Enhanced Biodegradation of Phenylurea Herbicides by Ochrobactrum anthrophi CD3 Assessment of Its Feasibility in Diuron-Contaminated Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Diuron Degrader Enrichment
2.3. Inoculum Preparation
2.4. Diuron Degrading Capacity of the Isolated Bacterial Strains
2.5. Isolated Bacterial Strain Identification with 16S rDNA Amplification
2.6. Biodegradation Experiments in Solution
2.7. Biodegradation Experiments in Soils
2.8. Model of Biodegradation Kinetics
2.9. Diuron Availability in Soil
2.10. Analytical Methods
2.11. Toxicity Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Identification of the Diuron Degrading Bacterial Strain
3.2. Phenylureas Biodegradation in Solution by O. anthropi CD3
3.3. Diuron and 3,4-Dichloroaniline Biodegradation in Soils
3.4. Ecotoxicology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Castelo-Grande, T.; Augusto, P.; Monteiro, P.; Estevez, A.M.; Barbosa, D. Remediation of soils contaminated with pesticides: A review. Int. J. Environ. Anal. Chem. 2010, 90, 438–467. [Google Scholar] [CrossRef]
- Abiotic and Biological Technologies for the Remediation of Phenylurea Herbicides in Soils. Available online: https://link.springer.com/chapter/10.1007/698_2021_799 (accessed on 21 August 2021).
- Greulich, K.; Hoque, E.; Pflugmacher, S. Uptake, metabolism, and effects on detoxication enzymes of isoproturon in spawn and tadpoles of amphibians. Ecotoxicol. Environ. Saf. 2002, 52, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Nélieu, S.; Bonnemoy, F.; Bonnet, J.L.; Lefeuvre, L.; Baudiffier, D.; Heydorff, M.; Quéméneur, A.; Azam, D.; Ducrot, P.H.; Lagadic, L.; et al. Ecotoxicological effects of diuron and chlorotoluron nitrate-induced photodegradation products: Monospecific and aquatic mesocosm-integrated studies. Environ. Toxicol. Chem. 2010, 29, 2644–2652. [Google Scholar] [CrossRef] [PubMed]
- ElGouzi, S.; Mingorance, M.; Draoui, K.; Chtoun, E.; Peña, A. Assessment of phenylurea herbicides sorption on various Mediterranean soils affected by irrigation with wastewater. Chemosphere 2012, 89, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Burant, A.; Selbig, W.; Furlong, E.T.; Higgins, C.P. Trace organic contaminants in urban runoff: Associations with urban land-use. Environ. Pollut. 2018, 242, 2068–2077. [Google Scholar] [CrossRef]
- Blondel, A.; Langeron, J.; Sayen, S.; Hénon, E.; Couderchet, M.; Guillon, E. Molecular properties affecting adsorption coefficient of of phenylurea herbicides. Environ. Sci. Pollut. Res. 2013, 20, 6266–6281. [Google Scholar] [CrossRef]
- Agbaogun, B.K.; Fischer, K. Adsorption of phenylurea herbicides by tropical soils. Environ. Monit. Assess. 2020, 192, 212–220. [Google Scholar] [CrossRef] [Green Version]
- IUPAC FOOTPRINT Pesticide Properties Data-Base. Available online: https://sitem.herts.ac.uk/aeru/iupac/index.htm (accessed on 1 June 2020).
- Boscolo, C.N.P.; Pereira, T.S.B.; Batalhão, I.G.; Dourado, P.L.R.; Schlenk, D.; de Almeida, E.A. Diuron metabolites act as endocrine disruptors and alter aggressive behavior in Nile tilapia (Oreochromis niloticus). Chemosphere 2018, 191, 832–838. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Water Framework Directive, Priority Substances and Certain Other Pollutants according to Annex II of Directive 2013/39/EU. List of Priority Substances in the Field of Water Policy. Available online: https://ec.europa.eu/environment/water/water-dangersub/pri_substances.htm (accessed on 17 August 2021).
- Hussain, S.; Arshad, M.; Springael, D.; Sørensen, S.R.; Bending, G.; Devers-Lamrani, M.; Maqbool, Z.; Martin-Laurent, F. Abiotic and Biotic Processes Governing the Fate of Phenylurea Herbicides in Soils: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1947–1998. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere 2017, 172, 52–71. [Google Scholar] [CrossRef]
- Morillo, E.; Villaverde, J. Review Advanced technologies for the remediation of pesticide-contaminated soils. Sci. Total Environ. 2017, 586, 576–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellegaard-Jensen, L.; Knudsen, B.E.; Johansen, A.; Albers, C.; Aamand, J.; Rosendahl, S. Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems. Sci. Total Environ. 2014, 466–467, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hang, P.; Hu, Q.; Chen, X.L.; Zhou, X.Y.; Chen, K.; Jiang, J.D. Degradation of phenylurea herbicides by a novel bacterial consortium containing synergistically catabolic species and functionally complementary hydrolases. J. Agric. Food Chem. 2018, 66, 12479–12489. [Google Scholar] [CrossRef] [PubMed]
- Tixier, C.; Sancelme, M.; AÏt-AÏssa, S.; Widehem, P.; Bonnemoy, F.E.; Cuer, A.; Truffaut, N.; Veschambre, H. Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: Structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 2002, 46, 519–526. [Google Scholar] [CrossRef]
- Sørensen, S.R.; Albers, C.; Aamand, J. Rapid Mineralization of the Phenylurea Herbicide Diuron by Variovorax sp. Strain SRS16 in Pure Culture and within a Two-Member Consortium. Appl. Environ. Microbiol. 2008, 74, 2332–2340. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Chopra, A.; Cameotra, S.S.; Suri, C.R. Efficient biotransformation of herbicide diuron by bacterial strain Micrococcus sp. PS-1. Biodegradation 2010, 21, 979–987. [Google Scholar] [CrossRef]
- Muendo, B.M.; Shikuku, V.O.; Lalah, J.O.; Getenga, Z.M.; Wandiga, S.O.; Rothballer, M. Enhanced degradation of diuron by two Bacillus species isolated from diuron contaminated sugarcane and pineapple-cultivated soils in Kenya. Appl. Soil Ecol. 2020, 157, 103721. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Ruiz, A.; Cornejo, P.; Kannan, V.R. Influence of plant beneficial Stenotrophomonas rhizophila strain CASB3 on the degradation of diuron-contaminated saline soil and improvement of Lactuca sativa growth. Environ. Sci. Pollut. Res. 2020, 27, 35195–35207. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Feng, G.; Du, L.; Zeng, D. Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS ONE 2017, 12, e0182556. [Google Scholar] [CrossRef] [Green Version]
- Villaverde, J.; Rubio-Bellido, M.; Posada-Baquero, R.; Madrid, F.; Morillo, E. Hydroxypropyl-β-cyclodextrin-based extraction for diuron bioaccessibility in an artificially contaminated soil. Int. J. Environ. Anal. Chem. 2013, 93, 1620–1627. [Google Scholar] [CrossRef]
- Villaverde, J.; Rubio-Bellido, M.; Lara-Moreno, A.; Merchan, F.; Morillo, E. Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. Chemosphere 2018, 193, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villaverde, J.; Posada-Baquero, R.; Rubio-Bellido, M.; Laiz, L.; Saiz-Jimenez, C.; Sanchez-Trujillo, M.A.; Morillo, E. Enhanced Mineralization of Diuron Using a Cyclodextrin-Based Bioremediation Technology. J. Agric. Food Chem. 2012, 60, 9941–9947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, S.R.; Aamand, J. Rapid mineralisation of the herbicide isoproturon in soil from a previously treated Danish agricultural field. Pest. Manag. Sci. 2003, 59, 1118–1124. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, J.; Maqueda, C.; Morillo, E. Improvement of the desorption of the herbicide norflurazon from soils via complexation with β-cyclodextrin. J. Agric. Food. Chem. 2006, 53, 5366–5372. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, C.; Cañete-Rosales, P.; Castillo, J.P.; Catalán, N.; Undabeytia, T.; Morillo, E. Cyclodextrin inclusion complex to improve physicochemical properties of herbicide bentazon: Exploring better formulations. PLoS ONE 2012, 7, e41072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morillo, E.; Madrid, F.; Lara-Moreno, A.; Villaverde, J. Soil bioremediation by cyclodextrins. A review. Int. J. Pharm. 2020, 591, 119943. [Google Scholar] [CrossRef]
- Sánchez-Trujillo, M.A.; Lacorte, S.; Villaverde, J.; Barata, C.; Morillo, E. Decontamination of polycyclic aromatic hydrocarbons and nonylphenol from sewage sludge using hydroxypropyl-β-cyclodextrin and evaluation of the toxicity of leachates. Environ. Sci. Pollut. Res. 2014, 21, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Abraham, J.; Silambarasan, S. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pestic. Biochem. Physiol. 2016, 126, 13–21. [Google Scholar] [CrossRef]
- Egea, T.C.; Da Silva, R.; Boscolo, M.; Rigonato, J.; Monteiro, D.A.; Grünig, D.; da Silva, H.; der Wielen, F.; Helmus, R.; Parsons, J.R.; et al. Diuron degradation by bacteria from soil of sugarcane crops. Heliyon 2017, 3, e00471. [Google Scholar] [CrossRef] [Green Version]
- Soil Maps. National Geographic Institute. Nature Database (Spanish Ministry of Environment). 2005. Available online: https://www.ign.es/web/catalogo-cartoteca/resources/html/030769.html (accessed on 20 November 2021).
- Fenlon, K.A.; Andreou, K.; Jones, K.C.; Semple, K.T. The extractability and mineralisation of cypermethrin aged in four UK soils. Chemosphere 2011, 82, 187–192. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; Wiley: Chichester, UK, 1991; Volume 2, pp. 115–175. [Google Scholar]
- FOCUS. Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration. Report of the FOCUS Work Group on Degradation Kinetics. EC Documents Reference Sanco/10058/2005 Version 2.0. 2006. Available online: https://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/dk/docs/finalreportFOCDegKinetics.pdf (accessed on 17 August 2021).
- Beulke, S.; Beinum, W.; Van Brown, C.D.; Mitchell, M.; Walker, A. Evaluation of Simplifying Assumptions on Pesticide Degradation in Soil. J. Environ. Qual. 2005, 34, 1933–1943. [Google Scholar] [CrossRef] [PubMed]
- UNE-EN ISO 11348-3:2009/A1:2019. Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria—Amendment 1 (ISO 11348-3:2007/Amd1:2018). Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0062816#:~:text=2009%2FA1%3A2019-,Calidad%20del%20agua.,(Ensayo%20de%20bacterias%20luminiscentes (accessed on 17 August 2021).
- Molina, M.C.; González, N.; Bautista, L.F.; Sanz, R.; Simarro, R.; Sánchez, I.; Sanz, J.L. Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation 2009, 20, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Persoone, G.; Marsalek, B.; Blinova, I.; Törökne, A.; Zarina, D.; Manusadzianas, L.; Nalecz-Jawecki, G.; Tofan, L.; Stepanova, N.; Tothova, L.; et al. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ. Toxicol. 2003, 18, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Pesce, S.; Bardot, C.; Lehours, A.C.; Batisson, I.; Bohatier, J.; Fajon, C. Effects of diuron in microcosms on natural riverine bacterial community composition: New insight into phylogenetic approaches using PCR-TTGE analysis. Aquat. Sci. 2008, 70, 410–418. [Google Scholar] [CrossRef]
- Sørensen, S.R.; Ronen, Z.; Aamand, J. Growth in Coculture Stimulates Metabolism of the Phenylurea Herbicide Isoproturon by Sphingomonas sp. Strain SRS2. Appl. Environ. Microbiol. 2002, 68, 3478–3485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujar, N.K.; Laad, S.; Premakshi, H.G.; Pattar, S.V.; Mirjankar, M.; Kamanavalli, C.M. Biodegradation of phenmedipham by novel Ochrobactrum anthropi NC-1. 3 Biotech 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tatar, S.; Yildirim, N.C.; Serdar, O.; Erguven, G.O. Can toxicities induced by insecticide Methomyl be remediated via soil bacteria Ochrobactrum thiophenivorans and Sphingomonas melonis? Curr. Microbiol. 2020, 77, 1301–1307. [Google Scholar] [CrossRef]
- Alexander, M. Biodegradation and Bioremediation, 2nd ed.; 92101-4495; Academic Press: San Diego, CA, USA, 1999; ISBN 978-0-12-049861-1. [Google Scholar]
- Cullington, J.E.; Walker, A. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol. Biochem. 1999, 31, 677–686. [Google Scholar] [CrossRef]
- Huda Bhuiyan, M.N.; Kang, H.; Kim, J.H.; Kim, S.; Kho, Y.; Choi, K. Endocrine disruption by several aniline derivatives and related mechanisms in a human adrenal H295R cell line and adult male zebrafish. Ecotoxicol. Environ. Saf. 2019, 180, 326–332. [Google Scholar] [CrossRef]
- Gholamalizadeh, A.; Smernik, R.J.; Chittleborough, D.J.; Kookana, R.S. Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy, on the sorption of diuron. Chemosphere 2008, 70, 1153–1160. [Google Scholar]
- Albers, C.N.; Banta, G.T.; Erik, P.; Jacobsen, O.S. The influence of organic matter on sorption and fate of glyphosate in soil—Comparing different soils and humic substances. Environ. Pollut. 2009, 157, 2865–2870. [Google Scholar] [CrossRef] [PubMed]
- Echevarría, C.; Valderrama, C.; Cortina, J.L.; Martín, I.; Arnaldos, M.; Bernat, X.; De la Cal, A.; Boleda, M.R.; Vega, A.; Teuler, A.; et al. Techno-economic evaluation and comparison of PAC-MBR and ozonation-UV revamping for organic micro-pollutants removal from urban reclaimed wastewater. Sci. Total Environ. 2019, 671, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Crini, C. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, J.; Rubio-Bellido, M.; Merchán, F.; Morillo, E. Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. J. Environ. Manag. 2017, 188, 379–386. [Google Scholar] [CrossRef]
- Morillo, E.; Sánchez-Trujillo, M.A.; Moyano, J.R.; Villaverde, J.; Gómez-Pantoja, M.E.; Pérez-Martínez, J.I. Enhanced solubilisation of six PAHs by three synthetic cyclodextrins for remediation applications: Molecular modelling of the inclusion complexes. PLoS ONE 2012, 7, e44137. [Google Scholar]
- Reid, B.J.; Jones, K.C.; Semple, K.T. Bioavailability of persistent organic pollutants in soils and sediments a perspective on mechanisms, consequences and assessment. Environ. Pollut. 2000, 108, 103–112. [Google Scholar] [CrossRef]
- Rubio-Bellido, M.; Morillo, E.; Villaverde, J. Assessment of soil diuron bioavailability to plants and microorganisms through non-exhaustive chemical extractions of the herbicide. Geoderma 2018, 312, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Fenyvesi, E.; Gruiz, K.; Verstichel, S.; De Wilde, B.; Leitgib, L.; Csabai, K.; Szaniszlo, N. Biodegradation of cyclodextrins in soil. Chemosphere 2005, 60, 1001–1008. [Google Scholar] [CrossRef]
- Parajuli, A.; Grönroos, M.; Kauppi, S.; Płociniczak, T.; Roslund, M.I.; Galitskaya, P.; Laitinen, O.H.; Hyöty, H.; Jumpponen, A.; Strömmer, R.; et al. The abundance of health-associated bacteria is altered in PAH polluted soils—Implications for health in urban areas? PLoS ONE 2017, 12, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Morillo, E.; Undabeytia, T.; Cabrera, A.; Villaverde, J.; Maqueda, C. Effect of soil type on adsorption-desorption, mobility, and activity of the herbicide norflurazon. J. Agric. Food. Chem. 2004, 52, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Nzila, A. Update on the cometabolism of organic pollutants by bacteria. Environ. Pollut. 2013, 178, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Brassington, K.J.; Prpich, G.; Paton, G.I.; Semple, K.T.; Pollard, S.J.T.; Coulon, F. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation. Chemosphere 2016, 161, 300–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, F.; Rubio-Bellido, M.; Villaverde, J.; Peña, A.; Morillo, E. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements. Sci. Total Environ. 2019, 660, 705–714. [Google Scholar] [CrossRef] [PubMed]
Soils | pH | CO3−2 (%) | OM (%) | Sand (%) | Silt (%) | Clay (%) | Textural Classification | Taxonomic Classification * |
---|---|---|---|---|---|---|---|---|
R | 7.72 | 4.00 | 3.44 | 77 | 9.50 | 13.5 | Sandy | Alfisol |
PLD | 8.24 | 9.70 | 1.67 | 47.0 | 18.5 | 34.5 | Clay loam | Inceptisol |
LL | 7.84 | 4.00 | 0.87 | 79.6 | 9.30 | 11.1 | Sandy | Alfisol |
Contaminant | R2 | χ2 | K (d−1) | DT50 (d) | Extent of Biodegradation (%) |
---|---|---|---|---|---|
Diuron | 0.89 | 7.2 | 6.2 × 10−1 | 1.1 | 100 |
Linuron | 0.91 | 10.8 | 2.5 × 10−1 | 3.8 | 100 |
Isoproturon | 0.94 | 14.6 | 3.5 × 10−2 | 19.5 | 89 |
Chlorotoluron | 0.99 | 13.5 | 1.8 | 0.4 | 100 |
Fluometuron | 0.98 | 14.3 | 8.4 × 10−2 | 8.3 | 100 |
Soil | Treatment | Kinetic Model | R2 | χ2 | K1 (d−1) | K2 (d-1) | tb (d) | DT50 (d) | Extent of Biodegradation (%) |
---|---|---|---|---|---|---|---|---|---|
NS | SFO | 0.99 | 4.2 | 5.2 × 10−4 | - | - | 10,569 | 1.3 | |
HPBCD + NS | HS | 0.91 | 3.8 | 8.4 × 10−3 | 4.4 × 10−4 | 26.9 | 1077 | 20.3 | |
R | O. anthropi CD3 + NS | SFO | 0.99 | 2.3 | 1.1 × 10−1 | - | - | 6.1 | 100 |
O. anthropi CD3 + HPBCD + NS | SFO | 0.94 | 14.1 | 1.5 × 10−1 | - | - | 4.7 | 100 | |
HgCl2 | SFO | 0.98 | 5.1 | 5.1 × 10−4 | - | - | 17,011 | 1.1 | |
NS | SFO | 0.99 | 7.9 | 4.2 × 10−4 | - | - | 8977 | 1.3 | |
HPBCD + NS | SFO | 0.88 | 14.8 | 1.8 × 10−2 | - | - | 37.1 | 84.0 | |
PLD | O. anthropi CD3 + NS | SFO | 0.9 | 14.3 | 2.2 × 10−1 | - | - | 3.1 | 100 |
O. anthropi CD3 + HPBCD + NS | SFO | 0.92 | 14.8 | 1.1 | - | - | 0.7 | 100 | |
HgCl2 | SFO | 0.98 | 1.7 | 1.9 × 10−4 | - | - | 3501 | 1.2 |
Soil | Treatment | EC50 (%) * | TU | Class | Toxicity ** |
---|---|---|---|---|---|
R | Uncontaminated | 166 | 0.6 | Class II | Slight acute toxicity |
Contaminated with diuron | 24.7 | 4.0 | Class III | Acute toxicity | |
O. anthropi CD3 | 30.8 | 3.2 | Class III | Acute toxicity | |
O. anthropi CD3 + HPBCD | 29.9 | 3.3 | Class III | Acute toxicity | |
PLD | Uncontaminated | 111 | 0.9 | Class II | Slight acute toxicity |
Contaminated with diuron | 9.2 | 10.9 | Class IV | High Acute toxicity | |
O. anthropi CD3 | 73.2 | 1.4 | Class III | Acute toxicity | |
O. anthropi CD3 + HPBCD | 72.8 | 1.4 | Class III | Acute toxicity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba, L.-M.; Esmeralda, M.; Jaime, V. Enhanced Biodegradation of Phenylurea Herbicides by Ochrobactrum anthrophi CD3 Assessment of Its Feasibility in Diuron-Contaminated Soils. Int. J. Environ. Res. Public Health 2022, 19, 1365. https://doi.org/10.3390/ijerph19031365
Alba L-M, Esmeralda M, Jaime V. Enhanced Biodegradation of Phenylurea Herbicides by Ochrobactrum anthrophi CD3 Assessment of Its Feasibility in Diuron-Contaminated Soils. International Journal of Environmental Research and Public Health. 2022; 19(3):1365. https://doi.org/10.3390/ijerph19031365
Chicago/Turabian StyleAlba, Lara-Moreno, Morillo Esmeralda, and Villaverde Jaime. 2022. "Enhanced Biodegradation of Phenylurea Herbicides by Ochrobactrum anthrophi CD3 Assessment of Its Feasibility in Diuron-Contaminated Soils" International Journal of Environmental Research and Public Health 19, no. 3: 1365. https://doi.org/10.3390/ijerph19031365
APA StyleAlba, L. -M., Esmeralda, M., & Jaime, V. (2022). Enhanced Biodegradation of Phenylurea Herbicides by Ochrobactrum anthrophi CD3 Assessment of Its Feasibility in Diuron-Contaminated Soils. International Journal of Environmental Research and Public Health, 19(3), 1365. https://doi.org/10.3390/ijerph19031365