Effect of Heating on Physicochemical Property of Aerosols during Vaping
Abstract
:1. Introduction
2. Materials and Methods
2.1. E-Liquid Preparation
2.2. E-Cigarette Device Operation and Aerosol Collection
2.3. Temperature Measurement
2.4. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.5. Viscosity Measurement
2.6. pH Measurement
2.7. Color Assessment
2.8. Metal Concentration in Collected Aerosol Using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)
2.9. Chemical Composition Analysis on the Heating Coil and the Coil Head
3. Results
3.1. Temperature Output via Various Power Settings
3.2. The Mass of Aerosol and Nicotine Correlates with Heating
3.3. High Heat Induces High Aerosol Viscosity
3.4. Aerosol pH Is Constant Independent of Heating Levels
3.5. High Heat Skews Aerosol to Yellow Color
3.6. Heating Can Increase Harmful Metals in Aerosol
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chaffee, B.W. Electronic Cigarettes: Trends, Health Effects and Advising Patients Amid Uncertainty. J. CA Dent. Assoc. 2019, 47, 85–92. [Google Scholar]
- World Health Organization. WHO Global Report on Trends in Prevalence of Tobacco Smoking 2000–2025; World Health Organization: Geneva, Switzerland, 2018; ISBN 9241514175.
- Cai, H.; Garcia, J.G.N.; Wang, C. More to Add to E-Cigarette Regulations: Unified Approaches. Chest 2020, 157, 771–773. [Google Scholar] [CrossRef] [PubMed]
- Gentzke, A.S.; Wang, T.W.; Jamal, A.; Park-Lee, E.; Ren, C.; Cullen, K.A.; Neff, L. Tobacco Product Use Among Middle and High School Students—United States, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1881–1888. [Google Scholar] [CrossRef]
- Skotsimara, G.; Antonopoulos, A.S.; Oikonomou, E.; Siasos, G.; Ioakeimidis, N.; Tsalamandris, S.; Charalambous, G.; Galiatsatos, N.; Vlachopoulos, C.; Tousoulis, D. Cardiovascular effects of electronic cigarettes: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2019, 26, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, L.; Foley, G. E-cigarettes and respiratory health: The latest evidence. J. Physiol. 2020, 598, 5027–5038. [Google Scholar] [CrossRef]
- Wang, P.; Chen, W.; Liao, J.; Matsuo, T.; Ito, K.; Fowles, J.; Shusterman, D.; Mendell, M.; Kumagai, K. A Device-Independent Evaluation of Carbonyl Emissions from Heated Electronic Cigarette Solvents. PLoS ONE 2017, 12, e0169811. [Google Scholar] [CrossRef]
- Galstyan, E.; Galimov, A.; Sussman, S. Commentary: The Emergence of Pod Mods at Vape Shops. Eval. Health Prof. 2019, 42, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Geiss, O.; Bianchi, I.; Barrero-Moreno, J. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. Int. J. Hyg. Environ. Health 2016, 219, 268–277. [Google Scholar] [CrossRef]
- Lechasseur, A.; Altmejd, S.; Turgeon, N.; Buonanno, G.; Morawska, L.; Brunet, D.; Duchaine, C.; Morissette, M.C. Variations in coil temperature/power and e-liquid constituents change size and lung deposition of particles emitted by an electronic cigarette. Physiol. Rep. 2019, 7, e14093. [Google Scholar] [CrossRef]
- Zhao, T.; Shu, S.; Guo, Q.; Zhu, Y. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes. Atmos. Environ. 2016, 134, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Floyd, E.L.; Queimado, L.; Wang, J.; Regens, J.L.; Johnson, D.L. Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. PLoS ONE 2018, 13, e0210147. [Google Scholar] [CrossRef] [Green Version]
- Bitzer, Z.T.; Goel, R.; Reilly, S.M.; Foulds, J.; Muscat, J.; Elias, R.J.; Richie, J.P. Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols. Chem. Res. Toxicol. 2018, 31, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Shein, M.; Jeschke, G. Comparison of Free Radical Levels in the Aerosol from Conventional Cigarettes, Electronic Cigarettes, and Heat-Not-Burn Tobacco Products. Chem. Res. Toxicol. 2019, 32, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Navas-Acien, A.; Ilievski, V.; Slavkovich, V.; Olmedo, P.; Adria-Mora, B.; Domingo-Relloso, A.; Aherrera, A.; Kleiman, N.J.; Rule, A.M.; et al. Metal concentrations in electronic cigarette aerosol: Effect of open-system and closed-system devices and power settings. Environ. Res. 2019, 174, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Zervas, E.; Matsouki, N.; Kyriakopoulos, G.; Poulopoulos, S.; Ioannides, T.; Katsaounou, P. Transfer of metals in the liquids of electronic cigarettes. Inhal. Toxicol. 2020, 32, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Sabatelli, N.; Tutak, W.; Giuseppetti, A.; Frukhtbeyn, S.; Shaffer, I.; Wilhide, J.; Routkevitch, D.; Ondov, J.M. Universal electronic-cigarette test: Physiochemical characterization of reference e-liquid. Tob. Induc. Dis. 2017, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Dautzenberg, B.; Bricard, D. Real-time characterization of e-cigarettes use: The 1 million puffs study. J. Addict. Res. Ther. 2015, 6, 4172. [Google Scholar] [CrossRef]
- Behar, R.Z.; Hua, M.; Talbot, P. Puffing Topography and Nicotine Intake of Electronic Cigarette Users. PLoS ONE 2015, 10, e0117222. [Google Scholar] [CrossRef]
- ASTM International. Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Pérez, M.D.M.; Ghinea, R.; Rivas, M.J.; Yebra, A.; Ionescu, A.M.; Paravina, R.D.; Herrera, L.J. Development of a customized whiteness index for dentistry based on CIELAB color space. Dent. Mater. 2016, 32, 461–467. [Google Scholar] [CrossRef]
- Farsalinos, K.E.; Voudris, V.; Poulas, K. Are Metals Emitted from Electronic Cigarettes a Reason for Health Concern? A Risk-Assessment Analysis of Currently Available Literature. Int. J. Environ. Res. Public Health 2015, 12, 5215–5232. [Google Scholar] [CrossRef] [Green Version]
- Kosmider, L.; Spindle, T.R.; Gawron, M.; Sobczak, A.; Goniewicz, M.L. Nicotine emissions from electronic cigarettes: Individual and interactive effects of propylene glycol to vegetable glycerin composition and device power output. Food Chem. Toxicol. 2018, 115, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Lisko, J.G.; Tran, H.; Stanfill, S.B.; Blount, B.C.; Watson, C.H. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH, and Selected Flavors in E-Cigarette Cartridges and Refill Solutions. Nicotine Tob. Res. 2015, 17, 1270–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, N.A.; Falder, S. A review of the evidence for threshold of burn injury. Burns 2017, 43, 1624–1639. [Google Scholar] [CrossRef] [PubMed]
- Rouabhia, M. Impact of Electronic Cigarettes on Oral Health: A Review. J. Can. Dent. Assoc. 2020, 86, k7. [Google Scholar] [PubMed]
- Kim, S.A.; Smith, S.; Beauchamp, C.; Song, Y.; Chiang, M.; Giuseppetti, A.; Frukhtbeyn, S.; Shaffer, I.; Wilhide, J.; Routkevitch, D.; et al. Cariogenic potential of sweet flavors in electronic-cigarette liquids. PLoS ONE 2018, 13, e0203717. [Google Scholar] [CrossRef] [PubMed]
- Pintado-Palomino, K.; de Almeida, C.; Oliveira-Santos, C.; Pires-de-Souza, F.P.; Tirapelli, C. The effect of electronic cigarettes on dental enamel color. J. Esthet. Restor. Dent. 2019, 31, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.L.; Eisner, A.; Woodward, C.F.; Brice, B.A. Ultraviolet Absorption Spectra of Nicotine, Nornicotine and Some of Their Derivatives. J. Am. Chem. Soc. 1949, 71, 1341–1345. [Google Scholar] [CrossRef]
- Son, Y.; Wackowski, O.; Weisel, C.; Schwander, S.; Mainelis, G.; Delnevo, C.; Meng, Q. Evaluation of E-Vapor Nicotine and Nicotyrine Concentrations under Various E-Liquid Compositions, Device Settings, and Vaping Topographies. Chem. Res. Toxicol. 2018, 31, 861–868. [Google Scholar] [CrossRef]
- Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol. PLoS ONE 2013, 8, e57987. [Google Scholar] [CrossRef] [Green Version]
- Benson, N.U.; Anake, W.U.; Adedapo, A.E.; Fred-Ahmadu, O.H.; Ayejuyo, O.O. Toxic metals in cigarettes and human health risk assessment associated with inhalation exposure. Environ. Monit. Assess. 2017, 189, 619. [Google Scholar] [CrossRef]
- Olmedo, P.; Goessler, W.; Tanda, S.; Grau-Perez, M.; Jarmul, S.; Aherrera, A.; Chen, R.; Hilpert, M.; Cohen, J.E.; Navas-Acien, A.; et al. Metal Concentrations in e-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils. Environ. Health Perspect. 2018, 126, 027010. [Google Scholar] [CrossRef] [PubMed]
- Aherrera, A.; Olmedo, P.; Grau-Perez, M.; Tanda, S.; Goessler, W.; Jarmul, S.; Chen, R.; Cohen, J.E.; Rule, A.M.; Navas-Acien, A. The association of e-cigarette use with exposure to nickel and chromium: A preliminary study of non-invasive biomarkers. Environ. Res. 2017, 159, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Chen, J.; Zhang, Y.; Peng, D.; Huang, T.; Sun, C. pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud. Int. J. Environ. Res. Public Health 2019, 16, 2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.; Lu, J. Temperature-driven variation in the removal of heavy metals from contaminated tailings leaching in northern Norway. Environ. Monit. Assess. 2019, 191, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | CIELAB | CIE XYZ | Yellowness Index (E313) | ||||
---|---|---|---|---|---|---|---|
L* | a* | b* | X | Y | Z | ||
E-liquid | 37.94 | 0.64 | 3.53 | 9.64 | 10.06 | 9.75 | 13.23 |
20 W | 34.85 | 1.71 | 3.96 | 8.19 | 8.42 | 7.98 | 17.61 |
40 W | 36.44 | 1.29 | 5.05 | 8.93 | 9.24 | 8.47 | 20.46 |
60 W | 33.20 | 1.71 | 4.72 | 7.43 | 7.63 | 7.00 | 21.26 |
80 W | 33.66 | 2.55 | 6.11 | 7.73 | 7.85 | 6.84 | 27.90 |
Element | NIOSH:REL (µg/m3) | Calculated DEL (µg) 1 | Daily Metal Inhalations by E-Cigarette (DMIE) (µg) 2 | DMIE/DEL (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
20 W | 40 W | 60 W | 80 W | 20 W | 40 W | 60 W | 80 W | |||
Ag | 10 | 67 | <LOD 3 | <LOD | <LOD | <LOD | 0 | 0 | 0 | 0 |
Al | 5000 | 33,500 | 0.007 | 0.033 | 0.036 | 0.059 | <0.001 | <0.001 | <0.001 | <0.001 |
As | 10 | 67 | 0.084 | 0.239 | 0.451 | 0.791 | 0.125 | 0.357 | 0.673 | 1.18 |
Cd | 5 | 33.5 | 0.097 | 0.183 | 0.23 | 0.326 | 0.289 | 0.547 | 0.687 | 0.973 |
Co | 50 | 335 | <LOD | <LOD | <LOD | <LOD | 0 | 0 | 0 | 0 |
Cr | 500 | 3350 | 8.577 | 22.5 | 32.4 | 50.49 | 0.256 | 0.672 | 0.967 | 1.507 |
Cu | 1000 | 6700 | 0.307 | 0.61 | 0.964 | 2.969 | 0.005 | 0.009 | 0.014 | 0.044 |
Fe | 5000 | 33,500 | 1.672 | 4.068 | 6.343 | 10.88 | 0.005 | 0.012 | 0.019 | 0.032 |
Mg | 10,000 | 67,000 | 1.399 | 1.485 | 2.177 | 4.492 | 0.002 | 0.002 | 0.003 | 0.007 |
Mn | 1000 | 6700 | <LOD | <LOD | <LOD | <LOD | 0 | 0 | 0 | 0 |
Ni | 15 | 100.5 | 0.126 | 0.214 | 0.347 | 0.599 | 0.125 | 0.213 | 0.346 | 0.596 |
Pb | 50 | 335 | 0.093 | 0.184 | 0.281 | 0.386 | 0.028 | 0.055 | 0.084 | 0.115 |
Sb | 500 | 3350 | <LOD | <LOD | <LOD | <LOD | 0 | 0 | 0 | 0 |
Zn | 5000 | 33,500 | 2.811 | 4.035 | 9.064 | 9.589 | 0.008 | 0.012 | 0.027 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, T.-J.; Kim, S.A. Effect of Heating on Physicochemical Property of Aerosols during Vaping. Int. J. Environ. Res. Public Health 2022, 19, 1892. https://doi.org/10.3390/ijerph19031892
Ko T-J, Kim SA. Effect of Heating on Physicochemical Property of Aerosols during Vaping. International Journal of Environmental Research and Public Health. 2022; 19(3):1892. https://doi.org/10.3390/ijerph19031892
Chicago/Turabian StyleKo, Tae-Jun, and Shin Ae Kim. 2022. "Effect of Heating on Physicochemical Property of Aerosols during Vaping" International Journal of Environmental Research and Public Health 19, no. 3: 1892. https://doi.org/10.3390/ijerph19031892
APA StyleKo, T. -J., & Kim, S. A. (2022). Effect of Heating on Physicochemical Property of Aerosols during Vaping. International Journal of Environmental Research and Public Health, 19(3), 1892. https://doi.org/10.3390/ijerph19031892