follow good clinical research practice and would
compromise trial integrity. For these reasons, across record imputation is excluded as an
acceptable approach. This study utilized MICE package in R with default settings to impute
the missing values for each household with access to external temperature and energy
consumption, but not other households.

The primary dataset is a time series with large, chronological missingness; this can
also be seen as a forecasting problem. Two state-of-the-art univariate time series methods
that detect and model changes in a single variable over time are considered.

Pattern Sequence Forecasting (PSF) is a method proposed by Martínez–Álvarez
et al. [18] that identifies periodic patterns in time series data. Bokde, et al. [19] mod-
ified PSF to an imputation-friendly version that imputes missing values by taking an
average of forecasted and backcasted values. The imputePSF package in R was applied to
impute missing values one dwelling at a time.

Seasonal Split (SS) is a univariate time series imputation method that splits a time
series into seasons and performs imputation for each season. The imputeTS package in R is
used to impute the missing values one dwelling at a time, with seasonality set at 48 data
intervals per day (daily seasonality).

K-nearest neighbour (KNN) is a widely-used supervised machine learning algorithm
where k closest neighbours (datapoints) are used to estimate the dependent variable. It
is non-parametric, meaning no assumptions are made about the dynamics of underlying
data. KNN is more effective when a large dataset is available and is resilient to noisy
data, making it suitable for comparison in this study. In this study, nearest observations
are based on the closest matching external temperature, energy consumption, and time
of day within the same dwelling. FNN package in R was used to implement the KNN
regression. Parameter k is set for each run to be

√
n, where n is the size of training dataset,

as recommended by Lall and Sharma [20].

3.2.2. Proposed Approach

Hourly indoor temperature is affected by aspects beyond external temperature and
building characteristics, including behavioural and social characteristics of occupants [21–23].
A study by Gill, Tierney, Pegg and Allan [23] found that occupant behaviour can account
for as much as half of heating energy consumption, emphasizing the need to consider
occupant behaviours in modelling internal temperature for this study. In recent years
many studies have emerged that model both the physical as well as the socio-behavioural
dynamics [24–27].

There are two distinguishing factors that differentiates our study from the main body
of literature. First, while much of the literature in this field attempts to accurately model
energy consumption from social and physical determinants, we are inversely attempting
to model indoor temperature from physical characteristics of dwelling and environment,
energy consumption, and other social determinants. Second is that most studies attempt to
create a generalized ‘universal’ model that can describe any given household, but we are
creating a model unique to each household. This is due to the difference in the fundamental
goal of the study: we hope to best reproduce the half-hourly indoor temperature of each
household, and not necessarily understand the underlying dynamics.

A spline regression model would incorporate both the within-variable seasonality and
the across-variable relationship between external and internal conditions. Figure 1 shows
the structure of relationship between measured variables in our study. External temperature
at time j (xj) has a direct and most significant causal relationship to indoor temperature
of household i (ti,j) [28]. This effect of external temperature on internal temperature is
moderated by the thermal efficiency and other characteristics of the dwelling i (di) and
energy consumption (ei,j), with the presumption that some of the energy will be used to
heat the dwelling. Energy consumption is further determined by the occupancy status
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(oi,j), which indicates whether a person is present within the dwelling, and by occupant
preferences regarding thermal comfort.
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A simple linear regression may not sufficiently capture the rich dynamics of this
process. Rather, we propose using a spline regression to capture the unique profile of
internal temperature that repeats every 24 h for each household. The remaining deviation
is captured by the remaining two measured variables, namely energy consumption and
occupancy. Spline regression is a non-parametric technique that divides the data into
smaller bins at a fixed interval of “knots”, from which a regression model is fitted for each
segment [29]. In the case of time series, cubic splines with constraints on continuity of first
and second derivatives can sufficiently model the smooth but erratic nature of change, such
as those found in half-hourly internal temperature [30]. We model a cubic polynomial g for
internal temperature defined on endpoints [h0, h24] with regards to knots {ξi}m

i=1 where:

g(x) = dix3 + cix2 + bix + ai, x ∈ [ξi , ξi+1 ] (1)

where i = 0 : m, ξ0 = h0 and ξm+1 = h24 and x is time in hours of each household. Cubic
spline has two key advantages over conventional polynomial regression. First, outliers can
significantly skew the results of polynomial regression globally, while for spline regression,
the effect is locally contained to the corresponding spline. In the case of cubic spline,
the additional constraints of continuity and continuity in the first and second derivatives
minimize the chance of “wriggle” behaviour commonly seen in overfitted models.

In this study, three additional models with successively added independent variables
are introduced to observe their explanatory power, as well as a simple linear regression
model for comparison.

Baseline linear regression model (R0). As a baseline regression approach, we model
the primary effect of external temperature on indoor temperature as a simple linear model:

Tinti,j = β0,i + β1,i xe,j + εi (2)

As demonstrated in Figure 2, there is a positive correlation between internal and
external temperature. Each datapoint represents a 30-min internal temperature reading for
one dwelling with all datapoints over a 90-day period shown. While a linear regression
fit captures the correlation between the two, it fails to capture the full range of variance.
This is particularly evident in household 3 of Figure 2, where there are two clusters of
indoor/outdoor temperature relations.
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Figure 2. Relationship between external vs. internal temperatures from three sample dwellings.

Baseline spline regression model (SR1). The second baseline model attempts to better
capture the dynamics of internal temperature throughout the day. This is done by modelling
the internal temperature profile of a dwelling over time, in our case at every half-hour, as
shown in Figure 3. We set the number of knots m to be 11, where we fit a cubic polynomial
for each 2 h intervals of data to best capture the changes in internal temperature for each
household, as shown in Figure 3.
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Figure 3. Relationship between the time of day vs. internal temperature from three sample dwellings,
with cubic spline fit (m = 11).

Improved spline regression models (SR2,3,4). We iteratively test the marginal im-
provements of including additional independent variables to the baseline spline model.
Half hourly external temperature and half hourly energy consumption measured for each
household are iteratively included as independent variables. A third dummy variable,
occupancy status, is also tested for interaction with energy consumption. This variable is
created by categorizing the time series energy consumption data into two status groups
(present/absent) for each dwelling using cluster analysis. A total of three variations in
model are created for testing, as summarized in Table 2.
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4. Data

In order to measure the performance of different imputation methodologies, we
utilized the dataset of 99 households from the 2018 study year, when there were no issues
with logger batteries and all dwellings had complete temperature and humidity data. As
this dataset does not have any missingness, we created test datasets by artificially deleting
values in similar fashion to the missingness characteristics of the 2018 data. Creating these
datasets allows us to test the imputation performance of each method against actual values.
In this section, we discuss the method of selecting datapoints for deletion with the aim of
replicating missing data from field trials.

The time at which a battery fails was approximated by a Weibull distribution [31],
capturing the increased likelihood of battery failure over time using an approximate hazard
function. We also accounted for the fact that the variation in mean time to failure (MTTF)
has an upper limit bounded by the physical specifications of the battery. Given these
two characteristics, we propose a Weibull function with negative skewness (k > 3.7) to
describe the probability of failure over time:

f (t) =
k
λ

(
t
λ

)k−1
e−(

t
λ )

k
(3)

where k is the shape parameter and λ is a scale parameter. The scale parameter is the point
where 63.2% percent of the population will have failed, regardless of the shape parameter.
The λ is estimated to be 76 days from the 2019 records that had missing data, out of the
total 92 days. λ is set to be 30 days for the simulated deletion points and k is set to be
6 (slight negative skewness), which would retain the shape of distribution but shift it to the
left. The resulting distribution of failure time can be seen in Figure 4. This would start the
missingness earlier, allowing creation of a wider range of missingness levels to test with.
We also assumed that after a certain period, all of the batteries are replaced at the same
time but prior to the end of the study period. This allows for a process of batteries failing at
different times with increasing likelihood of failure as time progresses. It is assumed that
all dataloggers within the test dataset fail and batteries are replaced before the end of the
study period.
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Figure 4. Probability density function of modelled battery failure rate over time (k = 6, λ = 30 days).

The timing of battery replacement was used to determine the percentage of total
missingness within the sample, with the assumption that all batteries are replaced on the
same day. Four different test datasets were generated at varying levels of missingness
(10%, 30%, 50% and 70%). Figure 5 shows the resulting internal temperature data with
missingness for one household.
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5. Results

The eleven models identified in Table 2 are applied to four datasets, resulting in
44 models to compare. The performance of each run is calculated based on the normalized
mean absolute error (NMAE) and root mean squared error (RMSE):

NMAEi =
1
ni

ni

∑
j=1

∣∣∣tac
i,j − timp

i,j

∣∣∣
Vmax

i −Vmin
i

(4)

RMSEi =

√√√√√ ni

∑
j=1

(tac
i,j − timp

i,j )
2

n
(5)

where ni is the number of imputed data points for dwelling i, tac
i,j is the actual internal

temperature of household i at time j, timp
i,j is the imputed internal temperature of dwelling

i at time j. Vmax
i and Vmin

i are maximum and minimum values for the range of actual
recorded internal temperatures for the given dwelling. Figures 6–8 show the actual vs.
imputed values for a single dwelling for each of the different models used.
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5.1. Imputation Characteristics

Figure 6 shows the first three days’ worth of imputation using MI and MICE for House-
hold (1). It can be seen that mean imputation cannot capture variations over time, while
MICE generates perturbations within sequential datapoints that should not exist in contin-
ued time series measurement of indoor temperatures. This is due to MICE’s over-emphasis
on using between-record characteristics while ignoring within record characteristics. The
added noise makes MICE unsuitable for imputing missing time series where change over
time is of interest.

Figure 7 shows the results from the two univariate time series approaches. It can be
noted that PSF is unable to capture the consistent structure of daily seasonality. The seasonal
split (SS) approach does identify the daily seasonality; however, the daily imputations are
identical over the three-day period and beyond.

Figure 8 shows the imputation results from the spline regression approaches. The
linear regression (R0) modelling internal temperature with external temperature manages
to capture the cyclical nature of indoor temperature but fails to cover the minimum and
maximum range. In the baseline spline regression model (SR1) that models internal
temperature as a cubic spline over the period of 24 h, the daily pattern is efficiently covered,
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however as this approach does not take into consideration any other causal factors, it
cannot model any long-term changes over time such as change in season.

Figure 9 shows the imputation results from KNN and spline regression SR3. Both
methods show marked improvement compared to previous approaches shown, and show
similar visual performance. It should be noted that both KNN and SR3 have same level of
access to datasets (external temperature, energy consumption and internal temperature).
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5.2. Imputation Performance

Individual models were developed for each of the 99 dwellings for all methods tested.
Table 3 and Figure 10 show the mean of RMSE from the 99 dwellings tested for the
temperature data. As expected, RMSE increases as levels of missingness increase and the
amount of information available to impute decreases.

Table 3. Mean RMSE of imputation methods by missingness level for temperature data.

Methods
Missingness Level

10% 30% 50% 70%

Baseline Mean Imputation 0.9529 0.9981 1.0190 1.0231

Multivariate MICE 0.7303 0.7712 0.7934 0.8506

Univariate time series
PSF 0.7310 0.8519 0.9381 0.9376

Seasonal split 0.7554 0.8030 0.8536 0.9376

Machine learning K-nearest neighbours 0.6121 0.6546 0.6754 0.7387

Linear regression t a~x b 0.9021 0.9373 0.9493 0.9624

Spline regression

t~sp(hour c) d 0.6346 0.6860 0.7109 0.7609

t~sp(hour) + x 0.6268 0.6657 0.6777 0.7304

t~sp(hour) + x + energy e 0.6160 0.6545 0.6687 0.7228

t~sp(hour) + x + (energy) x (occupancy f) 0.6089 0.6458 0.6608 0.7143
a t—internal temperature in degree Celsius. b x—external temperature in degree Celsius. c hour—time
of day in hour, from 0 to 24. d sp—cubic spline function. e Energy—electricity used every half hour, in
Watts. f Occupancy—dummy variable (present/absent) based on energy use. Note: all datapoints are in half-
hour intervals.
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A notable improvement in imputation performance occurs in the spline regression
approach when external temperature is included (SR2), resulting in a 6% reduced RMSE
compared to the baseline model (SR1). Additional improvements are also observed when
energy consumption (SR3) and occupancy status (SR4) is included in succession, with 7%
reduced RMSE and 8.6% reduced RMSE compared to the baseline model (SR1), respectively.

It can be seen that spline regression models the dynamics of internal temperature
over time for each household better than other models at all missingness levels. At 10%
missingness, the best spline regression model (SR4) has on average 14% and 16% smaller
RMSE compared to MICE and univariate time series (SS) methods, respectively. While
this gap remains consistent for MICE, the gap between SR4 and SS widens to 22% smaller
RMSE when more than half of data is missing.

The gap in performance between the next best performing method (KNN) and spline
regression widens as levels of missingness increases, from 1.5% to 4.5% smaller RMSE for
10% and 70% missingness, respectively.

Similar results can be observed from the comparison of NMAE results, as shown in
Figure 11; across all missingness levels, spline regression models perform better than the
conventional models tested for comparison. It should be noted that due to the nature of
NMAE’s dependency on maximum value Vmax

i and minimum value Vmin
i for each sample

data range, comparison across missingness levels is inappropriate. The best performing
spline regression (SR4) outperforms MICE with ~16% smaller NMAE at all missingness
levels, while outperforming SS with 19% to 24% smaller NMAE across the missingness
levels. SR3, with the same level of access to datasets as KNN, is negligibly outperformed
by KNN (0.6% larger NMAE) at 10% missingness level. As missingness levels increase, SR3
overtakes KNN with 2% smaller NMAE at 70% missingness. Detailed results can be seen
in Table 4.
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Table 4. Mean NMAE of imputation methods by missingness level for temperature data.

Methods
Missingness Level

10% 30% 50% 70%

Baseline Mean Imputation 0.2056 0.1864 0.1697 0.1634

Multivariate MICE 0.1416 0.1269 0.1175 0.1230

Univariate time series
PSF 0.1483 0.1490 0.1460 0.1491

Seasonal split 0.1454 0.1332 0.1298 0.1369

Machine learning K-nearest neighbours 0.1241 0.1131 0.1054 0.1103

Linear regression t a~x b 0.1937 0.1746 0.1574 0.1535

Spline regression

t~sp(hour c) d 0.1308 0.1207 0.1109 0.1130

t~sp(hour) + x 0.1277 0.1159 0.1047 0.1083

t~sp(hour) + x + energy e 0.1238 0.1123 0.1028 0.1068

t~sp(hour) + x + (energy) x (occupancy f) 0.1223 0.1103 0.1013 0.1054
a t—internal temperature in degree Celsius. b x—external temperature in degree Celsius. c hour—time
of day in hour, from 0 to 24. d sp—cubic spline function. e Energy—electricity used every half hour, in
Watts. f Occupancy—dummy variable (present/absent) based on energy use. Note: all datapoints are in half-
hour intervals.

6. Discussion and Conclusions

We explored the different imputation methods for addressing large, chronologically
missing time series datasets in a randomized controlled trial. A set of spline regression
models were used to capture the dynamics of high-resolution data on internal temperature,
electricity consumption and outdoor temperature. Results showed that all of the spline
regression models perform better than conventional methods at all tested levels of miss-
ingness. Spline regression models performed best when all causal factors available were
included in the model, i.e., the time of day, external temperature over time and electricity
consumption over time, as well as modelled occupancy. The interaction between modelled
occupancy and electricity consumption (SR4) was found to marginally improve the results,
however, in a real-world application this interaction factor could be removed to simplify
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the model without a large effect on results. For cases where uninterrupted missingness
is short (<10% of data), results suggest that KNN can also be used without significant
performance loss as compared to the proposed Spline regression approach.

Another issue to note is that from the within-record perspective, the univariate time
series seasonal split (SS) method performs significantly better in capturing the inter-day
temperatures compared to other conventional methods. However, as SS does not take into
consideration the external environmental conditions for the imputed period, its projection
may be error-prone if the external temperature conditions change during the imputed
period. While our RCT is performed only during a relatively stable winter period, this may
be problematic for studies where climate conditions change over different seasons.

It should also be noted that this paper investigates imputation strategies specifically
for a long, uninterrupted missingness, found in situations where device failures can-
not be identified easily. For the more common missingness that are short and frequent
(e.g., network issues that drop small pockets of data at random intervals), time-series
modelling that combines forecasting and back-casting such as PSF might be more suitable.
Researchers utilizing spatial environmental data may also find useful parallels for their im-
putation efforts, in terms of capturing continuous but nonlinear patterns in both temporal
and spatial data [32,33].

While there is no method that can perfectly model or non-parametrically impute
the internal temperature, this study has shown how understanding and utilization of
the available dataset’s across-record, across-variable and within-variable dynamics can
improve the imputation performance. Given the findings, the spline regression approach
was shown to be the best method at imputing missing temperature readings.

Future work should investigate methods to better capture the within-record seasonal-
ity up to the standards of seasonal split in regression models. Methods in transformation
of other independent variables that would best capture the relationship between vari-
ables should also be explored, as we have done with converting time series into repeated
daily seasonality.
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