Comparison of the Functional State and Motor Skills of Patients after Cerebral Hemisphere, Ventricular System, and Cerebellopontine Angle Tumor Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Patient Assessment
- Impossible to achieve an upright vertical position;
- Possible to stand with the assistance of the therapist who secures the knees, hips, and trunk;
- Independent standing, the possibility of supporting with equipment;
- Gait while learning to walk with a therapist, no the possibility of practical use;
- Gait with the assistance of another person, but only within a room, accessing the wheelchair, toilet;
- Gait with the assistance of another person, distance of several dozen meters (walking in the hospital corridor);
- Independent gait with a walking frame;
- Independent gait with crutches or walking stick;
- Incorrect independent gait;
- Correct independent gait.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnholtz-Sloan, J.S.; Ostrom, Q.T.; Cote, D. Epidemiology of Brain Tumors. Neurol. Clin. 2018, 36, 395–419. [Google Scholar] [CrossRef]
- Zetterling, M.; Elf, K.; Semnic, R.; Latini, F.; Engström, E.R. Time course of neurological deficits after surgery for primary brain tumours. Acta Neurochir. 2020, 162, 3005–3018. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, K.P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, M.S. Handbook of Neurosurgery; Thieme Medical Publishers: New York, NY, USA, 2020. [Google Scholar]
- Brazis, P.W.; Masdeu, J.C.; Biller, J. Localization in Clinical Neurology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Kushner, D.S.; Amidei, C.H. Rehabilitation of motor dysfunction in primary brain tumor patients. Neuro Oncol. Pract. 2015, 2, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Ladomersky, E.; Mozny, A.; Kocherginsky, M.; O’Shea, K.; Reinstein, Z.Z. Glioblastoma as an age-related neurological disorder in adults. Neurolncol Adv. 2021, 4, vdab125. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.; McDonald, A. Breaking down brain cancer. Nature 2018, 561, 40–41. [Google Scholar] [CrossRef] [PubMed]
- Sankey, E.W.; Srinivasan, E.S.; Mehta, V.A.; Bergin, S.M.; Wang, T.Y.; Thompson, E.M.; Fecci, P.E.; Friedman, A.H. Perioperative Assessment of Cerebellar Masses and the Potential for Cerebellar Cognitive Affective Syndrome. World Neurosurg. 2020, 144, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, J.H.; Kwon, T.H. Primary Glioblastoma of the Cerebellopontine Angle: Case Report and Review of the Literature. J. Korean Neurosurg. Soc. 2017, 60, 380–384. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Liu, W.; Wang, Y.; Zhang, J.; Liang, B.; Huang, J.H. Surgical Management and Outcome Experience of 53 Cerebellopontine Angle Meningiomas. Cureus 2017, 9, e1538. [Google Scholar] [CrossRef] [Green Version]
- Bu, J.; Pan, P.; Yao, H.; Gong, W.; Liu, Y.; Yu, Z.; Wang, Z.; Wu, J.; Chen, G. Small Cerebellopontine Angle Meningioma—Surgical Experience of 162 Patients and Literature Review. Front. Oncol. 2020, 10, 558548. [Google Scholar] [CrossRef]
- Kunert, P.; Smolarek, B.; Marchel, A. Facial nerve damage following surgery for cerebellopontine angle tumours. Prevention and comprehensive treatment. Neurol. Neurochir. Pol. 2011, 45, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Qu, P.-R.; Zhang, S.; Li, S.-W.; Zhang, J.; Wang, B.; Liu, P.; Li, C.-D.; Zhao, F. The clinical treatment and outcome of cerebellopontine angle medulloblastoma: A retrospective study of 15 cases. Sci. Rep. 2020, 10, 9769. [Google Scholar] [CrossRef]
- Aftahy, A.K.; Barz, M.; Krauss, P.; Liesche, F.; Wiestler, B.; Combs, S.E.; Straube, C.; Meyer, B.; Gempt, J. Intraventricular neuroepithelial tumors: Surgical outcome, technical considerations and review of literature. BMC Cancer 2020, 20, 1060. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.A.; Birk, H.; Safaee, M.; Yue, J.K.; Burke, J.F.; Viner, J.A.; Pekmezci, M.; Perry, A.; Aghi, M.K.; Berger, M.S.; et al. Surgical resection of fourth ventricular ependymomas: Case series and technical nuances. J. Neurooncol. 2016, 130, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Elwatidy, S.M.; Albakr, A.A.; Al Towim, A.A.; Malik, S.H. Tumors of the lateral and third ventricle: Surgical management and outcome analysis in 42 cases. Neurosciences (Riyadh) 2017, 22, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, V.M.; Jue, T.R.; McDonald, K.L.; Rovin, R.A. The Survival Effect of Repeat Surgery at Glioblastoma Recurrence and its Trend: A Systematic Review and Meta-Analysis. World Neurosurg. 2018, 115, 453–459.e3. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Fernandez, J.; Garcia-Pallero, M.; Blasco, G.; Penanes, J.R.; Gil-Simoes, R.; Pulido, P.; Sola, R.G. Usefulness of Reintervention in Recurrent Glioblastoma: An Indispensable Weapon for Increasing Survival. World Neurosurg. 2017, 108, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Bloch, O.; Han, S.J.; Cha, S.; Sun, M.Z.; Aghi, M.K.; McDermott, M.W.; Berger, M.S.; Parsa, A.T. Impact of extent of resection for recurrent glioblastoma on overall survival: Clinical article. J. Neurosurg. 2012, 117, 1032–1038. [Google Scholar] [CrossRef]
- Chiu, L.; Chiu, N.; Zeng, L.; Zhang, L.; Popović, M.; Chow, R.; Lam, H.; Poon, M.; Chow, E. Quality of life in patients with primary and metastatic brain cancer as reported in the literature using the EORTC QLQ-BN20 and QLQ-C30. Expert Rev. Pharm. Outcomes Res. 2012, 12, 831–837. [Google Scholar] [CrossRef]
- Khan, F.; Amatya, B.; Ng, L.; Drummond, K.; Oliver, J. Multidisciplinary rehabilitation after primary brain tumour treatment. Cochrane Database Syst. Rev. 2013, 1, CD009509. [Google Scholar]
- Bartolo, M.; Zucchella, C.; Pace, A.; Lanzetta, G.; Vecchione, C.; Bartolo, M.; Grillea, G.; Serrao, M.; Tassorelli, C.; Sandrini, G.; et al. Early rehabilitation after surgery improves functional outcome in patients with brain tumours. J. Neurooncol. 2012, 107, 537–544. [Google Scholar] [CrossRef]
- Taheri, P.A.; Butz, D.A.; Greenfield, L.J. Length of stay has minimal impact on the cost of hospital admission. J. Am. Coll. Surg. 2000, 191, 123–130. [Google Scholar] [CrossRef]
- Ģiga, L.; Pētersone, A.; Čakstiņa, S.; Bērziņa, G. Comparison of content and psychometric properties for assessment tools used for brain tumor patients: A scoping review. Health Qual. Life Outcomes 2021, 19, 234. [Google Scholar] [CrossRef]
- Péus, D.; Newcomb, N.; Hofer, S. Appraisal of the Karnofsky Performance Status and proposal of a simple algorithmic system for its evaluation. BMC Med. Inform. Decis. Mak. 2013, 13, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- YıldızÇeltek, N.; Süren, M.; Demir, O.; Okan, İ. Karnofsky Performance Scale validity and reliability of Turkish palliative cancer patients. Turk. J. Med. Sci. 2019, 49, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Schag, C.C.; Heinrich, R.L.; Ganz, P.A. Karnofsky performance status revisited: Reliability, validity, and guidelines. J. Clin. Oncol. 1984, 2, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Grieco, A.; Long, C.J. Investigation of the Karnofsky Performance Status as a measure of quality of life. Health Psychol. 1984, 3, 129–142. [Google Scholar] [CrossRef]
- Banks, J.L.; Marotta, C.A. Outcomes validity and reliability of the modified Rankin scale: Implications for stroke clinical trials: A literature review and synthesis. Stroke 2007, 38, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.T.; Hareendran, A.; Hendry, A.; Potter, J.; Bone, I.; Muir, K.W. Reliability of the modified Rankin Scale across multiple raters: Benefits of a structured interview. Stroke 2005, 36, 777–781. [Google Scholar] [CrossRef] [Green Version]
- Nabors, L.B.; Portnow, J.; Ahluwalia, M.; Baehring, J.; Brem, H.; Brem, S. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 1537–1570. [Google Scholar] [CrossRef]
- Mrugala, M.M.; Ruzevick, J.; Zlomanczuk, P.; Lukas, R.V. Tumor Treating Fields in Neuro-Oncological Practice. Curr. Oncol. Rep. 2017, 19, 53. [Google Scholar] [CrossRef] [PubMed]
- McGirt, M.J.; Mukherjee, D.; Chaichana, K.L.; Than, K.D.; Weingart, J.D.; Quinones-Hinojosa, A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 2009, 65, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonjaret, L.; Guyonnet, M.; Berard, E.; Vironneau, M.; Peres, F.; Sacrista, S.; Ferrier, A.; Ramonda, V.; Vuillaume, C.; Roux, F.-E.; et al. Postoperative complications after craniotomy for brain tumor surgery. Anaesth. Crit. Care Pain Med. 2017, 36, 213–218. [Google Scholar] [CrossRef]
- Li, Y.M.; Suki, D.; Hess, K.; Sawaya, R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J. Neurosurg. 2016, 124, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Benz, L.S.; Wrensch, M.R.; Schildkraut, J.M.; Bondy, M.L.; Warren, J.L.; Wiemels, J.L.; Claus, E.B. Quality of Life After Surgery for Intracranial Meningioma. Cancer 2018, 1, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prell, J.; Rampp, S.; Romstock, J.; Fahlbusch, R.; Strauss, C. Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. J. Neurosurg. 2007, 106, 826–832. [Google Scholar] [CrossRef]
- Lukas, R.V.; Mrugala, M.M. Nonmalignant Brain Tumors. Continuum (MinneapMinn) 2020, 26, 1495–1522. [Google Scholar] [CrossRef]
- Jackson, C.; Westphal, M.; Quiñones-Hinojosa, A. Complications of glioma surgery. Handb. Clin. Neurol. 2016, 134, 201–218. [Google Scholar]
- Ibañez, F.A.L.; Hem, S.; Ajler, P.; Vecchi, E.; Ciraolo, C.; Baccanelli, M.; Tramontano, R.; Knezevich, F.; Carrizo, A. A New Classification of Complications in Neurosurgery. World Neurosurg. 2011, 75, 709–715. [Google Scholar] [CrossRef]
- Groshev, A.; Padalia, D.; Patel, S.; Garcia-Getting, R.; Sahebjam, S.; Forsyth, P.A.; Vrionis, F.D.; Etame, A.B. Clinical outcomes from maximum-safe resection of primary and metastatic brain tumors using awake craniotomy. Clin. Neurol. Neurosurg. 2017, 15, 25–30. [Google Scholar] [CrossRef]
- Grossman, R.; Nossek, E.; Sitt, R.; Hayat, D.; Shahar, T.; Barzilai, O.; Gonen, T.; Korn, A.; Sela, G.; Ram, Z. Outcome of elderly patients undergoing awake-craniotomy for tumor resection. Ann. Surg. Oncol. 2013, 20, 1722–1728. [Google Scholar] [CrossRef] [PubMed]
- Trinh, V.T.; Fahim, D.K.; Shah, K.; Tummala, S.; McCutcheon, I.E.; Sawaya, R.; Suki, D.; Prabhu, S.S. Subcortical injury isan independent predictor of worsening neurological deficits following awake craniotomy procedures. Neurosurgery 2013, 72, 160–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifman, M.A.; Lewis, P.M.; Rosenfeld, J.V.; Hwang, P.Y. Postoperative intracranial haemorrhage: A review. Neurosurg. Rev. 2011, 34, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Jakola, A.S.; Nerland, U.S.; Weber, C.; Solheim, O. The Risk of Getting Worse: Surgically Acquired Deficits, Perioperative Complications and Functional Outcomes after Primary Resection of Glioblastoma. World Neurosurg. 2011, 76, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Fugate, J.E. Complications of Neurosurgery. Continuum (MinneapMinn) 2015, 21, 1425–1444. [Google Scholar] [CrossRef]
- De la Garza-Ramos, R.; Kerezoudis, P.; Tamargo, R.J.; Brem, H.; Huang, J.; Bydon, M. Surgical complications following malignant brain tumor surgery: An analysis of 2002–2011 data. Clin. Neurol. Neurosurg. 2016, 140, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.M.; McCarthy, D.J.; Sandhu, J.; Mayrand, R.; Guerrero, C.; Rosenberg, C.; Gernsback, J.E.; Komotar, R.; Ivan, M. Predictors of Successful Discharge of Patients on Postoperative Day 1 After Craniotomy for Brain Tumor. World Neurosurg. 2019, 126, e869–e877. [Google Scholar] [CrossRef]
- Kwiatkowski, A. Evaluation of Survival in Patients Undergoing Repeated Surgery for Recurrent Brain Glioblastoma. Ph.D. Thesis, LudwikRydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland, 2018. [Google Scholar]
- Kos, N.; Kos, B.; Benedicic, M. Early medical rehabilitation after neurosurgical treatment of malignant brain tumours in Slovenia. Radiol. Oncol. 2016, 50, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Long, D.M.; Gordon, T.; Bowman, H.; Etzel, A.; Burleyson, G.; Betchen, S.; Garonzik, I.M.; Brem, H. Outcome and cost of craniotomy performed to treat tumors in regional academic referral centers. Neurosurgery 2003, 52, 1056–1063. [Google Scholar]
- Theodosopoulos, P.V.; Ringer, A.J.; McPherson, C.M.; Warnick, R.; Kuntz, C.; Zuccarello, M.; Tew, J.M. Measuring surgical outcomes in neurosurgery: Implementation, analysis, and auditing a prospective series of more than 5000 procedures. J. Neurosurg. 2012, 117, 947–954. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.; Klinger, N.V.; Michelhaugh, S.K.; Barger, G.R.; Pannullo, S.C.; Juhász, C. Alternating electric tumor treating fields for treatment of glioblastoma: Rationale, preclinical, and clinical studies. J. Neurosurg. 2018, 128, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandin, K.J.; Smith, B.S. The measure of balance in sitting in stroke rehabilitation prognosis. Stroke 1990, 21, 82–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geler-Kulcu, D.; Gulsen, G.; Buyukbaba, E.; Ozkan, D. Functional recovery of patients with brain tumour or acute stroke after rehabilitation: A comparative study. J. Clin. Neurosci. 2009, 16, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Dulaney, C.R.; McDonald, A.M.; Wallace, A.S.; Fiveash, J. Gait Speed and Survival in Patients with Brain Metastases. J. Pain Symptom Manag. 2017, 54, 105–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reponen, E.; Tuominen, H.; Korja, M. Evidence for the use of preoperative risk assessment scores in elective cranial neurosurgery: A systematic review of the literature. Anesth. Analg. 2014, 119, 420–432. [Google Scholar] [CrossRef]
- Reponen, E.; Tuominen, H.; Hernesniemi, J.; Korja, M. Modified Rankin Scale and Short-Term Outcome in Cranial Neurosurgery: A Prospective and Unselected Cohort Study. World Neurosurg. 2016, 91, 567–573.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazil, L.; Thomas, R.; Laing, R.; Hines, F.; Guerrero, D.; Ashley, S.; Brada, M. Verbally administered Barthel Index as functional assessment in brain tumour patients. J. Neurooncol. 1997, 34, 187–192. [Google Scholar] [CrossRef]
- Kreisl, T.N.; Toothaker, T.; Karimi, S.; DeAngelis, L.M. Ischemic stroke in patients with primary brain tumors. Neurology 2008, 70, 2314–2320. [Google Scholar] [CrossRef]
- Cinotti, R.; Bruder, N.; Srairi, M.; Paugam-Burtz, C.; Beloeil, H.; Pottecher, J.; Geeraerts, T.; Atthar, V.; Guéguen, A.; Triglia, T.; et al. Prediction Score for Postoperative Neurologic Complications after Brain Tumor Craniotomy: A Multicenter Observational Study. Anesthesiology 2018, 129, 1111–1120. [Google Scholar] [CrossRef]
- Ghali, M.G.Z. Telovelar surgical approach. Neurosurg. Rev. 2021, 44, 61–76. [Google Scholar] [CrossRef]
- Tayebi Meybodi, A.; Lawton, M.T.; Tabani, H.; Benet, A. Tonsillobiventral fissure approach to the lateral recess of the fourth ventricle. J. Neurosurg. 2017, 127, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
CH | VS | CPA | ||||
---|---|---|---|---|---|---|
n = 649 | n = 53 | n = 52 | ||||
n (%) | Prior to surgery | After surgery | Prior to surgery | After surgery | Prior to surgery | After surgery |
Limb paresis or paralysis | 49 (7.6%) | 80 (12.3%) | 6 (11.3%) | 14 (26.4%) | 1 (1.9%) | 1 (1.9%) |
Facial nerve palsy | 2 (0.3%) | 5 (0.8%) | 0 | 1 (1.8%) | 3 (5.8%) | 13 (25.0%) |
Balance disturbances, weakness, other | - | 15 (2.3%) | - | 4 (7.3%) | - | 1 (1.9%) |
Postoperative complications | - | 21 (3.2%) | - | 13 (24.5%) | - | 1 (1.9%) |
First surgery | 518 (79.8%) | 49 (92.5%) | 46 (88.7%) | |||
Re-operation | 131 (20.2%) | 4 (7.5%) | 6 (11.3%) |
CH n = 96 | VS n = 16 | CPA n = 15 | Control n = 78 | p-Value | |
---|---|---|---|---|---|
Male n (%) Female n (%) | 51 (53.1%) 45 (46.9%) | 8 (50%) 8 (50%) | 6 (40%) 9 (60%) | 31 (39.7%) 47 (60.3%) | 0.328 |
Age mean ± SD, [range] | 53.0 ± 15.3 [19–83] | 38.9 ± 15.5 [21–81] | 41.7 ± 15.2 [23–71] | 46.8 ± 14.6 [22–78] | 0.003 |
First surgery n (%) | 70 (72.9%) | 15 (93.8%) | 13 (86.7%) | 64 (82.0%) | 0.157 |
Re-operation n (%) | 26 (27.1%) | 1 (6.2%) | 2 (13.3%) | 14 (18.0%) | |
Overall LOS (days) | 18.3 ± 10.7 [4–52] | 39.2 ± 22.1 [12–92] | 15.1 ± 6.9 [8–32] | 8.6 ± 2.0 [5–14] | <0.001 |
LOS after surgery (days) | 14.7 ± 10.3 [2–50] | 34.6 ± 22.3 [10–90] | 12.1 ± 6.8 [5–28] | 5.1 ± 1.1 [3–8] | <0.001 |
Days in ICU after surgery | 0.7 ± 3.6 [0–31] | 3.9 ± 10.0 [0–40] | - | - | 0.022 |
Days of rehabilitation | 11.2 ± 8.2 [1–42] | 25.2 ± 14.2 [8–58] | 8.9 ± 6.0 [3–23] | - | <0.001 |
CH n = 96 | VS n = 16 | CPA n = 15 | p-Value | |
---|---|---|---|---|
Patients with complications n (%) | 21 (21.9%) | 13 (81.3%) | 1 (6.7%) | 0.001 |
Number of complications (n) | 27 * | 17 * | 1 * | |
Grade I n (%) | 10 (10.4%) | 3 (18.8%)) | 0 | 0.226 |
Grade II n (%) | 10 (10.4%) | 9 (56.3%) | 1 | <0.001 |
Grade III n (%) | 7 (7.3%) | 5 (31.3%) | 0 | 0.004 |
Surgical/medical n (%) | 19/8 (70%/30%) | 14/3 (82%/18%) | 1/0 | 0.565 |
Temporary/permanent n (%) | 16/11 (59%/41%) | 11/6 (65%/35%) | 0/1 | 0.435 |
Variable | Time | CH n = 96 | VS n =16 | CPA n = 15 | Control n = 78 |
---|---|---|---|---|---|
Mean ± SD [Range] | Mean ± SD [Range] | Mean ± SD [Range] | Mean ± SD [Range] | ||
BI | Before surgery | 83.2 ± 26.4 [5–100] | 77.5 ± 32.2 [15–100] | 95.0 ± 19.4 [25–100] | 98.1 ± 7.3 [55–100] |
After surgery | 38.9 ± 26.3 [0–100] | 20.0 ± 17.9 [0–60] | 56.0 ± 22.2 [25–100] | 92.4 ± 14.5 [45–100] | |
At discharge | 68.3 ± 28.8 [0–100] | 56.9 ± 33.5 [0–100] | 93.0 ± 10.7 [65–100] | 98.0 ± 7.0 [55–100] | |
KPS | Before surgery | 78.4 ± 10.9 [20–100] | 76.9 ± 21.8 [30–100] | 90.7 ± 15.3 [40–100] | 89.1 ± 5.6 [60–100] |
After surgery | 50.1 ± 19.2 [10–90] | 35.0 ± 15.9 [10–60] | 61.3 ± 15.1 [40–90] | 86.9 ± 8.6 [60–100] | |
At discharge | 68.6 ± 18.3 [10–100] | 63.8 ± 22.5 [20–90] | 82.7 ± 7.0 [70–90] | 89.6 ± 5.9 [60–100] | |
MRS | Before surgery | 1.7 ± 1.3 [0–5] | 1.9 ± 1.5 [0–5] | 0.7 ± 1.1 [0–4] | 0.5 ± 0.7 [0–3] |
After surgery | 3.4 ± 1.1 [0–5] | 4.5 ± 0.7 [3–5] | 2.9 ± 1.0 [1–4] | 0.8 ± 0.9 [0–3] | |
At discharge | 2.5 ± 1.2 [0–5] | 2.8 ± 1.5 [1–5] | 1.4 ± 0.7 [0–3] | 0.5 ± 0.7 [0–3] | |
GI | Before surgery | 8.1 ± 2.8 [1–10] | 7.6 ± 3.3 [1–10] | 9.5 ± 2.1 [2–10] | 9.6 ± 1.1 [4–10] |
After surgery | 4.2 ± 2.8 [1–10] | 2.2 ± 1.5 [1–5] | 5.2 ± 2.5 [1–10] | 9.4 ± 1.4 [3–10] | |
At discharge | 6.8 ± 2.8 [1–10] | 5.6 ± 3.1 [1–10] | 9.1 ± 0.7 [7–10] | 9.7 ± 0.9 [4–10] |
Motor Skills | CH n = 96 | VS n = 16 | CPA n = 15 | C n = 78 |
---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |
Before surgery | ||||
Passive sitting | 95 (99.0%) | 16 (100%) | 15 (100%) | 78 (100%) |
Active sitting | 93 (96.9%) | 16 (100%) | 15 (100%) | 78 (100%) |
Standing | 84 (87.5%) | 12 (75.0%) | 14 (93.3%) | 77 (98.7%) |
Independent gait | 79 (82.3%) | 11 (68.8%) | 14 (93.3%) | 74 (94.9%) |
Week after surgery | ||||
Passive sitting | 89 (92.7%) | 11 (68.8%) | 15 (100%) | 78 (100%) |
Active sitting | 80 (83.3%) | 5 (31.3%) | 15 (100%) | 78 (100%) |
Standing | 62 (64.6%) | 2 (12.5%) | 13 (86.7%) | 78 (100%) |
Independent gait | 37 (38.5%) | 1 (6.3%) | 11 (73.3%) | 76 (97.4%) |
At discharge | ||||
Passive sitting | 96 (100%) | 15 (93.6%) | 15 (100%) | 78 (100%) |
Active sitting | 90 (93.8%) | 11 (68.8%) | 15 (100%) | 78 (100%) |
Standing | 80 (83.3%) | 10 (62.5%) | 15 (100%) | 78 (100%) |
Independent gait | 56 (58.3%) | 6 (37.5%) | 15 (100%) | 76 (97.4%) |
After Surgery | CH | VS | CPA | Control |
---|---|---|---|---|
(Days) | Mean ± SD [Range] | Mean ± SD [Range] | Mean ± SD [Range] | Mean ± SD [Range] |
Passive sitting | 3.8 ± 7.2 [1–66] | 7.4 ± 5.8 [7–15] | 1.7 ± 0.6 [1–3] | 1.2 ± 0.5 [1–4] |
Active sitting | 3.7 ± 4.2 [1–23] | 9.5 ± 9.2 [2–32] | 1.8 ± 0.6 [1–3] | 1.2 ± 0.6 [1–4] |
Independent standing | 5.9 ± 6.7 [1–45] | 17.1 ± 10.2 [2–32] | 4.9 ± 5.0 [1–21] | 1.3 ± 0.7 [1–4] |
Independent gait | 7.0 ± 6.7 [1–26] | 20.0 ± 9.3 [7–32] | 7.3 ± 6.8 [1–24] | 1.5 ± 1.0 [1–4] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewski, S.; Furtak, J.; Zawadka-Kunikowska, M.; Kachelski, M.; Birski, M.; Harat, M. Comparison of the Functional State and Motor Skills of Patients after Cerebral Hemisphere, Ventricular System, and Cerebellopontine Angle Tumor Surgery. Int. J. Environ. Res. Public Health 2022, 19, 2308. https://doi.org/10.3390/ijerph19042308
Krajewski S, Furtak J, Zawadka-Kunikowska M, Kachelski M, Birski M, Harat M. Comparison of the Functional State and Motor Skills of Patients after Cerebral Hemisphere, Ventricular System, and Cerebellopontine Angle Tumor Surgery. International Journal of Environmental Research and Public Health. 2022; 19(4):2308. https://doi.org/10.3390/ijerph19042308
Chicago/Turabian StyleKrajewski, Stanisław, Jacek Furtak, Monika Zawadka-Kunikowska, Michał Kachelski, Marcin Birski, and Marek Harat. 2022. "Comparison of the Functional State and Motor Skills of Patients after Cerebral Hemisphere, Ventricular System, and Cerebellopontine Angle Tumor Surgery" International Journal of Environmental Research and Public Health 19, no. 4: 2308. https://doi.org/10.3390/ijerph19042308
APA StyleKrajewski, S., Furtak, J., Zawadka-Kunikowska, M., Kachelski, M., Birski, M., & Harat, M. (2022). Comparison of the Functional State and Motor Skills of Patients after Cerebral Hemisphere, Ventricular System, and Cerebellopontine Angle Tumor Surgery. International Journal of Environmental Research and Public Health, 19(4), 2308. https://doi.org/10.3390/ijerph19042308