Anthropogenic Sources Dominate Foliar Chromium Dust Deposition in a Mining-Based Urban Region of South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Leaf Analysis
2.3. Soil Analysis
2.4. Plant Morphology
2.5. Data Analysis
2.6. Air Mass Movement Patterns
3. Results and Discussion
3.1. Cr Source Identification
3.1.1. Soil
3.1.2. Leaf Surfaces
3.2. Leaf Surface–Cr Dust Particle Interactions
3.2.1. Pearson Correlation Coefficient Analysis
3.2.2. Factor Analysis
3.3. Air Mass Movement Patterns
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Wang, B.; Niu, X. Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests 2017, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Franchini, M.; Mannucci, P.M. Mitigation of air pollution by greenness: A narrative review. Eur. J. Intern. Med. 2018, 55, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Entwistle, J.A.; Hursthouse, A.S.; Marinho Reis, P.A.; Stewart, A.G. Metalliferous mine dust: Human health impacts and the potential determinants of disease in mining communities. Curr. Pollut. Rep. 2019, 5, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Balabanova, B.; Stafilov, T.; Šajn, R.; Bačeva, K. Distribution of chemical elements in attic dust as reflection of their geogenic and anthropogenic sources in the vicinity of the copper mine and flotation plant. Arch. Environ. Contam. Toxicol. 2012, 61, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Csavina, J.; Field, J.; Taylor, M.P.; Gao, S.; Landázuri, A.; Betterton, E.A.; Eduardo Sáez, A. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci. Total Environ. 2012, 433, 58–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-Loaiza, J.; Field, J.P.; White, S.A.; Csavina, J.; Felix, O.; Betterton, E.A.; Eduardo Sáez, A.; Maier, R.M. Phytoremediation reduces dust emissions from metal(loid)-contaminated mine tailings. Environ. Sci. Technol. 2018, 52, 5851–5858. [Google Scholar] [CrossRef] [PubMed]
- Gabarrón, M.; Faz, A.; Acosta, J.A. Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment. J. Environ. Manag. 2018, 206, 192–201. [Google Scholar] [CrossRef]
- Ebenebe, P.C.; Shale, K.; Sedibe, M.; Tikilili, P.; Achilonu, M.C. South African mine effluents: Heavy metal pollution and impact on the ecosystem. Int. J. Chem. Sci. 2017, 15, 1–12. [Google Scholar]
- Tian, S.; Liang, T.; Li, K. Fine road dust contamination in a mining area presents a likely air pollution hotspot and threat to human health. Environ. Int. 2019, 128, 201–209. [Google Scholar] [CrossRef]
- Mhlongo, S.E.; Amponsah-Dacosta, F. A review of problems and solutions of abandoned mines in South Africa. Int. J. Min. Reclam. Environ. 2015, 30, 279–294. [Google Scholar] [CrossRef]
- Amoah, P.; Eweje, G. Impact mitigation or ecological restoration? Examining the environmental sustainability practices of multinational mining companies. Bus. Strat. Environ. 2021, 30, 551–565. [Google Scholar] [CrossRef]
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. 2016. Available online: https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511/9789241511/9789241511353-eng.pdf?sequence=1 (accessed on 11 November 2021).
- Das, A.; Kumar, R.; Patel, S.S.; Saha, M.C.; Guha, D. Source apportionment of potentially toxic elements in street dust of a coal mining area in Chhattisgarh, India, using multivariate and lead isotopic ratio analysis. Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Huang, B.; He, Q.; Chen, B.; Wei, J.; Mahmood, R. Dynamic assessment of PM2.5 exposure and health risk using remote sensing and geo-spatial big data. Environ. Pollut. 2019, 253, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. Green walls for mitigating urban particulate matter pollution—A review. Urban For. Urban Green. 2021, 59, 127014. [Google Scholar] [CrossRef]
- Javanmard, Z.; Kouchaksaraei, M.T.; Hosseini, S.M.; Pandey, A.K. Assessment of anticipated performance index of some deciduous plant species under dust air pollution. Environ. Sci. Pollut. Res. 2020, 27, 38987–38994. [Google Scholar] [CrossRef]
- Mandal, K.; Dhal, N.K. Pollution resistance assessment of plants around chromite mine based on anticipated performance index, dust capturing capacity and metal accumulation index. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Mondal, S.; Singh, G. Air pollution tolerance, anticipated performance, and metal accumulation capacity of common plant species for green belt development. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Perini, K.; Ottelé, M.; Giulini, S.; Magliocco, A.; Roccotiello, E. Quantification of fine dust deposition on different plant species in a vertical greening system. Ecol. Eng. 2017, 100, 268–276. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 2018, 30, 98–107. [Google Scholar] [CrossRef]
- Chaudhary, I.J.; Rathore, D. Dust pollution: Its removal and effect on foliage physiology of urban trees. Sustain. Cities Soc. 2019, 51, 101696. [Google Scholar] [CrossRef]
- Redondo-Bermúdez, M.C.; Gulenc, I.T.; Cameron, R.W.; Inkson, B.J. Green barriers’ for air pollutant capture: Leaf micromorphology as a mechanism to explain plants capacity to capture particulate matter. Environ. Pollut. 2021, 288, 117809. [Google Scholar] [CrossRef] [PubMed]
- Tshehla, C.; Djolov, G. Source profiling, source apportionment and cluster transport analysis to identify the sources of PM and the origin of air masses to an industrialised rural area in Limpopo. Clean Air J. 2018, 28, 54–66. [Google Scholar] [CrossRef]
- Nkosi, V.; Wichmann, J.; Voyi, K. Mine dumps, wheeze, asthma, and rhinoconjunctivitis among adolescents in South Africa: Any association? Int. J. Environ. Health Res. 2015, 25, 583–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkosi, V.; Wichmann, J.; Voyi, K. Indoor and outdoor PM10 levels at schools located near mine dumps in Gauteng and North West Provinces, South Africa. BMC Public Health 2017, 17, 42. [Google Scholar] [CrossRef] [Green Version]
- Tshehla, C.; Wright, C.Y. Spatial variability of PM10, PM2.5 and PM chemical components in an industrialised rural area within a mountainous terrain. S. Afr. J. Sci. 2019, 115, 6174. [Google Scholar] [CrossRef]
- Scholes, R.J.; Biggs, R. A biodiversity intactness index. Nature 2005, 434, 45–49. [Google Scholar] [CrossRef]
- Adhikari, S.; Siebert, S.J.; Jordaan, A. Evidence of chromium dust pollution on the leaves of food and medicinal plants from mining areas of Sekhukhuneland, South Africa. S. Afr. J. Bot. 2021, 143, 226–237. [Google Scholar] [CrossRef]
- Coetzee, J.J.; Bansal, N.; Chirwa, E.M.N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Expos. Health 2018, 12, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Das, P.K.; Das, B.P.; Dash, P. Chromite mining pollution, environmental impact, toxicity and phytoremediation: A review. Environ. Chem. Lett. 2021, 19, 1369–1381. [Google Scholar] [CrossRef]
- Cramer, L.A.; Basson, J.; Nelson, L.R. The impact of platinum production from UG2 ore on ferrochrome production in South Africa. J. South. Afr. Inst. Min. Metall. 2004, 104, 517–527. [Google Scholar]
- Shi, G.; Chen, Z.; Xu, S.; Zhang, J.; Wang, L.; Bi, C.; Teng, J. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, S.; Khademi, H. Source identification of heavy metals in atmospheric dust using Platanus orientalis L. leaves as bioindicator. Eurasian J. Soil Sci. 2015, 4, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Du Toit, M.J.; Cilliers, S.S. Aspects influencing the selection of representative urbanization measures to quantify urban-rural gradients. Landsc. Ecol. 2010, 26, 169–181. [Google Scholar] [CrossRef]
- Liu, L.; Guan, D.; Peart, M.R. The morphological structure of leaves and the dust-retaining capability of afforested plants in urban Guangzhou, South China. Environ. Sci. Pollut. Res. Int. 2012, 19, 3440–3449. [Google Scholar] [CrossRef] [PubMed]
- Draxler, R.R.; Hess, G.D. Description of the HYSPLIT 4 Modelling System. National Oceanic and Atmospheric Administration (NOAA) Technical Memorandum ERL ARL–224. 2004; Air Resources Laboratory Silver Spring, Maryland. Available online: https://www.arl.noaa.gov/data/web/models/hysplit4/win95/arl-224.pdf (accessed on 10 August 2020).
- Vakkari, V.; Laakso, H.; Kulmala, M.; Laaksonen, A.; Mabaso, D.; Molefe, M.; Kgabi, N.; Laakso, L. New particle formation events in semi-clean South African savannah. Atmos. Chem. Phys. 2011, 11, 3333–3346. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.J.; Van Wyk, A.E.; Bredenkamp, G.J. The physical environment and major vegetation types of Sekhukhuneland, South Africa. S. Afr. J. Bot. 2002, 68, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.; Marcelo-Silva, J.; Rajakaruna, N.; Siebert, S.J. Influence of land use and topography on distribution and bioaccumulation of potentially toxic metals in soil and plant leaves: A case study from Sekhukhuneland, South Africa. Sci. Total Environ. 2022, 806, 150659. [Google Scholar] [CrossRef]
- Naldrett, A.J.; Wilson, A.; Kinnaird, J.; Yudovskaya, M.; Chunnett, G. The origin of chromitites and related PGE mineralization in the Bushveld Complex: New mineralogical and petrological constraints. Miner. Depos. 2012, 47, 209–232. [Google Scholar] [CrossRef]
- Gu, F.; Wills, B.A. Chromite—Mineralogy and processing. Miner. Eng. 1988, 1, 235–240. [Google Scholar] [CrossRef]
- Oliva, S.R.; Espinosa, F.A.F. Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem. J. 2007, 86, 131–139. [Google Scholar] [CrossRef]
- Haggerty, S.E. Oxide mineralogy of the upper mantle. Rev. Mineral. Geochem. 1991, 25, 355–416. [Google Scholar] [CrossRef]
- Pöykiö, R.; Mäenpä, A.; Perämäki, P.; Niemelä, M.; Välimäki, I. Heavy metals (Cr, Zn, Ni, V, Pb, Cd) in Lingonberries (Vaccinium vitis-idaea L.) and assessment of human exposure in two industrial areas in the Kemi-Tornio region, northern Finland. Arch. Environ. Contam. Toxicol. 2005, 48, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Özgen, S. Modelling and optimization of clean chromite production from fine chromite tailings by a combination of multi gravity separator and hydro cyclone. J. South. Afr. Inst. Min. Metall. 2012, 112, 387–394. [Google Scholar]
- Gajbhiye, T.; Pandey, S.K.; Kim, K.H.; Szulejko, J.E.; Prasad, S. Airborne foliar transfer of PM bound heavy metals in Cassia siamea: A less common route of heavy metal accumulation. Sci. Total Environ. 2016, 573, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Han, G. Characteristics of major elements and heavy metals in atmospheric dust in Beijing, China. J. Geochem. Explor. 2015, 176, 114–119. [Google Scholar] [CrossRef]
- Yang, J.; Teng, Y.; Song, L.; Zuo, R. Tracing sources and contamination assessments of heavy metals in road and foliar dusts in a typical mining city, China. PLoS ONE 2016, 11, e0168528. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Yu, X.; Zhang, Z.; Liu, M.; Liu, X. Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. J. Environ. Sci. 2015, 27, 33–41. [Google Scholar] [CrossRef]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, T.; Kumari, M. Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. Sci. Total Environ. 2020, 137622. [Google Scholar] [CrossRef]
- El-Khatib, A.A.; Abdel-Rahman, A.M.; El-Sheikh, O.M. Leaf geometric design of urban trees: Potentiality to capture airborne particle pollutants. J. Environ. Stud. 2011, 7, 49–59. [Google Scholar] [CrossRef]
- Ram, S.S.; Majumder, S.; Chaudhuri, P.; Chanda, S.; Santra, S.C.; Maiti, P.K.; Sudarshan, M.; Chakraborty, A. Plant canopies: Bio-monitor and trap for re-suspended dust particulates contaminated with heavy metals. Mitig. Adapt. Strateg. Glob. Chang. 2012, 19, 499–508. [Google Scholar] [CrossRef]
- Zha, Y.; Shi, Y.; Tang, J.; Liu, X.; Feng, C.; Zhang, Y. Spatial-temporal variability and dust-capture capability of 8 plants in urban China. Pol. J. Environ. Stud. 2019, 28, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Mo, L.; Ma, Z.; Xu, Y.; Sun, F.; Lun, X.; Liu, X.; Chen, J.; Yu, X. Assessing the capacity of plant species to accumulate particulate matter in Beijing, China. PLoS ONE 2015, 10, e0140664. [Google Scholar] [CrossRef] [PubMed]
- Neinhuis, C.; Barthlott, W. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytol. 1998, 138, 91–98. [Google Scholar] [CrossRef]
- Wang, H.; Shi, H. Particle retention capacity, efficiency, and mechanism of selected plant species: Implications for urban planting for improving urban air quality. Plants 2021, 10, 2109. [Google Scholar] [CrossRef]
Sampling Site | Plant Species | Cr Sources | |
---|---|---|---|
Mines (km) | Roads (m) | ||
†† S1 | Argemone ochroleuca Gomphocarpus fruticosus | 4.1, 7.4 (Cr); 10.1 (Pt) | 24, 29.4 |
††† S2 | Carica papaya Catharanthus roseus Psidium guajava Senna italica | 2.8 (Cr); 9.8, 12.4, 16 (Pt) | 13.6 |
S3 | Citrus limon Ipomoea batatas | 17.9 (Pt) | 104.1 |
S4 | Peltophorum africanum | 3.1 (Pt) | 4.7, 44.2 |
S5 | Tribulus terrestris | 7 (Pt) | 4.1, 20.5 |
S7 | Moringa oleifera | 2.4 (Pt) | 4.9, 23.1 |
† S8 | Ozoroa paniculosa | 4.1 (Cr); 3.8 (Pt) | 64.2 |
a. | Cr | Fe | Mg | Al | Si | Ca |
---|---|---|---|---|---|---|
Fe | 0.641 | |||||
Mg | 0.5429 | 0.9104 ** | ||||
Al | −0.5888 | −0.7945 * | −0.9308 ** | |||
Si | −0.6768 | 0.0594 | 0.1617 | 0.0738 | ||
Ca | −0.7406* | −0.9134 ** | −0.7120* | 0.6783 | 0.2486 | |
b. | ||||||
Fe | 0.9847 ad*** 0.8527 ab** | |||||
Mg | 0.8011 ad* −0.0328 ab | 0.8139 ad* 0.0198 ab | ||||
Al | 0.7881 ad** 0.8012 ab* | 0.8573 ad** 0.6864 ab | 0.6785 ad −0.0260 ab | |||
Si | 0.9867 ad*** 0.8535 ab** | 0.9939 ad*** 0.7225 ab* | 0.8405 ad** 0.1112 ab | 0.8677 ad** 0.8486 ab** | ||
Ca | 0.1699 ad 0.0334 ab | −0.0923 ad −0.2952 ab | 0.3205 ad 0.6999 ab | 0.1057 ad 0.0794 ab | −0.07260 ad 0.1478 ab | |
K | 0.4202 ad −0.3533 ab | 0.4755 ad −0.4097 ab | 0.4803 ad 0.6010 ab | 0.4356 ad −0.6647 ab | 0.4420 ad −0.2976 ab | 0.5990 ad 0.5254 ab |
Elements | a. Soil | b. Leaf Surfaces | ||||
---|---|---|---|---|---|---|
Ad | Ab | |||||
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
Al | −0.938 | 0.103 | 0.866 | 0.180 | 0.932 | −0.096 |
Ca | −0.690 | 0.589 | −0.128 | 0.963 | 0.052 | 0.895 |
Cr | 0.145 | −0.962 | 0.987 | −0.023 | 0.940 | −0.017 |
Fe | 0.620 | −0.723 | 0.994 | 0.054 | 0.860 | −0.172 |
K | - | - | 0.404 | 0.789 | −0.471 | 0.754 |
Mg | 0.968 | 0.201 | 0.816 | 0.376 | 0.066 | 0.903 |
Si | 0.267 | 0.901 | 0.998 | 0.055 | 0.933 | 0.122 |
Eigenvalue | 2.768 | 2.657 | 4.554 | 1.729 | 3.591 | 2.239 |
Cumulative % | 46.130 | 90.416 | 65.057 | 89.764 | 51.294 | 83.275 |
Variables | Ad | Ab | ||
---|---|---|---|---|
Cr wt% | CrD | Cr wt% | CrD | |
Mine frequency | 0.2987 | 0.3590 | 0.2291 | 0.3195 |
Road frequency | −0.431 | 0.1036 | 0.5459 | 0.1013 |
Plant height | 0.3103 | 0.3646 | 0.2271 | 0.6937 * |
Leaf area | 0.9870 *** | 0.8692 *** | −0.2652 | 0.6837 * |
Epicuticular wax | 0.3903 | 0.4084 | 0.5404 | 0.4184 |
Stomata size | −0.2404 | −0.4042 | 0.5373 | −0.1471 |
Stomata density | −0.2808 | −0.4634 | 0.1008 | 0.4075 |
Trichome size | −0.2971 | −0.1172 | 0.0206 | −0.1929 |
Trichome density | −0.3155 | 0.0595 | −0.2390 | 0.1736 |
a. | Ad | Ab | b. | Ad | Ab | ||||
---|---|---|---|---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 1 | Factor 2 | Factor 1 | Factor 2 | Factor 1 | Factor 2 | ||
Cr wt% | 0.874 | 0.215 | 0.652 | 0.071 | CrD | 0.890 | 0.004 | 0.915 | 0.367 |
Mine frequency | 0.298 | 0.028 | 0.256 | 0.458 | Mine frequency | 0.333 | 0.056 | 0.461 | −0.184 |
Road frequency | −0.172 | 0.196 | 0.705 | −0.372 | Road frequency | −0.102 | −0.235 | 0.055 | −0.311 |
Plant height | 0.485 | −0.696 | −0.243 | 0.120 | Plant height | 0.477 | −0.607 | 0.433 | 0.687 |
Leaf area | 0.848 | 0.208 | −0.098 | 0.342 | Leaf area | 0.751 | 0.231 | 0.571 | 0.136 |
Epicuticular wax | 0.515 | 0.196 | 0.659 | 0.712 | Epicuticular wax | 0.556 | 0.290 | 0.757 | −0.507 |
Stomata size | −0.382 | 0.300 | 0.738 | 0.171 | Stomata size | −0.429 | 0.253 | 0.450 | −0.734 |
Stomata density | −0.584 | 0.238 | −0.003 | 0.251 | Stomata density | −0.666 | 0.131 | 0.277 | −0.034 |
Trichome size | −0.190 | −0.916 | 0.109 | −0.839 | Trichome size | −0.127 | −0.996 | −0.389 | 0.084 |
Trichome density | −0.135 | −0.598 | −0.598 | −0.036 | Trichome density | −0.021 | −0.575 | −0.056 | 0.802 |
Eigenvalue | 2.645 | 1.996 | 2.404 | 1.753 | Eigenvalue | 2.664 | 1.972 | 2.400 | 2.202 |
Cumulative % | 26.449 | 46.405 | 24.040 | 41.571 | Cumulative % | 26.641 | 46.367 | 24.006 | 46.027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, S.; Jordaan, A.; Beukes, J.P.; Siebert, S.J. Anthropogenic Sources Dominate Foliar Chromium Dust Deposition in a Mining-Based Urban Region of South Africa. Int. J. Environ. Res. Public Health 2022, 19, 2072. https://doi.org/10.3390/ijerph19042072
Adhikari S, Jordaan A, Beukes JP, Siebert SJ. Anthropogenic Sources Dominate Foliar Chromium Dust Deposition in a Mining-Based Urban Region of South Africa. International Journal of Environmental Research and Public Health. 2022; 19(4):2072. https://doi.org/10.3390/ijerph19042072
Chicago/Turabian StyleAdhikari, Sutapa, Anine Jordaan, Johan Paul Beukes, and Stefan John Siebert. 2022. "Anthropogenic Sources Dominate Foliar Chromium Dust Deposition in a Mining-Based Urban Region of South Africa" International Journal of Environmental Research and Public Health 19, no. 4: 2072. https://doi.org/10.3390/ijerph19042072
APA StyleAdhikari, S., Jordaan, A., Beukes, J. P., & Siebert, S. J. (2022). Anthropogenic Sources Dominate Foliar Chromium Dust Deposition in a Mining-Based Urban Region of South Africa. International Journal of Environmental Research and Public Health, 19(4), 2072. https://doi.org/10.3390/ijerph19042072