Precarious Employment and Chronic Stress: Do Social Support Networks Matter?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Sample and Variables
2.2. Statistical Analysis
3. Results
3.1. Descriptives
3.2. Perceived Stress
3.3. Biomarkers of Chronic Stresss
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Outcome 1: 20αDHE (ng/mg) | ||||
---|---|---|---|---|
Predictor 2 | B | CI 95% 3 | p | |
LI | LS | |||
EPRES | 0.01 | −0.19 | 0.20 | 0.935 |
DUFSS | 0.004 | −0.01 | 0.01 | 0.439 |
DUFSS*EPRES | 0.00 | 0.02 | 0.01 | 0.989 |
Woman | −0.07 | −0.22 | 0.07 | 0.324 |
Woman*EPRES | 0.25 | −0.02 | 0.52 | 0.071 |
Age > 34 | −0.04 | −0.22 | 0.14 | 0.667 |
BMI | 0.04 | 0.02 | 0.06 | <0.001 |
Intercept | 1.11 | 0.56 | 1.66 | <0.001 |
Model Adjustment | ||||
Observations | 255 | |||
R2 | 0.119 | |||
F statistic | F(7; 247) = 3.9196, p < 0.001 |
References
- Friis, R.H.; Sellers, T. Epidemiology for Public Health Practice; Jones & Bartlett Learning: Burlington, MA, USA, 2020. [Google Scholar]
- Cohen, S.; Wills, T.A. Stress, Social Support, and the Buffering Hypothesis. Psychol. Bull. 1985, 98, 310–357. [Google Scholar] [CrossRef] [PubMed]
- Kawachi, I. Social Ties and Mental Health. J. Urban Health 2001, 78, 458–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viswesvaran, C.; Sanchez, J.I.; Fisher, J. The Role of Social Support in the Process of Work Stress: A Meta-Analysis. J. Vocat. Behav. 1999, 54, 314–334. [Google Scholar] [CrossRef]
- Axelsson, L.; Ejlertsson, G. Self-Reported Health, Self-Esteem and Social Support among Young Unemployed People: A Population-Based Study. Int. J. Soc. Welf. 2002, 11, 111–119. [Google Scholar] [CrossRef]
- Craveiro, D. The Role of Personal Social Networks on Health Inequalities across European Regions. Health Place 2017, 45, 24–31. [Google Scholar] [CrossRef]
- Kroll, L.E.; Lampert, T. Unemployment, Social Support and Health Problems: Results of the GEDA Study in Germany, 2009. Dtsch. Arztebl. Int. 2011, 108, 47–52. [Google Scholar] [CrossRef]
- Milner, A.; Krnjacki, L.; Butterworth, P.; LaMontagne, A.D. The Role of Social Support in Protecting Mental Health When Employed and Unemployed: A Longitudinal Fixed-Effects Analysis Using 12 Annual Waves of the HILDA Cohort. Soc. Sci. Med. 2016, 153, 20–26. [Google Scholar] [CrossRef]
- Lim, A.Y.; Lee, S.-H.; Jeon, Y.; Yoo, R.; Jung, H.-Y. Job-Seeking Stress, Mental Health Problems, and the Role of Perceived Social Support in University Graduates in Korea. J. Korean Med. Sci. 2018, 33, e149. [Google Scholar] [CrossRef]
- Pow, J.; King, D.B.; Stephenson, E.; DeLongis, A. Does Social Support Buffer the Effects of Occupational Stress on Sleep Quality among Paramedics? A Daily Diary Study. J. Occup. Health Psychol. 2017, 22, 71–85. [Google Scholar] [CrossRef]
- Canivet, C.; Bodin, T.; Emmelin, M.; Toivanen, S.; Moghaddassi, M.; Östergren, P.-O. Precarious Employment Is a Risk Factor for Poor Mental Health in Young Individuals in Sweden: A Cohort Study with Multiple Follow-Ups. BMC Public Health 2016, 16, 687. [Google Scholar] [CrossRef] [Green Version]
- Benach, J.; Vives, A.; Amable, M.; Vanroelen, C.; Tarafa, G.; Muntaner, C. Precarious Employment: Understanding an Emerging Social Determinant of Health. Annu. Rev. Public Health 2014, 35, 229–253. [Google Scholar] [CrossRef] [Green Version]
- Benach, J.; Vives, A.; Tarafa, G.; Delclos, C.; Muntaner, C. What Should We Know about Precarious Employment and Health in 2025? Framing the Agenda for the next Decade of Research. Int. J. Epidemiol. 2016, 45, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, S.; Hofäcker, D.; Mills, M.; Blossfeld, H.-P.; Kurz, K.; Hofmeister, H. Life Courses in the Globalization Process: The Development of Social Inequalities in Modern Societies. Eur. Sociol. Rev. 2009, 25, 53–71. [Google Scholar] [CrossRef]
- Matilla-Santander, N.; Ahonen, E.; Albin, M.; Baron, S.; Bolíbar, M.; Bosmans, K.; Burström, B.; Cuervo, I.; Davis, L.; Gunn, V.; et al. COVID-19 and Precarious Employment: Consequences of the Evolving Crisis. Int. J. Health Serv. 2021, 51, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Mirowsky, J.; Ross, C.E. Social Patterns of Distress. Annu. Rev. Sociol. 1986, 12, 23–45. [Google Scholar] [CrossRef]
- Siegrist, J.; Theorell, T. Socio-Economic Position and Health. The Role of Work and Employment. In Social Inequalities in Health: New Evidence and Policy Implications; Siegrist, J., Marmot, M., Eds.; Oxford University Press: Oxford, UK, 2006; ISBN 978-0-19-856816-2. [Google Scholar]
- Muntaner, C.; Solar, O.; Vanroelen, C.; Martínez, J.M.; Vergara, M.; Santana, V.; Castedo, A.; Kim, I.-H.; Benach, J. Unemployment, Informal Work, Precarious Employment, Child Labor, Slavery, and Health Inequalities: Pathways and Mechanisms. Int. J. Health Serv. 2010, 40, 281–295. [Google Scholar] [CrossRef]
- Clarke, M.; Lewchuk, W.; de Wolff, A.; King, A. “This Just Isn’t Sustainable”: Precarious Employment, Stress and Workers’ Health. Int. J. Law Psychiatry 2007, 30, 311–326. [Google Scholar] [CrossRef] [PubMed]
- De_Cuyper, N.; De Witte, H. Job Insecurity and Employability among Temporary Workers: A Theoretical Approach Based on the Psychological Contract. In The Individual in the Changing Working Life; Naswall, K., Hellgren, J., Sverke, M., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 88–107. ISBN 978-1-139-47049-0. [Google Scholar]
- Lewchuk, W.; Clarke, M.; De Wolff, A. Working Without Commitments: Precarious Employment and Health. Work Employ. Soc. 2008, 22, 387–406. [Google Scholar] [CrossRef]
- Sverke, M.; Hellgren, J. The Nature of Job Insecurity: Understanding Employment Uncertainty on the Brink of a New Millennium. Appl. Psychol. 2002, 51, 23–42. [Google Scholar] [CrossRef]
- Bolíbar, M.; Belvis, F.X.; Jódar, P.; Vives, A.; Méndez, F.; Bartoll-Roca, X.; Pozo, O.J.; Gomez-Gomez, A.; Padrosa, E.; Benach, J.; et al. Precarious Employment and Stress: The Biomedical Embodiment of Social Factors. PRESSED Project Study Protocol. Front. Public Health 2021, 9, 649447. [Google Scholar] [CrossRef]
- Marques, E.; Castello, G.; Bichir, R.M. Explorando as associações entre redes pessoais e acesso a bens materiais em duas metrópoles brasileiras. Redes Rev. Hisp. Para Anál. Redes Soc. 2012, 22, 23–49. [Google Scholar] [CrossRef] [Green Version]
- McPherson, M.; Smith-Lovin, L.; Cook, J.M. Birds of a Feather: Homophily in Social Networks. Annu. Rev. Sociol. 2001, 27, 415–444. [Google Scholar] [CrossRef] [Green Version]
- Harris, K.M.; Schorpp, K.M. Integrating Biomarkers in Social Stratification and Health Research. Annu. Rev. Sociol. 2018, 44, 361–386. [Google Scholar] [CrossRef] [PubMed]
- Stephens, M.A.C.; Wand, G. Stress and the HPA Axis: Role of Glucocorticoids in Alcohol Dependence. Alcohol Res. 2012, 34, 468–483. [Google Scholar]
- Staufenbiel, S.M.; Penninx, B.W.J.H.; Spijker, A.T.; Elzinga, B.M.; van Rossum, E.F.C. Hair Cortisol, Stress Exposure, and Mental Health in Humans: A Systematic Review. Psychoneuroendocrinology 2013, 38, 1220–1235. [Google Scholar] [CrossRef]
- Serwinski, B. Psychosocial Factors and Cortisol Sampled from Hair and Saliva. Ph.D. Thesis, University College London, London, UK, 2017. [Google Scholar]
- Staufenbiel, S.M.; Koenders, M.A.; Giltay, E.J.; Elzinga, B.M.; Manenschijn, L.; Hoencamp, E.; van Rossum, E.F.C.; Spijker, A.T. Recent Negative Life Events Increase Hair Cortisol Concentrations in Patients with Bipolar Disorder. Stress 2014, 17, 451–459. [Google Scholar] [CrossRef]
- Staufenbiel, S.M.; Penninx, B.W.J.H.; de Rijke, Y.B.; van den Akker, E.L.T.; van Rossum, E.F.C. Determinants of Hair Cortisol and Hair Cortisone Concentrations in Adults. Psychoneuroendocrinology 2015, 60, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Vives, A.; Amable, M.; Ferrer, M.; Moncada, S.; Llorens, C.; Muntaner, C.; Benavides, F.G.; Benach, J. The Employment Precariousness Scale (EPRES): Psychometric Properties of a New Tool for Epidemiological Studies among Waged and Salaried Workers. Occup. Environ. Med. 2010, 67, 548–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broadhead, W.E.; Gehlbach, S.H.; de Gruy, F.V.; Kaplan, B.H. The Duke-UNC Functional Social Support Questionnaire. Measurement of Social Support in Family Medicine Patients. Med. Care 1988, 26, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Bellón Saameño, J.A.; Delgado Sánchez, A.; de Dios Luna del Castillo, J.; Lardelli Claret, P. Validez y fiabilidad del cuestionario de apoyo social funcional Duke-UNC-11. Aten Primaria 1996, 18, 153–163. [Google Scholar]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gomez, A.; Pozo, O.J. Determination of Steroid Profile in Hair by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2020, 1624, 461179. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.O.; Neyman, J. Tests of Certain Linear Hypotheses and Their Application to Some Educational Problems. Stat. Res. Mem. 1936, 1, 57–93. [Google Scholar]
- White, C.R. Allometric Analysis beyond Heterogeneous Regression Slopes: Use of the Johnson-Neyman Technique in Comparative Biology. Physiol. Biochem. Zool. Ecol. Evol. Approaches 2003, 76, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Stalder, T.; Steudte, S.; Alexander, N.; Miller, R.; Gao, W.; Dettenborn, L.; Kirschbaum, C. Cortisol in Hair, Body Mass Index and Stress-Related Measures. Biol. Psychol. 2012, 90, 218–223. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition: A Regression-Based Approach, 2nd ed.; Guilford Press: New York, NY, USA, 2018; ISBN 978-1-4625-3465-4. [Google Scholar]
- Long, J.A. Interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions. R Package Version 1.1. 0 2019. Available online: https://interactions.jacob-long.com/ (accessed on 27 December 2021).
- Peña, E.A.; Slate, E.H. Global Validation of Linear Model Assumptions. J. Am. Stat. Assoc. 2006, 101, 341–354. [Google Scholar] [CrossRef]
- Lakey, B.; Cronin, A. Chapter 17—Low Social Support and Major Depression: Research, Theory and Methodological Issues. In Risk Factors in Depression; Dobson, K.S., Dozois, D.J.A., Eds.; Elsevier: San Diego, CA, USA, 2008; pp. 385–408. ISBN 978-0-08-045078-0. [Google Scholar]
- Glaser, D.N.; Tatum, B.C.; Nebeker, D.M.; Sorenson, R.C.; Aiello, J.R. Workload and Social Support: Effects on Performance and Stress. Hum. Perform. 1999, 12, 155–176. [Google Scholar] [CrossRef]
- Kaufmann, G.M.; Beehr, T.A. Interactions between Job Stressors and Social Support: Some Counterintuitive Results. J. Appl. Psychol. 1986, 71, 522–526. [Google Scholar] [CrossRef]
- Kokoroko, E.; Sanda, M.A. Effect of Workload on Job Stress of Ghanaian OPD Nurses: The Role of Coworker Support. Saf. Health Work 2019, 10, 341–346. [Google Scholar] [CrossRef]
- Liu, C.; Huang, N.; Ahmed, F.; Shahid, M.; Wang, X.; Guo, J. The Reverse Buffering Effects of Social Support on the Relationships between Stresses and Mental Health: A Survey of Chinese Adults during the COVID-19 Lockdown. Eur. J. Psychotraumatol. 2021, 12, 1952777. [Google Scholar] [CrossRef]
Variables | Range | 1st Quartil | Median | Mean | 3rd Quartil | Missing |
---|---|---|---|---|---|---|
Outcomes | ||||||
Perceived Stress Scale (PSS scale) | 1–44 | 19.00 | 24.00 | 24.34 | 30.00 | 0 |
Cortisol (ng/mg) | 1.12–70.27 | 4.76 | 6.88 | 9.75 | 11.71 | 4 |
20α-dihydrocortisol (20αDHF, ng/mg) | 0.10–7.60 | 0.35 | 0.67 | 1.01 | 1.14 | 5 |
20ß-dihydrocortisol (20βDHF, ng/mg) | 1.01–23.12 | 2.85 | 4.05 | 5.05 | 5.98 | 0 |
Cortisona (ng/mg) | 3.08–128.05 | 19.47 | 25.89 | 30.32 | 35.17 | 0 |
20α-dihydrocortisone (20αDHE, ng/mg) | 1.57–61.98 | 5.15 | 7.17 | 9.62 | 11.54 | 0 |
20ß dihydrocortisone (20βDHE, ng/mg) | 1.31–36.79 | 3.57 | 5.02 | 6.41 | 7.42 | 0 |
A_11dehydrocorticosterona (11-DHC, ng/mg) | 0.56–10.08 | 1.74 | 2.40 | 2.77 | 3.31 | 1 |
Predictors | ||||||
Precariousness (EPRES scale) | 0.06–3.01 | 0.61 | 0.96 | 1.03 | 1.39 | 0 |
Social Support (DUFSS scale) | 19–55 | 41 | 46 | 44.48 | 50.3 | 0 |
Adjustment variables | ||||||
Woman | 0–1 | --- | --- | 0.51 | --- | 0 |
Age > 34 (years) | 0–1 | --- | --- | 0.74 | --- | 0 |
Body Mass Index (kg/m2) | 16.61–42.91 | 22.23 | 24.51 | 25.04 | 27.17 | 0 |
Model (1): Main Effects Only | Model (2): Interaction | |||||||
---|---|---|---|---|---|---|---|---|
Predictor 1 | B | CI 95% 2 | p | B | CI 95% 2 | p | ||
LI | LS | LI | LS | |||||
EPRES | 4.17 | <0.001 | 4.32 | 2.68 | 5.95 | <0.001 | ||
DUFSS | −0.23 | <0.001 | −0.27 | −0.38 | −0.16 | <0.001 | ||
DUFSS*EPRES | --- | 0.22 | 0.04 | 0.39 | 0.014 | |||
Woman | 3.37 | <0.001 | 3.45 | 1.80 | 5.09 | <0.001 | ||
Age > 34 | −2.42 | 0.012 | −2.27 | −4.15 | −0.38 | 0.019 | ||
Intercept | 26.83 | <0.001 | 26.84 | 23.32 | 30.35 | <0.001 | ||
--- | --- | |||||||
Model adjustment | ||||||||
Observations | 255 | 255 | ||||||
R2 | 0.289 | 0.304 | ||||||
F statistic | F(4;250) = 25.398, p < 0.001 | F(5;249) = 26.275, p < 0.001 |
Outcome 1: Cortisol (ng/mg) | Outcome 1: Cortisone (ng/mg) | ||||||||
Predictor 2 | B | CI 95% 3 | p | Predictor 2 | B | CI 95% 3 | p | ||
LI | LS | LI | LS | ||||||
EPRES | −0.05 | −0.28 | 0.17 | 0.644 | EPRES | −0.01 | −0.16 | 0.14 | 0.909 |
DUFSS | −0.003 | −0.01 | 0.01 | 0.544 | DUFSS | −0.001 | −0.01 | 0.01 | 0.779 |
DUFSS*EPRES | 0.01 | −0.01 | 0.03 | 0.432 | DUFSS*EPRES | 0.00 | −0.01 | 0.01 | 0.693 |
Woman | −0.03 | −0.21 | 0.16 | 0.754 | Woman | −0.23 | −0.37 | −0.10 | 0.001 |
Woman*EPRES | 0.05 | −0.29 | 0.40 | 0.760 | Woman*EPRES | 0.16 | −0.07 | 0.38 | 0.172 |
Age > 34 | −0.11 | −0.32 | 0.11 | 0.326 | Age > 34 | −0.02 | −0.17 | 0.13 | 0.781 |
BMI | 0.02 | −0.01 | 0.05 | 0.195 | BMI | 0.02 | −0.01 | 0.04 | 0.172 |
Intercept | 1.75 | 0.99 | 2.52 | <0.001 | Intercept | 3.03 | 2.45 | 3.60 | <0.001 |
Model adjustment | Model adjustment | ||||||||
Observations | 251 | Observations | 255 | ||||||
R2 | 0.017 | R2 | 0.076 | ||||||
F statistic | F(7;243) = 0.547, p = 0.7984 | F statistic | F(7;243) = 3.272, p = 0.002 | ||||||
Outcome 1: 20αDHF (ng/mg) | Outcome 1: 20βDHE ng/mg) | ||||||||
Predictor 2 | B | CI 95% 3 | p | Predictor 2 | B | CI 95% 3 | p | ||
LI | LS | LI | LS | ||||||
EPRES | 0.01 | −0.30 | 0.32 | 0.973 | EPRES | 0.02 | −0.15 | 0.19 | 0.848 |
DUFSS | 0.002 | −0.01 | 0.02 | 0.766 | DUFSS | 0.002 | −0.01 | 0.01 | 0.675 |
DUFSS*EPRES | 0.01 | −0.02 | 0.03 | 0.596 | DUFSS*EPRES | 0.00 | −0.01 | 0.02 | 0.649 |
Woman | 0.10 | −0.12 | 0.31 | 0.378 | Woman | −0.27 | −0.41 | −0.13 | <0.001 |
Woman*EPRES | 0.29 | −0.13 | 0.70 | 0.176 | Woman*EPRES | 0.24 | 0.01 | 0.47 | 0.042 |
Age > 34 | −0.19 | −0.46 | 0.09 | 0.178 | Age > 34 | −0.06 | −0.23 | 0.10 | 0.461 |
BMI | 0.05 | 0.02 | 0.08 | 0.001 | BMI | 0.01 | −0.01 | 0.03 | 0.186 |
Intercept | −1.33 | −2.14 | −0.52 | 0.001 | Intercept | 1.60 | 1.07 | 2.13 | <0.001 |
Model adjustment | Model adjustment | ||||||||
Observations | 250 | Observations | 255 | ||||||
R2 | 0.081 | R2 | 0.105 | ||||||
F statistic | F(7;242) = 2.742, p = 0.009 | F statistic | F(7;247) = 5.0667, p =< 0.001 | ||||||
Outcome 1: 20βDHF (ng/mg) | Outcome 1: 11-DHC (ng/mg) | ||||||||
Predictor 2 | B | CI 95% 3 | p | Predictor 2 | B | CI 95% 3 | p | ||
LI | LS | LI | LS | ||||||
EPRES | 0.01 | −0.17 | 0.19 | 0.906 | EPRES | 0.11 | −0.07 | 0.28 | 0.234 |
DUFSS | 0.002 | −0.01 | 0.01 | 0.738 | DUFSS | 0.001 | −0.01 | 0.01 | 0.886 |
DUFSS*EPRES | 0.00 | −0.01 | 0.02 | 0.683 | DUFSS*EPRES | 0.003 | −0.01 | 0.02 | 0.685 |
Woman | −0.17 | −0.31 | −0.03 | 0.015 | Woman | −0.17 | −0.30 | −0.04 | 0.009 |
Woman*EPRES | 0.18 | −0.06 | 0.41 | 0.138 | Woman*EPRES | 0.15 | −0.09 | 0.40 | 0.214 |
Age > 34 | −0.11 | −0.28 | 0.06 | 0.219 | Age > 34 | −0.19 | −0.35 | −0.03 | 0.018 |
BMI | 0.01 | −0.01 | 0.03 | 0.568 | BMI | −0.02 | −0.04 | 0.00 | 0.014 |
Intercept | 1.58 | 1.04 | 2.12 | <0.001 | Intercept | 1.84 | 1.35 | 2.32 | <0.001 |
Model adjustment | Model adjustment | ||||||||
Observations | 255 | Observations | 254 | ||||||
R2 | 0.054 | R2 | 0.131 | ||||||
F statistic | F(7;247) = 2.993, p = 0.005 | F statistic | F(7;246) = 5.8585, p =< 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belvis, F.; Bolíbar, M.; Benach, J.; Julià, M. Precarious Employment and Chronic Stress: Do Social Support Networks Matter? Int. J. Environ. Res. Public Health 2022, 19, 1909. https://doi.org/10.3390/ijerph19031909
Belvis F, Bolíbar M, Benach J, Julià M. Precarious Employment and Chronic Stress: Do Social Support Networks Matter? International Journal of Environmental Research and Public Health. 2022; 19(3):1909. https://doi.org/10.3390/ijerph19031909
Chicago/Turabian StyleBelvis, Francesc, Mireia Bolíbar, Joan Benach, and Mireia Julià. 2022. "Precarious Employment and Chronic Stress: Do Social Support Networks Matter?" International Journal of Environmental Research and Public Health 19, no. 3: 1909. https://doi.org/10.3390/ijerph19031909
APA StyleBelvis, F., Bolíbar, M., Benach, J., & Julià, M. (2022). Precarious Employment and Chronic Stress: Do Social Support Networks Matter? International Journal of Environmental Research and Public Health, 19(3), 1909. https://doi.org/10.3390/ijerph19031909