Identification of Silent Myocardial Ischemia in Patients with Long-Term Type 1 and Type 2 Diabetes
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
- -
- Type 1 diabetes for at least 10 years;
- -
- Type 2 diabetes for at least 5 years.
- -
- Diagnosed cardiovascular complications (chronic and acute coronary syndromes, stroke, and lower limb atherosclerosis);
- -
- Features of ischemic heart disease in physical examination (specific and non-specific symptoms) and/or in ECG.
2.2. Methods
- (1)
- History—age, gender, duration and method of diabetes treatment, presence of arterial hypertension, smoking, alcohol, presence of microvascular complications (nephropathy, neuropathy, and retinopathy), and family history of ischemic heart disease;
- (2)
- Anthropometric measurements;
- (3)
- Venous blood samples taken for laboratory tests, including HbA1c, total cholesterol, LDL, HDL, triglycerides, hsCRP, NT-proBNP, creatinine, and eGFR;
- (4)
- Echocardiographic examination;
- (5)
- Doppler ultrasound of carotid arteries;
- (6)
- The treadmill stress test performed according to Bruce’s protocol;
- (7)
- Twenty-four-hour Holter ECG examination;
- (8)
- The dobutamine test (in patients with undiagnostic or questionable results of the treadmill exercise test).
3. Statistical Analysis
4. Results
- (a)
- Positive in 18 patients (7 with type 1 diabetes and 11 with type 2 diabetes);
- (b)
- Questionable in 11 patients with type 1 diabetes;
- (c)
- Undiagnostic in 5 patients (2 with type 1 diabetes and 3 with type 2 diabetes);
- (d)
- Negative in 70 patients (47 with type 1 diabetes and 23 with type 2 diabetes) (Figure 1).
Safety
5. Discussion
6. Conclusions
- (1)
- The prevalence of silent myocardial ischemia in long-term diabetes is high.
- (2)
- Silent ischemia of the heart is much more common in patients with type 2 diabetes than in patients with type 1 diabetes.
- (3)
- The factors that predispose patients to silent myocardial ischemia include
- Older age;
- Coexistence of carotid atherosclerosis;
- Lower left ventricular ejection fraction; and
- Smoking in patients with type 1 diabetes
- (4)
- It seems that coexisting microvascular complications do not constitute an additional risk factor for the occurrence of silent heart ischemia.
- (5)
- Assessments of both the occurrence and risk factors for silent heart ischemia in patients with long-term diabetes require further studies based on uniform diagnostic screening tests to assess the presence of coronary artery disease.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janand-Delenne, B.; Savin, B.; Habib, G.; Bory, M.; Vague, P.; Lassmann-Vague, V. Silent myocardial ischemia in patients with diabetes: Who to screen. Diabetes Care 1999, 22, 1396–1400. [Google Scholar] [CrossRef] [PubMed]
- Pearson-Stuttard, J.; Bennett, J.; Cheng, Y.J.; Vamos, E.P.; Cross, A.J.; Ezzati, M.; Gregg, E.W. Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: An epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol. 2021, 9, 165–173. [Google Scholar] [CrossRef]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Benjamin, I.J.; Burke, G.L.; Chait, A.; Eckel, R.H.; Howard, B.V.; Sowers, J.R. Diabetes and cardiovascular disease: A statement for healthcare professionals from the American Heart Association. Circulation 1999, 7, 1134–1146. [Google Scholar] [CrossRef] [Green Version]
- Jacoby, R.M.; Nesto, R.W. Acute myocardial infarction in the diabetic patient: Pathophysiology, clinical course and prognosis. J. Am. Coll. Cardiol. 1992, 20, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Prasad, D.S.; Kabir, Z.; Devi, K.R.; Peter, P.S.; Dase, B.C. Prevalence and Risk factors for Silent Myocardial ischemia (PRISM): A clinico observational study in patients of type 2 diabetes. Indian Heart J. 2019, 71, 400–405. [Google Scholar] [CrossRef]
- Chico, A.; Tomás, A.; Novials, A. Silent Myocardial Ischemia Is Associated with Autonomic Neuropathy and Other Cardiovascular Risk Factors in Type 1 and Type 2 Diabetic Subjects, Especially in Those with Microalbuminuria. Endocrine 2005, 27, 213–217. [Google Scholar] [CrossRef]
- Lee, D.P.; Fearon, W.F.; Froelicher, V.F. Clinical utility of the exercise ECG in patients with diabetes and chest pain. Chest 2001, 119, 1576–1581. [Google Scholar] [CrossRef] [Green Version]
- Hadaegh, F.; Ehteshami-Afshar, S.; Hajebrahimi, M.A.; Hajsheikholeslami, F.; Azizi, F. Silent coronary artery disease and incidence of cardiovascular and mortality events at different levels of glucose regulation; results of greater than a decade follow-up. Int. J. Cardiol. 2015, 182, 334–339. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. Guidelines of the European Society of Cardiology on diabetes and pre-diabetes coexisting with cardiovascular diseases, developed in collaboration with the European Society for the Study of Diabetes 2019. Educational notebooks. Pol. Cardiol. 2019, 3, 14–22. [Google Scholar]
- Zellweger, M.J.; Maraun, M.; Osterhues, H.H.; Keller, U.; Muller-Brand, J.; Jeger, R.; Pfisterer, M. Progression to overt or silent CAD in asymptomatic patients with diabetes mellitus at high coronary risk: Main findings of the prospective multicenter BARDOT trial with a pilot randomized treatment substudy. JACC Cardiovasc. Imaging 2014, 7, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Faglia, E.; Manuela, M.; Antonella, Q.; Michela, G.; Vincenzo, C.; Maurizio, C.; Alberto, M. Risk reduction of cardiac events by screening of unknown asymptomatic coronary artery disease in subjects with type 2 diabetes mellitus at high cardiovascular risk: An open-label randomized pilot study. Am. Heart J. 2005, 149, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Valensi, P.; Meune, C. Congestive heart failure caused by silent ischemia and silent myocardial infarction. Herz 2019, 44, 210–217. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, M.R.; Petrie, M.C.; Hawkins, N.M.; Petrie, J.R.; Fisher, M.; McKelvie, R.; Krum, H.; McMurray, J.J. Diabetes, left ventricular systolic dysfunction, and chronic heart failure. Eur. Heart J. 2008, 29, 1224–1240. [Google Scholar] [CrossRef]
- Shindler, D.M.; Kostis, J.B.; Yusuf, S.; Quinones, M.A.; Pitt, B.; Stewart, D.; SOLVD investigators. Diabetes mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. Am. J. Cardiol. 1996, 77, 1017–1020. [Google Scholar] [CrossRef]
- Kannel, W.B.; Hjortland, M.; Castelli, W.P. Role of diabetes in congestive heart failure: The Framingham study. Am. J. Cardiol. 1974, 34, 29–34. [Google Scholar] [CrossRef]
- Ehl, N.F.; Ku¨hne, M.; Brinkert, M.; Mu¨ller-Brand, J.; Zellweger, M.J. Diabetes reduces left ventricular ejection fraction-irrespective of presence and extent of coronary artery disease. Eur. J. Endocrinol. 2011, 165, 945–951. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Ogden, L.G.; Bazzano, L.A.; Vupputuri, S.; Loria, C.; Whelton, P.K. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch. Intern. Med. 2001, 61, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Witteles, R.M.; Fowler, M.B. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J. Am. Coll. Cardiol. 2008, 51, 93–102. [Google Scholar] [CrossRef]
- Peovska Mitevska, I.; Baneva, N.; Bosevski, M.; Srbinovska Kostovska, E. Prevalence of risk factors and asymptomatic carotid atherosclerosis in diabetic patients screened for silent myocardial ischemia by SPECT myocardial imaging. Nucl. Med. Rev. 2017, 20, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Barthelemy, O.; Le Feuvre, C.; Timsit, J. Silent myocardial ischemia screening in patients with diabetes mellitus. Arq. Bras. De Endocrinol. Metabol. 2007, 51, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gąsior, M.; Gierlotka, M.; Wasilewski, J.; Zębik, T.; Lekston, A.; Wilczek, K.; Piegza, J.; Dyrbuś, K.; Szkodziński, J.; Kondys, M.; et al. The influence of smoking on the early results of treatment of patients with myocardial infarction by means of coronary agioplasty. Folia Cardiol. 2003, 10, 743–749. [Google Scholar]
- Cai, X.; Chen, Y.; Yang, W.; Gao, X.; Han, X.; Ji, L. The association of smoking and risk of diabetic retinopathy in patients with type 1 and type 2 diabetes: A meta-analysis. Endocrine 2018, 62, 299–306. [Google Scholar] [CrossRef]
- Llaurado´, G.; Cano, A.; Herna´ndez, C.; Gonza´lez-Sastre, M.; Rodrı´guez, A.-A.; Puntı’, J.; Gonzalez Clemente, J.M. Type 1 diabetes: Developing the first riskestimation model for predicting silent myocardial ischemia. The potential role of insulin resistance. PLoS ONE 2017, 12, e0174640. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Chang, P.; Zhang, Y.; Kizer, J.R.; Best, L.G.; Howard, B.V. Triglyceride and HDL-C Dyslipidemia and Risks of Coronary Heart Disease and Ischemic Stroke by Glycemic Dysregulation Status: The Strong Heart Study. Diabetes Care 2017, 40, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Rana, J.S.; Liu, J.Y.; Moffet, H.H.; Solomon, M.D.; Go, A.S.; Jaffe, M.G.; Karter, A.J. Metabolic dyslipidemia and risk of coronary heart disease in 28,318 adults with diabetes mellitus and low-density lipoprotein cholesterol <100 mg/dL. Am. J. Cardiol. 2015, 116, 1700–1704. [Google Scholar]
Data | In Total | Ischemia | No Ischemia | p-Value |
---|---|---|---|---|
[N = 104] | [N = 24] | [N = 80] | [χ2/ANOVA] | |
Age [years] | 48.0 ± 14.6 | 58.0 ± 11.6 | 45.0 ± 14.1 | <0.001 |
Gender: female [N; %] | 56; 53.8 | 10; 41.7 | 46; 57.5 | 0.17 |
Duration of diabetes [years] | 19.6 ± 9.3 | 20.0 ± 11.3 | 19.5 ± 8.8 | 0.82 |
BMI [kg/m2] | 26.9 ± 5.1 | 27.7 ± 4.8 | 26.7 ± 5.3 | 0.39 |
HbA1c [%] | 8.0 ± 1.4 | 7.9 ± 1.6 | 8.0 ± 1.4 | 0.67 |
HbA1c [mmol/mol] | 63.9 ± 8.2 | 62.8 ± 6.0 | 63.9 ± 8.2 | 0.67 |
Total cholesterol concentration [mg/dL] | 196.6 ± 42.7 | 198.0 ± 38.7 | 196.2 ± 44.0 | 0.85 |
HDL cholesterol concentration [mg/dL] | 63.5 ± 20.4 | 62.9 ± 20.7 | 63.7 ± 20.5 | 0.87 |
LDL cholesterol concentration [mg/dL] | 110.5 ± 37.3 | 116.9 ± 34.0 | 108.5 ± 38.3 | 0.34 |
Triglyceride concentration [mg/dL] | 122.7 ± 85.9 | 108.6 ± 42.1 | 126.9 ± 95.0 | 0.36 |
eGFR [mL/min/m2] | 93.0 ± 26.1 | 89.9 ± 19.8 | 93.9 ± 27.7 | 0.51 |
Smoker [N; %] | 18; 17.3 | 7; 29.2 | 11; 13.8 | 0.08 |
Arterial hypertension [N; %] | 58; 55.8 | 16; 66.7 | 42; 52.5 | 0.22 |
Mean left ventricular ejection fraction (EF) [%] | 55.9 ± 3.4 | 53.9 ± 3.7 | 56.5 ± 3.2 | 0.001 |
Carotid atherosclerosis [N; %] | 51; 49.0 | 18; 75.0 | 33; 41.3 | 0.004 |
Data | In Total | Ischemia [A] | No Ischemia [B] | p-Value | |||
---|---|---|---|---|---|---|---|
[N = 104] | Type 1 | Type 2 | Type 1 | Type 2 | A | B | |
[N = 12] | [N = 12] | [N = 55] | [N = 25] | [χ2/ANOVA] | |||
Age [years] | 48.0 ± 14.6 | 52.0 ± 10.1 | 64.0 ± 10.0 | 39.1 ± 11.8 | 57.7 ± 9.7 | 0.01 | <0.001 |
Gender: Women [N; %] | 56; 53.8 | 5; 41.7 | 5; 41.7 | 36; 65.5 | 10; 40.0 | 1.00 | 0.03 |
Duration of diabetes [years] | 19.6 ± 9.3 | 27.0 ± 11.1 | 15.2 ± 6.6 | 22.3 ± 7.7 | 13.7 ± 7.2 | 0.01 | <0.001 |
BMI [kg/m2] | 26.9 ± 5.1 | 27.0 ± 5.1 | 28.4 ± 4.5 | 24.7 ± 4.1 | 31.0 ± 5.2 | 0.49 | <0.001 |
HbA1c [%] | 8.0 ± 1.4 | 7.8 ± 1.0 | 8.0 ± 2.1 | 8.2 ± 1.4 | 7.7 ± 1.4 | 0.79 | 0.16 |
HbA1c [mmol/mol] | 63.9 ± 8.2 | 61.7 ± 5.8 | 63.9 ± 12.3 | 66.1 ± 8.2 | 61 ± 8.2 | 0.79 | 0.16 |
Total cholesterol concentration [mg/dL] | 196.6 ± 42.7 | 206.5 ± 46.8 | 189.5 ± 28.0 | 199.4 ± 44.7 | 189.1 ± 42.4 | 0.29 | 0.33 |
HDL cholesterol concentration [mg/dL] | 63.5 ± 20.4 | 69.8 ± 22.9 | 56.0 ± 16.3 | 69.5 ± 15.6 | 51.0 ± 24.2 | 0.10 | <0.001 |
LDL cholesterol concentration [mg/dL] | 110.5 ± 37.3 | 117.4 ± 39.2 | 116.5 ± 29.7 | 110.8 ± 39.2 | 103.2 ± 36.2 | 0.95 | 0.43 |
Triglyceride concentration [mg/dL] | 122.7 ± 85.9 | 97.6 ± 37.2 | 119.6 ± 45.4 | 100.5 ± 55.7 | 185.0 ± 132.8 | 0.21 | <0.001 |
eGFR [mL/min/m2] | 93.0 ± 26.1 | 94.3 ± 22.1 | 85.4 ± 17.1 | 99.0 ± 29.2 | 82.7 ± 20.4 | 0.28 | 0.01 |
Smoker [N; %] | 18; 17.3 | 4; 33.3 | 3; 25.0 | 5; 9.1 | 6; 24.0 | 0.65 | 0.07 |
Arterial hypertension [N; %] | 58; 55.8 | 6; 50.0 | 10; 83.3 | 20; 36.4 | 22; 88.0 | 0.08 | <0.001 |
In Total | Type 1 Diabetes | Type 2 Diabetes | |
---|---|---|---|
Age [10 years] | 2.06 (1.38–3.08) *** | 2.53 (1.34–4.77) ** | 2.08 (0.90–4.83) |
Duration of diabetes [10 years] | 1.06 (0.65–1.72) | 1.36 (0.67–2.78) | 1.48 (0.57–3.88) |
BMI (5 kg/m2) | 1.21 (0.79–1.85) | 1.74 (0.88–3.44) | 0.56 (0.25–1.25) |
HbA1c [1%] | 0.93 (0.67–1.30) | 0.78 (0.46–1.33) | 1.11 (0.73–1.69) |
WHR [waist-hip ratio] [0.1] | 1.51 (0.97–2.35) | 1.87 (0.98–3.54) | 0.50 (0.15–1.67) |
Android obesity (+/−) | 1.86 (0.74–4.67) | 2.56 (0.63–10.33) | 0.63 (0.14–2.86) |
Hypertension (+/−) | 1.81 (0.70–4.70) | 1.75 (0.50–6.16) | 0.68 (0.10–4.74) |
GFR [10 mL/min/1.73 m2] | 0.94 (0.78–1.13) | 0.94 (0.74–1.19) | 1.08 (0.75–1.57) |
Smoker (+/−) | 2.58 (0.87–7.65) | 5.00 (1.10–22.68) * | 1.06 (0.21–5.21) |
Left ventricular ejection fraction EF% (1%) | 1.27 (1.09–1.47) ** | 1.27 (1.03–1.54) * | 1.25 (0.99–1.56) |
Carotid atherosclerosis | 4.09 (1.46–11.43) ** | 5.57 (1.45–21.42) * | 1.58 (0.27–9.31) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rokicka, D.; Bożek, A.; Wróbel, M.; Nowowiejska-Wiewióra, A.; Szymborska-Kajanek, A.; Stołtny, T.; Gąsior, M.; Strojek, K. Identification of Silent Myocardial Ischemia in Patients with Long-Term Type 1 and Type 2 Diabetes. Int. J. Environ. Res. Public Health 2022, 19, 1420. https://doi.org/10.3390/ijerph19031420
Rokicka D, Bożek A, Wróbel M, Nowowiejska-Wiewióra A, Szymborska-Kajanek A, Stołtny T, Gąsior M, Strojek K. Identification of Silent Myocardial Ischemia in Patients with Long-Term Type 1 and Type 2 Diabetes. International Journal of Environmental Research and Public Health. 2022; 19(3):1420. https://doi.org/10.3390/ijerph19031420
Chicago/Turabian StyleRokicka, Dominika, Anna Bożek, Marta Wróbel, Alicja Nowowiejska-Wiewióra, Aleksandra Szymborska-Kajanek, Tomasz Stołtny, Mariusz Gąsior, and Krzysztof Strojek. 2022. "Identification of Silent Myocardial Ischemia in Patients with Long-Term Type 1 and Type 2 Diabetes" International Journal of Environmental Research and Public Health 19, no. 3: 1420. https://doi.org/10.3390/ijerph19031420
APA StyleRokicka, D., Bożek, A., Wróbel, M., Nowowiejska-Wiewióra, A., Szymborska-Kajanek, A., Stołtny, T., Gąsior, M., & Strojek, K. (2022). Identification of Silent Myocardial Ischemia in Patients with Long-Term Type 1 and Type 2 Diabetes. International Journal of Environmental Research and Public Health, 19(3), 1420. https://doi.org/10.3390/ijerph19031420