Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression
Abstract
:1. Introduction
2. Materials & Methods
2.1. Bayesian Grouped Index Regression
2.2. Imputation Methods
2.2.1. Multiple Imputation by Chained Equations (MICE)
2.2.2. Prior Imputation
2.2.3. Pseudo-Gibbs Imputation
2.2.4. Sequential Full Bayes Imputation (SFB)
2.3. Simulation Study Design
2.4. Data Analysis
3. Results
3.1. Simulation Study
3.2. Application of Pseudo-Gibbs imputation to house dust chemicals in the CCLS
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Walker, G.W.; Muir, D.C.G.; Nagatani-Yoshida, K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54, 2575–2584. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Fourth National Report on Human Exposure to Environmental Chemicals. 2009. Available online: http://www.cdc.gov/ExposureReport/pdf/FourthReport.pdf (accessed on 21 February 2021).
- Rudel, R.A.; Dodson, R.E.; Perovich, L.J.; Morello-Frosch, R.; Camann, D.E.; Zuniga, M.M.; Yau, A.Y.; Just, A.C.; Brody, J.G. Semivolatile Endocrine-Disrupting Compounds in Paired Indoor and Outdoor Air in Two Northern California Communities. Environ. Sci. Technol. 2010, 44, 6583–6590. [Google Scholar] [CrossRef]
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef]
- Zeliger, H.I. Lipophilic chemical exposure as a cause of cardiovascular disease. Interdiscip. Toxicol. 2013, 6, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Terry, M.B.; Michels, K.B.; Brody, J.G.; Byrne, C.; Chen, S.; Jerry, D.J.; Malecki, K.M.; Martin, M.B.; Miller, R.L.; Neuhausen, S.L.; et al. Environmental exposures during windows of susceptibility for breast cancer: A framework for prevention research. Breast Cancer Res. 2019, 21, 96. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, D.; Becerra, M.; Jagai, J.S.; Ard, K.; Sargis, R.M. Disparities in Environmental Exposures to Endocrine-Disrupting Chemicals and Diabetes Risk in Vulnerable Populations. Diabetes Care 2018, 41, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Zhou, L.; Luo, M.; Liang, Y.; Zhao, W.; Wang, P.; Zhou, Z.; Liu, D. Nonoccupational Exposure to Pyrethroids and Risk of Coronary Heart Disease in the Chinese Population. Environ. Sci. Technol. 2017, 51, 664–670. [Google Scholar] [CrossRef]
- Ghassabian, A.; Trasande, L. Disruption in Thyroid Signaling Pathway: A Mechanism for the Effect of Endocrine-Disrupting Chemicals on Child Neurodevelopment. Front. Endocrinol. 2018, 9, 204. [Google Scholar] [CrossRef]
- Backhaus, T.; Faust, M. Predictive Environmental Risk Assessment of Chemical Mixtures: A Conceptual Framework. Environ. Sci. Technol. 2012, 46, 2564–2573. [Google Scholar] [CrossRef]
- Hernández, A.F.; Tsatsakis, A.M. Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment. Food Chem. Toxicol. 2017, 103, 188–193. [Google Scholar] [CrossRef]
- Oulhote, Y.; Coull, B.; Bind, M.A.; Debes, F.; Nielsen, F.; Tamayo, I.; Weihe, P.; Grandjean, P. Joint and independent neurotoxic effects of early life exposures to a chemical mixture. Environ. Epidemiol. 2019, 3, e063. [Google Scholar] [CrossRef]
- Lee, Y.M.; Jacobs, D.R., Jr.; Lee, D.H. Persistent Organic Pollutants and Type 2 Diabetes: A Critical Review of Review Articles. Front. Endocrinol. 2018, 9, 712. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Tao, Y.; Meeker, J.D.; Harlow, S.D.; Mukherjee, B. Environmental Risk Score as a New Tool to Examine Multi-Pollutants in Epidemiologic Research: An Example from the NHANES Study Using Serum Lipid Levels. PLoS ONE 2014, 9, e98632. [Google Scholar] [CrossRef]
- Czarnota, J.; Gennings, C.; Wheeler, D.C. Assessment of Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk. Cancer Inform. 2015, 14, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Keil, A.P.; Buckley, J.P.; O’Brien, K.M.; Ferguson, K.K.; Zhao, S.; White, A.J. A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environ. Health Perspect. 2020, 128, 047004. [Google Scholar] [CrossRef] [Green Version]
- Bobb, J.F.; Claus Henn, B.; Valeri, L.; Coull, B.A. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ. Health 2018, 17, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.; Czarnota, J. Modeling Chemical Mixture Effects with Grouped Weighted Quantile Sum Regression. In ISEE Conference Abstracts; International Society for Environmental Epidemiology (ISEE): Rome, Italy, 2016. [Google Scholar]
- Wheeler, D.; Carli, M. groupWQS: Group Weighted Quantile Sum Regression. R Package Version 0.0.3. Available online: https://cran.r-project.org/web/packages/groupWQS/index.html (accessed on 10 December 2021).
- Wheeler, D.; Carli, M. BayesGWQS: Bayesian Grouped Weighted Quantile Sum Regression. R Package Version 0.1.1. Available online: https://cran.r-project.org/web/packages/BayesGWQS/index.html (accessed on 10 December 2021).
- Wheeler, D.C.; Rustom, S.; Carli, M.; Whitehead, T.P.; Ward, M.H.; Metayer, C. Bayesian Group Index Regression for Modeling Chemical Mixtures and Cancer Risk. Int. J. Environ. Res. Public Health 2021, 18, 3486. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Rustom, S.; Carli, M.; Whitehead, T.P.; Ward, M.H.; Metayer, C. Assessment of Grouped Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk. Int. J. Environ. Res. Public Health 2021, 18, 504. [Google Scholar] [CrossRef]
- Analytical Methods Committee. Recommendations for the definition, estimation and use of the detection limit. Analyst 1987, 112, 199–204. [Google Scholar] [CrossRef]
- Succop, P.A.; Clark, S.; Chen, M.; Galke, W. Imputation of Data Values that are Less Than a Detection Limit. J. Occup. Environ. Hyg. 2004, 1, 436–441. [Google Scholar] [CrossRef]
- He, J. Mixture model based multivariate statistical analysis of multiply censored environmental data. Adv. Water Resour. 2013, 59, 15–24. [Google Scholar] [CrossRef]
- Helsel, D.R. Less than obvious-statistical treatment of data below the detection limit. Environ. Sci. Technol. 1990, 24, 1766–1774. [Google Scholar] [CrossRef]
- Lubin, J.H.; Colt, J.S.; Camann, D.; Davis, S.; Cerhan, J.R.; Severson, R.K.; Bernstein, L.; Hartge, P. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. Environ. Health Perspect. 2004, 112, 1691–1696. [Google Scholar] [CrossRef]
- Singh, A.; Nocerino, J. Robust estimation of mean and variance using environmental data sets with below detection limit observations. Chemom. Intell. Lab. Syst. 2002, 60, 69–86. [Google Scholar] [CrossRef]
- Helsel, D. Much Ado About Next to Nothing: Incorporating Nondetects in Science. Ann. Occup. Hyg. 2009, 54, 257–262. [Google Scholar] [CrossRef]
- Cohen, A.C. Estimating the Mean and Variance of Normal Populations from Singly Truncated and Doubly Truncated Samples. Ann. Math. Stat. 1950, 21, 557–569. [Google Scholar] [CrossRef]
- Persson, T.; Rootzén, H. Simple and highly efficient estimators for a type I censored normal sample. Biometrika 1977, 64, 123–128. [Google Scholar] [CrossRef]
- Gillespie, B.W.; Chen, Q.; Reichert, H.; Franzblau, A.; Hedgeman, E.; Lepkowski, J.; Adriaens, P.; Demond, A.; Luksemburg, W.; Garabrant, D.H. Estimating Population Distributions When Some Data Are Below a Limit of Detection by Using a Reverse Kaplan-Meier Estimator. Epidemiology 2010, 21, S64–S70. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.; Stern, H.; Dunson, D.; Vehtari, A.; Rubin, D. Bayesian Data Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- van Buuren, S.; Brand, J.P.L.; Groothuis-Oudshoorn, C.G.M.; Rubin, D.B. Fully conditional specification in multivariate imputation. J. Stat. Comput. Simul. 2006, 76, 1049–1064. [Google Scholar] [CrossRef]
- Li, F.; Yu, Y.; Rubin, D.B. Imputing Missing Data by Fully Conditional Models: Some Cautionary Examples and Guidelines; Duke University Department of Statistical Science: Durham, NC, USA, 2012. [Google Scholar]
- Gelman, A. Parameterization and Bayesian Modeling. J. Am. Stat. Assoc. 2004, 99, 537–545. [Google Scholar] [CrossRef]
- Chen, S.H.; Ip, E.H. Behaviour of the Gibbs sampler when conditional distributions are potentially incompatible. J. Stat. Comput. Simul. 2015, 85, 3266–3275. [Google Scholar] [CrossRef] [Green Version]
- van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 2007, 16, 219–242. [Google Scholar] [CrossRef]
- Erler, N.S.; Rizopoulos, D.; Rosmalen, J.V.; Jaddoe, V.W.; Franco, O.H.; Lesaffre, E.M. Dealing with missing covariates in epidemiologic studies: A comparison between multiple imputation and a full Bayesian approach. Stat. Med. 2016, 35, 2955–2974. [Google Scholar] [CrossRef]
- Ibrahim, J.G.; Chen, M.H.; Lipsitz, S.R. Bayesian methods for generalized linear models with covariates missing at random. Can. J. Stat. 2002, 30, 55–78. [Google Scholar] [CrossRef]
- Fruh, V.; Henn, B.C.; Weuve, J.; Wesselink, A.K.; Orta, O.R.; Heeren, T.; Hauser, R.; Calafat, A.M.; Williams, P.L.; Baird, D.D.; et al. Incidence of uterine leiomyoma in relation to urinary concentrations of phthalate and phthalate alternative biomarkers: A prospective ultrasound study. Environ. Int. 2021, 147, 106218. [Google Scholar] [CrossRef]
- Hu, J.M.; Arbuckle, T.E.; Janssen, P.; Lanphear, B.P.; Zhuang, L.H.; Braun, J.M.; Chen, A.; McCandless, L.C. Prenatal exposure to endocrine disrupting chemical mixtures and infant birth weight: A Bayesian analysis using kernel machine regression. Environ. Res. 2021, 195, 110749. [Google Scholar] [CrossRef]
- Mitro, S.D.; Sagiv, S.K.; Rifas-Shiman, S.L.; Calafat, A.M.; Fleisch, A.F.; Jaacks, L.M.; Williams, P.L.; Oken, E.; James-Todd, T.M. Per- and Polyfluoroalkyl Substance Exposure, Gestational Weight Gain, and Postpartum Weight Changes in Project Viva. Obesity 2020, 28, 1984–1992. [Google Scholar] [CrossRef]
- Czarnota, J.; Gennings, C.; Colt, J.S.; De Roos, A.J.; Cerhan, J.R.; Severson, R.K.; Hartge, P.; Ward, M.H.; Wheeler, D.C. Analysis of Environmental Chemical Mixtures and Non-Hodgkin Lymphoma Risk in the NCI-SEER NHL Study. Environ. Health Perspect. 2015, 123, 965–970. [Google Scholar] [CrossRef] [Green Version]
- Hargarten, P.M.; Wheeler, D.C. Accounting for the uncertainty due to chemicals below the detection limit in mixture analysis. Environ. Res. 2020, 186, 109466. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Devick, K.L.; Bobbs, J.F.; Navas-Acien, A.; Coull, B.A.; Valeri, L. BKMR-CMA: A Novel R Command for Mediation Analysis in Environmental Mixture Studies. In ISEE Conference Abstracts. International Society for Environmental Epidemiology (ISEE): Rome, Italy, 2020. [Google Scholar]
- Keil, A. qgcomp: Quantile G-Computation. R Package Version 2.8.6. Available online: https://cran.r-project.org/web/packages/qgcomp/index.html (accessed on 10 December 2021).
- Herring, A.H. Nonparametric Bayes Shrinkage for Assessing Exposures to Mixtures Subject to Limits of Detection. Epidemiology 2010, 21, S71–S76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Plummer, M. JAGS: A Program for Analysis of Bayesian Graphical Models using Gibbs Sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria, 20–22 March 2003; p. 124. [Google Scholar]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; van der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 2002, 64, 583–639. [Google Scholar] [CrossRef] [Green Version]
- Plummer, M. Penalized loss functions for Bayesian model comparison. Biostatistics 2008, 9, 523–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colt, J.S.; Gunier, R.B.; Metayer, C.; Nishioka, M.G.; Bell, E.M.; Reynolds, P.; Buffler, P.A.; Ward, M.H. Household vacuum cleaners vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children. Environ. Health 2008, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, M.H.; Colt, J.S.; Metayer, C.; Gunier, R.B.; Lubin, J.; Crouse, V.; Nishioka, M.G.; Reynolds, P.; Buffler, P.A. Residential Exposure to Polychlorinated Biphenyls and Organochlorine Pesticides and Risk of Childhood Leukemia. Environ. Health Perspect. 2009, 117, 1007–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metayer, C.; Colt, J.S.; Buffler, P.A.; Reed, H.D.; Selvin, S.; Crouse, V.; Ward, M.H. Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 363–370. [Google Scholar] [CrossRef]
- Ward, M.H.; Colt, J.S.; Deziel, N.C.; Whitehead, T.P.; Reynolds, P.; Gunier, R.B.; Nishioka, M.; Dahl, G.V.; Rappaport, S.M.; Buffler, P.A.; et al. Residential Levels of Polybrominated Diphenyl Ethers and Risk of Childhood Acute Lymphoblastic Leukemia in California. Environ. Health Perspect. 2014, 122, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Shoari, N.; Dubé, J.S. Toward improved analysis of concentration data: Embracing nondetects. Environ. Toxicol. Chem. 2018, 37, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Deziel, N.C.; Rull, R.P.; Colt, J.S.; Reynolds, P.; Whitehead, T.P.; Gunier, R.B.; Month, S.R.; Taggart, D.R.; Buffler, P.; Ward, M.H.; et al. Polycyclic aromatic hydrocarbons in residential dust and risk of childhood acute lymphoblastic leukemia. Environ. Res. 2014, 133, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christoforidou, E.P.; Riza, E.; Kales, S.N.; Hadjistavrou, K.; Stoltidi, M.; Kastania, A.N.; Linos, A. Bladder cancer and arsenic through drinking water: A systematic review of epidemiologic evidence. J. Environ. Sci. Health Part A 2013, 48, 1764–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, A.; Lamm, S.H. Arsenic Exposure and Childhood Cancer—A Systematic Review of the Literature. J. Environ. Health 2008, 71, 12–16. Available online: http://www.jstor.org/stable/26327736 (accessed on 10 December 2021). [PubMed]
Parameter | Prior Imputation | Sequential Full Bayes | Pseudo-Gibbs | MICE | ||||
---|---|---|---|---|---|---|---|---|
10% BDL | Estimated OR | Power | Estimated OR | Power | Estimated OR | Power | Estimated OR | Power |
exp(β1) = 1.00 | 1 | 0.07 | 0.999 | 0.06 | 0.999 | 0.05 | 1 | 0.06 |
exp(β2) = 0.80 | 0.818 | 0.43 | 0.818 | 0.43 | 0.818 | 0.43 | 0.818 | 0.43 |
exp(β3) = 1.25 | 1.251 | 0.43 | 1.251 | 0.42 | 1.251 | 0.44 | 1.251 | 0.43 |
exp(β1) = 1.00 | 0.994 | 0.05 | 0.9934 | 0.04 | 0.993 | 0.04 | 0.994 | 0.05 |
exp(β2) = 0.67 | 0.658 | 0.9 | 0.658 | 0.9 | 0.658 | 0.9 | 0.658 | 0.9 |
exp(β3) = 1.50 | 1.553 | 0.91 | 1.553 | 0.92 | 1.553 | 0.92 | 1.554 | 0.92 |
30% BDL | Estimated OR | Power | Estimated OR | Power | Estimated OR | Power | Estimated OR | Power |
exp(β1) = 1.00 | 1.004 | 0.08 | 1.001 | 0.08 | 1.001 | 0.08 | 1 | 0.06 |
exp(β2) = 0.80 | 0.816 | 0.43 | 0.814 | 0.43 | 0.814 | 0.43 | 0.819 | 0.41 |
exp(β3) = 1.25 | 1.246 | 0.4 | 1.254 | 0.43 | 1.253 | 0.43 | 1.247 | 0.42 |
exp(β1) = 1.00 | 0.996 | 0.05 | 0.999 | 0.07 | 0.996 | 0.05 | 0.994 | 0.05 |
exp(β2) = 0.67 | 0.662 | 0.92 | 0.655 | 0.92 | 0.655 | 0.93 | 0.664 | 0.93 |
exp(β3) = 1.50 | 1.539 | 0.9 | 1.552 | 0.89 | 1.556 | 0.9 | 1.535 | 0.89 |
50% BDL | Estimated OR | Power | Estimated OR | Power | Estimated OR | Power | Estimated OR | Power |
exp(β1) = 1.00 | 1.002 | 0.05 | 1.004 | 0.07 | 1.003 | 0.07 | 1.002 | 0.07 |
exp(β2) = 0.80 | 0.824 | 0.37 | 0.828 | 0.34 | 0.812 | 0.4 | 0.823 | 0.38 |
exp(β3) = 1.25 | 1.241 | 0.39 | 1.236 | 0.35 | 1.253 | 0.37 | 1.234 | 0.34 |
exp(β1) = 1.00 | 0.995 | 0.04 | 0.995 | 0.03 | 0.994 | 0.05 | 0.991 | 0.06 |
exp(β2) = 0.67 | 0.667 | 0.88 | 0.664 | 0.88 | 0.651 | 0.89 | 0.681 | 0.88 |
exp(β3) = 1.50 | 1.521 | 0.87 | 1.551 | 0.88 | 1.557 | 0.87 | 1.498 | 0.86 |
70% BDL | Estimated OR | Power | Estimated OR | Power | Estimated OR | Power | Estimated OR | Power |
exp(β1) = 1.00 | 0.997 | 0.06 | 0.992 | 0.01 | 0.997 | 0.06 | 0.994 | 0.03 |
exp(β2) = 0.80 | 0.857 | 0.2 | 0.843 | 0.2 | 0.81 | 0.29 | 0.857 | 0.18 |
exp(β3) = 1.25 | 1.209 | 0.26 | 1.25 | 0.28 | 1.256 | 0.26 | 1.184 | 0.22 |
exp(β1) = 1.00 | 0.993 | 0.02 | 0.979 | 0.04 | 0.987 | 0.05 | 0.984 | 0.01 |
exp(β2) = 0.67 | 0.724 | 0.68 | 0.693 | 0.66 | 0.655 | 0.81 | 0.753 | 0.6 |
exp(β3) = 1.50 | 1.425 | 0.69 | 1.53 | 0.74 | 1.542 | 0.75 | 1.356 | 0.59 |
Parameter | Prior Imputation | Sequential Full Bayes | Pseudo-Gibbs | MICE | ||||
---|---|---|---|---|---|---|---|---|
10% BDL | MSE | Bias | MSE | Bias | MSE | Bias | MSE | Bias |
exp(β1) = 1.00 | 0.012 | −0.006 | 0.012 | −0.007 | 0.011 | −0.007 | 0.012 | −0.006 |
exp(β2) = 0.80 | 0.017 | 0.014 | 0.017 | 0.014 | 0.017 | 0.014 | 0.017 | 0.014 |
exp(β3) = 1.25 | 0.014 | −0.007 | 0.014 | −0.007 | 0.014 | −0.006 | 0.014 | −0.006 |
exp(β1) = 1.00 | 0.012 | −0.012 | 0.012 | −0.012 | 0.012 | −0.013 | 0.012 | −0.012 |
exp(β2) = 0.67 | 0.015 | −0.026 | 0.015 | −0.025 | 0.015 | −0.025 | 0.015 | −0.026 |
exp(β3) = 1.50 | 0.017 | 0.027 | 0.017 | 0.027 | 0.016 | 0.027 | 0.017 | 0.028 |
30% BDL | MSE | Bias | MSE | Bias | MSE | Bias | MSE | Bias |
exp(β1) = 1.00 | 0.012 | −0.002 | 0.013 | −0.005 | 0.013 | −0.005 | 0.012 | −0.006 |
exp(β2) = 0.80 | 0.017 | 0.012 | 0.018 | 0.009 | 0.017 | 0.008 | 0.016 | 0.015 |
exp(β3) = 1.25 | 0.014 | −0.010 | 0.015 | −0.004 | 0.014 | −0.005 | 0.014 | −0.009 |
exp(β1) = 1.00 | 0.012 | −0.010 | 0.013 | −0.008 | 0.012 | −0.010 | 0.012 | −0.012 |
exp(β2) = 0.67 | 0.014 | −0.019 | 0.015 | -0.03 | 0.015 | −0.031 | 0.013 | −0.015 |
exp(β3) = 1.50 | 0.017 | 0.018 | 0.018 | 0.025 | 0.018 | 0.028 | 0.016 | 0.015 |
50% BDL | MSE | Bias | MSE | Bias | MSE | Bias | MSE | Bias |
exp(β1) = 1.00 | 0.014 | −0.005 | 0.015 | −0.003 | 0.015 | −0.004 | 0.013 | −0.004 |
exp(β2) = 0.80 | 0.018 | 0.021 | 0.021 | 0.024 | 0.02 | 0.006 | 0.017 | 0.021 |
exp(β3) = 1.25 | 0.014 | −0.014 | 0.015 | −0.019 | 0.015 | −0.005 | 0.013 | −0.020 |
exp(β1) = 1.00 | 0.013 | −0.012 | 0.013 | −0.012 | 0.014 | −0.013 | 0.012 | −0.015 |
exp(β2) = 0.67 | 0.015 | −0.011 | 0.015 | −0.017 | 0.017 | −0.036 | 0.013 | 0.009 |
exp(β3) = 1.50 | 0.018 | 0.005 | 0.021 | 0.024 | 0.02 | 0.028 | 0.017 | −0.010 |
70% BDL | MSE | Bias | MSE | Bias | MSE | Bias | MSE | Bias |
exp(β1) = 1.00 | 0.02 | −0.013 | 0.019 | −0.018 | 0.022 | −0.014 | 0.012 | −0.012 |
exp(β2) = 0.80 | 0.024 | 0.058 | 0.024 | 0.041 | 0.026 | 0 | 0.017 | 0.062 |
exp(β3) = 1.25 | 0.018 | −0.042 | 0.021 | −0.011 | 0.019 | −0.005 | 0.016 | −0.060 |
exp(β1) = 1.00 | 0.016 | −0.015 | 0.025 | −0.032 | 0.022 | −0.024 | 0.014 | −0.023 |
exp(β2) = 0.67 | 0.024 | 0.069 | 0.023 | 0.023 | 0.024 | −0.034 | 0.023 | 0.112 |
exp(β3) = 1.50 | 0.025 | −0.062 | 0.031 | 0.005 | 0.028 | 0.014 | 0.028 | −0.109 |
Parameter | Prior Imputation | Sequential Full Bayes | Pseudo-Gibbs | MICE | ||||
---|---|---|---|---|---|---|---|---|
10% BDL | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity |
exp(β1) = 1.00 | 0.34 | 0.573 | 0.33 | 0.58 | 0.31 | 0.575 | 0.31 | 0.568 |
exp(β2) = 0.80 | 0.91 | 0.797 | 0.89 | 0.803 | 0.9 | 0.8 | 0.9 | 0.8 |
exp(β3) = 1.25 | 0.82 | 0.738 | 0.85 | 0.753 | 0.82 | 0.733 | 0.84 | 0.748 |
exp(β1) = 1.00 | 0.39 | 0.615 | 0.38 | 0.6 | 0.42 | 0.623 | 0.41 | 0.615 |
exp(β2) = 0.67 | 0.98 | 0.943 | 0.98 | 0.94 | 0.98 | 0.94 | 0.98 | 0.94 |
exp(β3) = 1.50 | 0.99 | 0.918 | 1 | 0.918 | 1 | 0.918 | 0.99 | 0.92 |
30% BDL | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity |
exp(β1) = 1.00 | 0.28 | 0.573 | 0.32 | 0.56 | 0.32 | 0.55 | 0.29 | 0.568 |
exp(β2) = 0.80 | 0.87 | 0.797 | 0.89 | 0.8 | 0.9 | 0.8 | 0.89 | 0.793 |
exp(β3) = 1.25 | 0.82 | 0.705 | 0.86 | 0.723 | 0.84 | 0.713 | 0.85 | 0.703 |
exp(β1) = 1.00 | 0.38 | 0.58 | 0.36 | 0.593 | 0.36 | 0.6 | 0.4 | 0.613 |
exp(β2) = 0.67 | 0.98 | 0.92 | 0.97 | 0.92 | 0.98 | 0.927 | 0.98 | 0.92 |
exp(β3) = 1.50 | 0.99 | 0.893 | 0.99 | 0.903 | 0.99 | 0.9 | 0.99 | 0.903 |
50% BDL | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity |
exp(β1) = 1.00 | 0.38 | 0.593 | 0.33 | 0.593 | 0.35 | 0.585 | 0.37 | 0.603 |
exp(β2) = 0.80 | 0.85 | 0.76 | 0.81 | 0.787 | 0.83 | 0.8 | 0.81 | 0.783 |
exp(β3) = 1.25 | 0.83 | 0.705 | 0.86 | 0.7 | 0.83 | 0.715 | 0.81 | 0.703 |
exp(β1) = 1.00 | 0.38 | 0.578 | 0.41 | 0.605 | 0.4 | 0.598 | 0.41 | 0.603 |
exp(β2) = 0.67 | 0.96 | 0.89 | 0.98 | 0.903 | 0.98 | 0.903 | 0.98 | 0.89 |
exp(β3) = 1.50 | 0.98 | 0.87 | 0.98 | 0.875 | 0.99 | 0.885 | 0.99 | 0.873 |
70% BDL | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity |
exp(β1) = 1.00 | 0.32 | 0.605 | 0.41 | 0.62 | 0.37 | 0.595 | 0.37 | 0.573 |
exp(β2) = 0.80 | 0.64 | 0.67 | 0.72 | 0.69 | 0.75 | 0.693 | 0.71 | 0.673 |
exp(β3) = 1.25 | 0.63 | 0.675 | 0.68 | 0.675 | 0.74 | 0.67 | 0.62 | 0.66 |
exp(β1) = 1.00 | 0.39 | 0.625 | 0.41 | 0.62 | 0.38 | 0.585 | 0.4 | 0.58 |
exp(β2) = 0.67 | 0.88 | 0.767 | 0.87 | 0.817 | 0.95 | 0.79 | 0.92 | 0.737 |
exp(β3) = 1.50 | 0.89 | 0.775 | 0.88 | 0.778 | 0.89 | 0.8 | 0.87 | 0.743 |
Scenario 1 | Prior Imputation | Sequential Full Bayes | Pseudo-Gibbs | MICE |
---|---|---|---|---|
10% BDL | ||||
DIC | 585.04 | 585.51 | 585.53 | 585.64 |
pD | 5.04 | 5.03 | 5.25 | 5.21 |
Runtime (min) | 7.32 | 679.71 | 538.2 | 7.78 |
30% BDL | ||||
DIC | 585.49 | 585.58 | 585.77 | 585.52 |
pD | 5.39 | 5.68 | 5.46 | 5.1 |
Runtime (min) | 7.31 | 1567.51 | 1333.01 | 7.93 |
50% BDL | ||||
DIC | 585.58 | 585.56 | 585.77 | 586.32 |
pD | 5.15 | 5.83 | 6.21 | 5.52 |
Runtime (min) | 7.03 | 2375.42 | 2108.65 | 8.31 |
70% BDL | ||||
DIC | 587.56 | 586.25 | 586.57 | 588.56 |
pD | 5.05 | 8.69 | 9.3 | 5.59 |
Runtime (min) | 6.33 | 3557.38 | 2686.91 | 9.67 |
Scenario 2 | Prior Imputation | Sequential Full Bayes | Pseudo-Gibbs | MICE |
10% BDL | ||||
DIC | 577.71 | 577.66 | 577.33 | 577.57 |
pD | 5.98 | 6.05 | 5.7 | 5.79 |
Runtime (min) | 7.19 | 683.38 | 565.97 | 7.89 |
30% BDL | ||||
DIC | 578.83 | 578.36 | 579.46 | 578.89 |
pD | 6.07 | 7.08 | 7.26 | 5.86 |
Runtime (min) | 7.22 | 1573.61 | 1304.99 | 7.97 |
50% BDL | ||||
DIC | 581.55 | 580.27 | 579.18 | 582.49 |
pD | 6.53 | 8.01 | 8.06 | 6.35 |
Runtime (min) | 6.9 | 2407.21 | 2067.7 | 8.16 |
70% BDL | ||||
DIC | 589.33 | 586.2 | 586.11 | 591.42 |
pD | 5.53 | 13.42 | 15.91 | 6.4 |
Runtime (min) | 6.29 | 3487.45 | 2711.79 | 8.51 |
Variable | Odds Ratio | 2.5% CI | 97.5% CI |
---|---|---|---|
PCBs | 1.19 | 0.96 | 1.51 |
Insecticides | 0.64 | 0.39 | 1.00 |
Herbicides | 1.17 | 0.82 | 1.69 |
Metals | 0.79 | 0.59 | 1.06 |
PAHs | 1.27 | 1.01 | 1.60 |
Tobacco | 0.82 | 0.66 | 1.01 |
PBDEs | 1.21 | 0.79 | 1.83 |
Child’s age | 1.01 | 0.92 | 1.12 |
Female | 0.98 | 0.70 | 1.37 |
Child’s ethnicity | |||
Hispanic | 1.25 | 0.81 | 2.00 |
Non-Hispanic | 1.42 | 0.91 | 2.27 |
Household Income | |||
$15,000–$29,999 | 1.02 | 0.47 | 2.15 |
$30,000–$44,999 | 0.79 | 0.36 | 1.61 |
$45,000–$59,999 | 0.78 | 0.34 | 1.66 |
$60,000–$74,999 | 0.45 | 0.18 | 1.06 |
$75,000 or more | 0.38 | 0.17 | 0.79 |
Income missing | 0.56 | 0.17 | 1.61 |
Mother’s education | |||
High school | 1.25 | 0.63 | 2.81 |
Some college | 1.22 | 0.60 | 2.84 |
Bachelor’s or higher | 1.21 | 0.57 | 2.89 |
Mother’s age | 1.01 | 0.98 | 1.05 |
Residence since birth | 0.66 | 0.44 | 0.96 |
Variable | Odds Ratio | 2.5% CI | 97.5% CI |
---|---|---|---|
PCBs | 1.55 | 1.04 | 2.36 |
Insecticides | 0.51 | 0.19 | 1.12 |
Herbicides | 2.02 | 1.00 | 3.99 |
Metals | 0.42 | 0.25 | 0.69 |
PAHs | 1.19 | 0.83 | 1.75 |
Tobacco | 0.77 | 0.52 | 1.09 |
PBDEs | 1.12 | 0.63 | 2.23 |
Child’s age | 0.98 | 0.83 | 1.15 |
Female | 0.70 | 0.38 | 1.22 |
Child’s ethnicity | |||
Hispanic | 1.14 | 0.47 | 2.83 |
Non-Hispanic | 1.62 | 0.87 | 3.18 |
Mother’s education | |||
High school | 0.49 | 0.00 | 1930.56 |
Some college | 0.20 | 0.00 | 730.17 |
Bachelor’s or higher | 0.36 | 0.00 | 1375.01 |
Mother’s age | 0.99 | 0.93 | 1.05 |
Residence since birth | 0.40 | 0.21 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carli, M.; Ward, M.H.; Metayer, C.; Wheeler, D.C. Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression. Int. J. Environ. Res. Public Health 2022, 19, 1369. https://doi.org/10.3390/ijerph19031369
Carli M, Ward MH, Metayer C, Wheeler DC. Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression. International Journal of Environmental Research and Public Health. 2022; 19(3):1369. https://doi.org/10.3390/ijerph19031369
Chicago/Turabian StyleCarli, Matthew, Mary H. Ward, Catherine Metayer, and David C. Wheeler. 2022. "Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression" International Journal of Environmental Research and Public Health 19, no. 3: 1369. https://doi.org/10.3390/ijerph19031369
APA StyleCarli, M., Ward, M. H., Metayer, C., & Wheeler, D. C. (2022). Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression. International Journal of Environmental Research and Public Health, 19(3), 1369. https://doi.org/10.3390/ijerph19031369