Leg Fidgeting Improves Executive Function following Prolonged Sitting with a Typical Western Meal: A Randomized, Controlled Cross-Over Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
3. Experimental Procedures
3.1. Meal Type
3.2. Executive Function
3.3. Common Carotid Arterial Blood Flow
3.4. Near Infrared Spectroscopy (NIRS)
3.5. Blood Sampling
3.6. Sample Size
3.7. Statistical Analysis
4. Results
4.1. Triglyceride and Glucose Concentration
4.2. Measures of Cognitive Functions
4.2.1. Trail Maker Part-A
4.2.2. Trail Maker Part-B
4.3. Carotid Artery and Cerebral Perfusion Measures
4.4. Blood Pooling
5. Discussion
5.1. Limitations and Strengths
5.2. Comparison to the Literature
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wheeler, M.J.; Dempsey, P.C.; Grace, M.S.; Ellis, K.A.; Gardiner, P.A.; Green, D.J.; Dunstan, D.W. Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017, 3, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Stamatakis, E. Prospective study of sedentary behavior, risk of depression, and cognitive impairment. Med. Sci. Sports Exerc. 2014, 46, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnet, K.; Blackwell, J.; Kelsch, E.; Hanson, E.D.; Stone, K.; Fryer, S.; Credeur, D.; Palta, P.; Stoner, L. Cerebrovascular function response to prolonged sitting combined with a high-glycemic index meal: A double-blind, randomized cross-over trial. Psychophysiology 2021, 58, e13830. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.E.; Draijer, R.; Holder, S.M.; Brown, L.; Thijssen, D.H.; Hopkins, N.D. Regular walking breaks prevent the decline in cerebral blood flow associated with prolonged sitting. J. Appl. Physiol. 2018, 125, 790–798. [Google Scholar] [CrossRef]
- O’Brien, M.W.; Kimmerly, D.S.; Mekari, S. Greater habitual moderate-to-vigorous physical activity is associated with better executive function and higher prefrontal oxygenation in older adults. GeroScience 2021, 43, 2707–2718. [Google Scholar] [CrossRef]
- Faulkner, J.; Stoner, L.; Grigg, R.; Fryer, S.; Stone, K.; Lambrick, D. Acute effects of exercise posture on executive function in transient ischemic attack patients. Psychophysiology 2017, 54, 1239–1248. [Google Scholar] [CrossRef]
- Russo, G.; Nigro, F.; Raiola, G.; Ceciliani, A. The effect of physical fitness and physical activity level on memory storage of Italian pre-adolescent secondary school students. Trends Sport Sci. 2021, 28, 195–202. [Google Scholar]
- Duchesne, C.; Gheysen, F.; Boré, A.; Albouy, G.; Nadeau, A.; Robillard, M.; Bobeuf, F.; Lafontaine, A.-L.; Lungu, O.; Bherer, L. Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson’s disease individuals. NeuroImage Clin. 2016, 12, 559–569. [Google Scholar] [CrossRef] [Green Version]
- Hambrecht, R.; Adams, V.; Erbs, S.; Linke, A.; Krankel, N.; Shu, Y.; Baither, Y.; Gielen, S.; Thiele, H.; Gummert, J. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 2003, 107, 3152–3158. [Google Scholar] [CrossRef] [Green Version]
- Jedrziewski, M.K.; Ewbank, D.C.; Wang, H.; Trojanowski, J.Q. The impact of exercise, cognitive activities, and socialization on cognitive function: Results from the national long-term care survey. Am. J. Alzheimer’s Dis. Other Dement. 2014, 29, 372–378. [Google Scholar] [CrossRef]
- Gu, Y.; Scarmeas, N. Dietary patterns in Alzheimer’s disease and cognitive aging. Curr. Alzheimer Res. 2011, 8, 510–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.C.; Tangney, C.C. Dietary fat composition and dementia risk. Neurobiol. Aging 2014, 35, S59–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, T.M.; Kanoski, S.E. Blood-brain barrier disruption: Mechanistic links between Western diet consumption and dementia. Front. Aging Neurosci. 2014, 6, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustaw-Rothenberg, K. Dietary patterns associated with Alzheimer’s disease: Population based study. Int. J. Environ. Res. Public Health 2009, 6, 1335–1340. [Google Scholar] [CrossRef] [Green Version]
- Fryer, S.; Stone, K.; Paterson, C.; Brown, M.; Faulkner, J.; Lambrick, D.; Credeur, D.; Zieff, G.; Martinez Aguirre-Betolaza, A.; Stoner, L. Central and peripheral arterial stiffness responses to uninterrupted prolonged sitting combined with a high-fat meal: A randomized controlled crossover trial. Hypertens. Res. 2021, 44, 1332–1340. [Google Scholar] [CrossRef]
- Francis, H.; Stevenson, R. The longer-term impacts of Western diet on human cognition and the brain. Appetite 2013, 63, 119–128. [Google Scholar] [CrossRef]
- Paterson, C.; Fryer, S.; Zieff, G.; Stone, K.; Credeur, D.P.; Gibbs, B.B.; Padilla, J.; Parker, J.K.; Stoner, L. The effects of acute exposure to prolonged sitting, with and without interruption, on vascular function among adults: A meta-analysis. Sports Med. 2020, 50, 1929–1942. [Google Scholar] [CrossRef]
- Paterson, C.; Fryer, S.; Stone, K.; Zieff, G.; Turner, L.; Stoner, L. The effects of acute exposure to prolonged sitting, with and without interruption, on peripheral blood pressure among adults: A systematic review and meta-analysis. Sports Med. 2021, 1–15. [Google Scholar] [CrossRef]
- Morishima, T.; Restaino, R.M.; Walsh, L.K.; Kanaley, J.A.; Fadel, P.J.; Padilla, J. Prolonged sitting-induced leg endothelial dysfunction is prevented by fidgeting. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H177–H182. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.F.; Altman, D.G.; Moher, D.; Group, C. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. Trials 2010, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Puri, K.; Suresh, K.; Gogtay, N.; Thatte, U. Declaration of Helsinki, 2008: Implications for stakeholders in research. J. Postgrad. Med. 2009, 55, 131. [Google Scholar] [PubMed]
- Stoner, L.; Barone Gibbs, B.; Meyer, M.L.; Fryer, S.; Credeur, D.; Paterson, C.; Stone, K.; Hanson, E.D.; Kowalsky, R.J.; Horiuchi, M. A primer on repeated sitting exposure and the cardiovascular system: Considerations for study design, analysis, interpretation, and translation. Front. Cardiovasc. Med. 2021, 8, 716938. [Google Scholar] [CrossRef] [PubMed]
- Vogel, R.A.; Corretti, M.C.; Plotnick, G.D. Effect of a single high-fat meal on endothelial function in healthy subjects. Am. J. Cardiol. 1997, 79, 350–354. [Google Scholar] [CrossRef]
- Miller, E.K. The prefontral cortex and cognitive control. Nat. Rev. Neurosci. 2000, 1, 59–65. [Google Scholar] [CrossRef]
- Cristofori, I.; Cohen-Zimerman, S.; Grafman, J. Executive functions. Handb. Clin. Neurol. 2019, 163, 197–219. [Google Scholar]
- McMorris, T.; Hale, B.J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 2012, 80, 338–351. [Google Scholar] [CrossRef]
- Bowie, C.R.; Harvey, P.D. Administration and interpretation of the Trail Making Test. Nat. Protoc. 2006, 1, 2277. [Google Scholar] [CrossRef]
- Arbuthnott, K.; Frank, J. Trail making test, part B as a measure of executive control: Validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 2000, 22, 518–528. [Google Scholar] [CrossRef]
- Golden, C.J. A Standardized Version of Luria’s Neuropsychological Tests; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Woods, D.L.; Wyma, J.M.; Herron, T.J.; Yund, E.W. The effects of aging, malingering, and traumatic brain injury on computerized trail-making test performance. PLoS ONE 2015, 10, e0124345. [Google Scholar] [CrossRef] [Green Version]
- Stone, K.J.; Fryer, S.M.; Ryan, T.; Stoner, L. The validity and reliability of continuous-wave near-infrared spectroscopy for the assessment of leg blood volume during an orthostatic challenge. Atherosclerosis 2016, 251, 234–239. [Google Scholar] [CrossRef]
- Stoner, L.; Willey, Q.; Evans, W.S.; Burnet, K.; Credeur, D.P.; Fryer, S.; Hanson, E.D. Effects of acute prolonged sitting on cerebral perfusion and executive function in young adults: A randomized cross-over trial. Psychophysiology 2019, 56, e13457. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, J.; Lambrick, D.; Kaufmann, S.; Stoner, L. Effects of upright and recumbent cycling on executive function and prefrontal cortex oxygenation in young healthy men. J. Phys. Act. Health 2016, 13, 882–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klem, G.H.; Lüders, H.O.; Jasper, H.H.; Elger, C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 3–6. [Google Scholar] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Burgess, T.F. Guide to the Design of Questionnaires. Gen. Introd. Des. Quest. Surv. Res. 2001, 30, 411–432. [Google Scholar]
- Dye, O.A. Effects of practice on Trail Making Test performance. Percept. Mot. Ski. 1979, 48, 296. [Google Scholar] [CrossRef]
- Wanders, L.; Cuijpers, I.; Kessels, R.P.; van de Rest, O.; Hopman, M.T.; Thijssen, D.H. Impact of prolonged sitting and physical activity breaks on cognitive performance, perceivable benefits, and cardiometabolic health in overweight/obese adults: The role of meal composition. Clin. Nutr. 2021, 40, 2259–2269. [Google Scholar] [CrossRef]
- Fals-Stewart, W. An interrater reliability study of the Trail Making Test (Parts A and B). Percept. Mot. Ski. 1992, 74, 39–42. [Google Scholar] [CrossRef]
- Ji, Z.; Feng, T.; Mei, L.; Li, A.; Zhang, C. Influence of acute combined physical and cognitive exercise on cognitive function: An NIRS study. PeerJ 2019, 7, e7418. [Google Scholar] [CrossRef]
- Gronek, J.; Boraczyński, M.; Gronek, P.; Wieliński, D.; Tarnas, J.; Marszałek, S.; Tang, Y.-Y. Exercise in Aging: Be Balanced. Aging Dis. 2021, 12, 1140–1149. [Google Scholar] [CrossRef]
- Perdomo, S.J.; Gibbs, B.B.; Kowalsky, R.J.; Taormina, J.M.; Balzer, J.R. Effects of alternating standing and sitting compared to prolonged sitting on cerebrovascular hemodynamics. Sport Sci. Health 2019, 15, 375–383. [Google Scholar] [CrossRef]
- Dillon, K.; Gardiner, P.A. Association between sedentary behaviour and risk of dementia: An evidence gap. Transl. Psychiatry 2021, 11, 195. [Google Scholar] [CrossRef] [PubMed]
Mean (SD) Glucose Concentration (mmol·L−1) | |||||
---|---|---|---|---|---|
Pre * | Post 30 min | Post 60 min * | Post 120 min * | Post 170 min * | |
CON | 4.54 (0.38) | 6.08 (0.87) | 5.04 (0.88) | 4.81 (0.85) | 4.49 (0.50) |
INT | 4.39 (0.49) | 6.18 (0.79) | 5.06 (0.67) | 4.91 (0.67) | 4.13 (0.91) |
Trail Maker Part-A | Trail Maker Part-B | TMT B-A | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Completion Time (s) | Number of Errors | Fatigue Score | Δ Head tHb (µmol·L−1) | Δ Head HHb (µmol·L−1) | Completion Time (s) | Number of Errors | Fatigue Score | Δ Head tHb (µmol·L−1) | Δ Head HHb (µmol·L−1) | TMT B-A (s) | |
Mean Average (SD) | |||||||||||
CON | |||||||||||
0 min | 11.99 (2.05) | 0.9 (0.99) | 2.7 (1.25) | 2.13 (1.35) | −0.03 (0.58) | 15.97 (3.86) | 0.42 (0.51) | 2.64 (1.21) | 2.66 (1.17) | −0.36 (0.60) | 3.97 (4.02) |
180 min | 12.81 (2.72) | 2.2 (3.05) | 3.3 (1.42) | 1.33 (2.20) | −0.02 (0.81) | 21.14 (4.95) | 3.75 (4.81) | 3.36 (1.63) | 1.28 (1.63) | −0.29 (0.97) | 8.32 (4.52) |
INT | |||||||||||
0 min | 11.17 (1.23) | 0.3 (0.67) | 2.9 (1.29) | 1.65 (1.94) | −0.09 (0.44) | 17.52 (6.29) | 1.58 (3.20) | 3.00 (1.26) | 2.10 (1.89) | −0.37 (0.62) | 6.36 (6.41) |
180 min | 10.31 (0.84) | 0.6 (1.27) | 2.8 (1.48) | 1.49 (2.60) | 0.46 (0.58) | 15.27 (3.61) | 0.83 (1.34) | 2.81 (1.40) | 0.41 (1.95) | −0.01 (0.57) | 4.96 (3.53) |
Interaction Effect (Time × condition) | |||||||||||
p | 0.067 | 0.430 | 0.111 | 0.605 | 0.090 | 0.021 * | 0.042 * | 0.049 * | 0.601 | 0.192 | 0.059 |
ηp2 | 0.297 | 0.070 | 0.258 | 0.035 | 0.318 | 0.492 | 0.324 | 0.325 | 0.036 | 0.202 | 0.312 |
Time Effect | |||||||||||
p | 0.976 | 0.207 | 0.213 | 0.487 | 0.124 | 0.175 | 0.084 | 0.140 | 0.047 * | 0.291 | 0.148 |
ηp2 | <0.001 | 0.171 | 0.167 | 0.062 | 0.185 | 0.176 | 0.246 | 0.205 | 0.409 | 0.138 | 0.197 |
Condition Effect | |||||||||||
p | 0.049 * | 0.068 | 0.394 | 0.784 | 0.088 | 0.141 | 0.369 | 0.588 | 0.232 | 0.491 | 0.647 |
ηp2 | 0.335 | 0.323 | 0.082 | 0.010 | 0.320 | 0.204 | 0.074 | 0030 | 0.173 | 0.061 | 0.022 |
Carotid Blood Flow (mL·min−1) | Carotid Avg. Diameter (mm) | Carotid Velocity (m·s−1) | Cerebral Perfusion tHb (µmol·L−1) | Cerebral Perfusion HHb (µmol·L−1) | |
---|---|---|---|---|---|
Mean Average (SD) | |||||
CON | |||||
0 min | 677 (182) | 6.29 (0.27) | 39.82 (7.75) | 1.55 (1.87) | 0.44 (0.84) |
180 min | 613 (157) | 6.29 (0.33) | 35.1 (5.59) | −0.05 (8.99) | 1.80 (2.91) |
INT | |||||
0 min | 641 (186) | 6.36 (0.44) | 37.17 (9.3) | 1.74 (1.54) | 1.11 (3.14) |
180 min | 621 (143) | 6.32 (0.29) | 32.93 (14.67) | −2.06 (5.89) | 1.40 (4.68) |
Interaction Effect (Time × Condition) | |||||
p | 0.335 | 0.718 | 0.926 | 0.576 | 0.476 |
ηp2 | 0.116 | 0.014 | 0.001 | 0.041 | 0.065 |
Time Effect | |||||
p | 0.321 | 0.724 | 0.240 | 0.108 | 0.124 |
ηp2 | 0.123 | 0.013 | 0.149 | 0.290 | 0.269 |
Condition Effect | |||||
p | 0.687 | 0.527 | 0.226 | 0.662 | 0.920 |
ηp2 | 0.021 | 0.041 | 0.135 | 0.025 | 0.001 |
CON Mean Average (SD) | INT Mean Average (SD) | p | Cohens’d | |
---|---|---|---|---|
Leg AUC tHb (µmol·L1) | 261.5 (84.7) | 200.2 (31.1) | 0.001 * | 1.392 |
Leg AUC HHb (µmol·L1) | 207.9 (78.5) | 163.2 (72.5) | 0.011 * | 0.881 |
Head AUC tHb (µmol·L1) | −20.1 (74.2) | 7.2 (95.3) | 0.540 | 0.213 |
Head AUC HHb (µmol·L1) | 28.4 (29.5) | 18.6 (54.1) | 0.626 | 0.160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fryer, S.; Paterson, C.; Stoner, L.; Brown, M.A.; Faulkner, J.; Turner, L.A.; Aguirre-Betolaza, A.M.; Zieff, G.; Stone, K. Leg Fidgeting Improves Executive Function following Prolonged Sitting with a Typical Western Meal: A Randomized, Controlled Cross-Over Trial. Int. J. Environ. Res. Public Health 2022, 19, 1357. https://doi.org/10.3390/ijerph19031357
Fryer S, Paterson C, Stoner L, Brown MA, Faulkner J, Turner LA, Aguirre-Betolaza AM, Zieff G, Stone K. Leg Fidgeting Improves Executive Function following Prolonged Sitting with a Typical Western Meal: A Randomized, Controlled Cross-Over Trial. International Journal of Environmental Research and Public Health. 2022; 19(3):1357. https://doi.org/10.3390/ijerph19031357
Chicago/Turabian StyleFryer, Simon, Craig Paterson, Lee Stoner, Meghan A. Brown, James Faulkner, Louise A. Turner, Aitor Martínez Aguirre-Betolaza, Gabriel Zieff, and Keeron Stone. 2022. "Leg Fidgeting Improves Executive Function following Prolonged Sitting with a Typical Western Meal: A Randomized, Controlled Cross-Over Trial" International Journal of Environmental Research and Public Health 19, no. 3: 1357. https://doi.org/10.3390/ijerph19031357
APA StyleFryer, S., Paterson, C., Stoner, L., Brown, M. A., Faulkner, J., Turner, L. A., Aguirre-Betolaza, A. M., Zieff, G., & Stone, K. (2022). Leg Fidgeting Improves Executive Function following Prolonged Sitting with a Typical Western Meal: A Randomized, Controlled Cross-Over Trial. International Journal of Environmental Research and Public Health, 19(3), 1357. https://doi.org/10.3390/ijerph19031357