Spatio-Temporal Evolution, Prediction and Optimization of LUCC Based on CA-Markov and InVEST Models: A Case Study of Mentougou District, Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LUCC Classification and Quantification of Landscape Patterns
2.2.1. LUCC Transfer Matrix
2.2.2. Statistical Analysis
2.3. AHP and CA-Markov
2.4. Methods to Assessment ES
2.4.1. Water Yield
2.4.2. Soil Conservation and Soil Loss
2.4.3. Carbon Stocks
3. Results
3.1. Transfer Characteristics of LUCC and Landscape Patterns
3.1.1. Temporal and Spatial Transfer Characteristics of LUCC
3.1.2. Evolution Characteristics of Landscape Patterns of LUCC
3.2. Spatial Distribution of ES and Eco-Environmental Suitability of LUCC
3.2.1. ES of Mentougou District in 2014
3.2.2. Spatial Distribution and Quantitative Structure of Eco-Environment
3.2.3. Spatial Distribution Characteristics of Suitable LUCC
3.3. Comparative Results of LUCC and ES under the two Scenarios
3.3.1. LUCC Prediction and Optimization Results in 2030
3.3.2. Comparison of the ES of Present, Prediction and Optimization
4. Discussion
4.1. Impacts of Human Activities and Policies on LUCC
4.2. The Impact of Landscape Patterns Changes
4.3. Spatial Suitability of Various Types of LUCC in the Region
4.4. Impacts of Future LUCC on ES
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Types | Abbreviation | Content |
---|---|---|
Land use and land coverage changes (LUCC) | BUL | Built-up land |
OC | Orchard | |
WB | Water bodies | |
CL | Cropland | |
GL | Grassland | |
WL | Wasteland | |
BL | Bareland | |
FL | Forestland | |
SL | Shrubland | |
Landscape metrics (LM) | NP | Number patches |
PD | Patch density | |
MPS | Mean Patch Area | |
COHESION | Patch Cohesion Index | |
Ecosystem service (ES) | WY | Water yield |
SLO | Soil Loss | |
SC | Soil conservation | |
CS | Carbon stocks |
BUL | OC | WB | CL | GL | WL | BL | FL | SL | |
---|---|---|---|---|---|---|---|---|---|
BUL | 65.16 | ||||||||
OC | 1.37 | 44.99 | 8.41 | 2.4 | |||||
WB | 18.2 | 0.45 | |||||||
CL | 3.07 | 23.01 | 3.98 | ||||||
GL | 17.07 | ||||||||
WL | 0.43 | 2.06 | 7.18 | 82.02 | 1.93 | 32.09 | |||
BL | 0.98 | 1.11 | |||||||
FL | 599.58 | ||||||||
SL | 0.8 | 538.59 |
BUL | OC | WB | CL | GL | WL | BL | FL | SL | |
---|---|---|---|---|---|---|---|---|---|
BUL | 70.03 | ||||||||
OC | 0.83 | 34.13 | 0.87 | 7.86 | 1.3 | ||||
WB | 18.2 | ||||||||
CL | 0.4 | 20.52 | 4.15 | ||||||
GL | 18.01 | 0.28 | 6.94 | ||||||
WL | 0.14 | 5.29 | 2.46 | 0.62 | 68.6 | 8.36 | 9.39 | ||
BL | 0.45 | 2.59 | |||||||
FL | 0.54 | 600.7 | 33.63 | ||||||
SL | 1.84 | 3.76 | 532.99 |
BUL | OC | WB | CL | GL | WL | BL | FL | SL | |
---|---|---|---|---|---|---|---|---|---|
BUL | 71.39 | ||||||||
OC | 32.01 | 2.75 | 4.66 | ||||||
WB | 20.04 | ||||||||
CL | 6.52 | 0.17 | 17.17 | 0.51 | |||||
GL | 12.59 | 6.49 | |||||||
WL | 1.07 | 5.14 | 68.95 | 1.08 | 4.38 | ||||
BL | 0.06 | 2.53 | |||||||
FL | 563.65 | 49.46 | |||||||
SL | 2.29 | 0.01 | 9.92 | 572.04 |
BUL | OC | WB | CL | GL | WL | BL | FL | SL | |
---|---|---|---|---|---|---|---|---|---|
BUL | 78.98 | ||||||||
OC | 32.18 | ||||||||
WB | 18.76 | 3.57 | |||||||
CL | 2.49 | 4.02 | 15.8 | ||||||
GL | 12.65 | ||||||||
WL | 0.48 | 6.31 | 0.39 | 58.13 | 12.89 | ||||
BL | 2.21 | 0.32 | |||||||
FL | 554.01 | 20.63 | |||||||
SL | 0.91 | 630.15 |
BUL | OC | WB | CL | GL | WL | BL | FL | SL | |
---|---|---|---|---|---|---|---|---|---|
BUL | 81.96 | ||||||||
OC | 38.03 | 4.48 | |||||||
WB | 16.34 | 1.05 | 1.37 | ||||||
CL | 2.32 | 2.29 | 7.37 | 3.82 | |||||
GL | 15.78 | 0.82 | |||||||
WL | 0.39 | 16.77 | 0.77 | 36.11 | 4.09 | ||||
BL | 0.85 | 1.36 | |||||||
FL | 502.31 | 52.61 | |||||||
SL | 51.01 | 612.98 |
BUL | OC | WB | CL | GL | WL | BL | FL | SL | |
---|---|---|---|---|---|---|---|---|---|
BUL | 84.67 | ||||||||
OC | 53.19 | 0.74 | 3.16 | ||||||
WB | 16.17 | 0.17 | |||||||
CL | 1.6 | 7.59 | |||||||
GL | 16.89 | 1.11 | |||||||
WL | 0.02 | 0.28 | 1.6 | 0.66 | 23.88 | 9.67 | |||
BL | 0.14 | 1.22 | |||||||
FL | 553.32 | ||||||||
SL | 0.29 | 3.22 | 675.29 |
BUL | OC | WB | CL | GL | WL | BL | FL | SL | |
---|---|---|---|---|---|---|---|---|---|
BUL | 65.16 | ||||||||
OC | 2.58 | 39.59 | 1.77 | 13.23 | |||||
WB | 0.62 | 16.42 | 0.05 | 0.94 | 0.62 | ||||
CL | 15.49 | 2.51 | 7.98 | 0.12 | 3.96 | ||||
GL | 13.79 | 3.28 | |||||||
WL | 2.42 | 11.11 | 0.13 | 1.73 | 23.3 | 0.37 | 2.64 | 84.01 | |
BL | 1.24 | 0.85 | |||||||
FL | 479.12 | 120.46 | |||||||
SL | 0.03 | 74.79 | 464.57 |
Scenario_2 | CL | OC | FL | SHL | GL | WB | BUL | WL | BL |
---|---|---|---|---|---|---|---|---|---|
Quantitative of LUCC | 9.93 | 53.21 | 579.45 | 689.23 | 0.19 | 22.33 | 99.32 | 0.00 | 1.22 |
Factors | Types | Area (km2) | Percentage (%) | Suitability Evaluation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cropland | Orchard | Forestland | Grassland | Shrubland | Legend | |||||
Slope(°) | ≤5 | 107.59 | 7.4 | 4 | 4 | 4 | 4 | 4 | High | |
5~15 | 386.62 | 26.57 | 3 | 3 | 4 | 4 | 4 | |||
15~25 | 475.07 | 32.65 | 0 | 2 | 3 | 3 | 4 | |||
≥25 | 485.6 | 33.38 | 0 | 0 | 2 | 0 | 2 | |||
Aspect(°) | 0° | 6.48 | 0.45 | 4 | 4 | 4 | 4 | 4 | Low | |
0°–45° | 194.21 | 13.35 | 2 | 1 | 4 | 3 | 4 | |||
45°–135° | 392.64 | 26.99 | 3 | 3 | 3 | 4 | 3 | |||
135°–225° | 363.82 | 25.01 | 4 | 4 | 4 | 4 | 4 | |||
225°–315° | 324.13 | 22.28 | 3 | 3 | 3 | 4 | 3 | |||
315°–360° | 173.61 | 11.93 | 2 | 1 | 4 | 3 | 4 | |||
Elevation(m) | ≤200 | 85 | 5.84 | 4 | 4 | 4 | 4 | 4 | ||
200~500 | 333.15 | 22.9 | 3 | 3 | 4 | 4 | 4 | |||
≥500 | 1036.73 | 71.26 | 1 | 2 | 4 | 4 | 4 | |||
Soil type | Soilless area | 14.48 | 1 | 0 | 0 | 0 | 0 | 0 | ||
Cinnamon soil | 1136.32 | 78.1 | 3 | 3 | 4 | 4 | 4 | |||
Brown soil | 298.93 | 20.55 | 4 | 4 | 4 | 4 | 4 | |||
Moisture soil | 0.88 | 0.06 | 4 | 4 | 4 | 4 | 4 | |||
Meadow soil | 4.27 | 0.29 | 0 | 3 | 2 | 4 | 2 | |||
Soil Conservation(t/hm2) | ≤200 | 140.06 | 9.63 | 3 | 3 | 4 | 4 | 4 | ||
200~400 | 738.19 | 50.74 | 2 | 2 | 4 | 4 | 4 | |||
400~600 | 543 | 37.32 | 1 | 1 | 4 | 3 | 4 | |||
≥600 | 33.64 | 2.31 | 0 | 0 | 4 | 2 | 4 | |||
Water Yield(m3/hm2) | ≤500 | 84.63 | 5.82 | 0 | 0 | 0 | 2 | 1 | ||
500~1000 | 361.03 | 24.82 | 1 | 2 | 2 | 3 | 2 | |||
1000~1500 | 375.98 | 25.84 | 4 | 3 | 3 | 3 | 3 | |||
≥1500 | 633.24 | 43.53 | 4 | 4 | 4 | 4 | 4 | |||
Soil loss(t/hm2) | ≤5 | 981.68 | 67.48 | 4 | 4 | 4 | 4 | 4 | ||
5~10 | 424.09 | 29.15 | 3 | 3 | 4 | 3 | 4 | |||
10~15 | 22.91 | 1.57 | 1 | 2 | 4 | 2 | 4 | |||
≥15 | 26.2 | 1.8 | 0 | 0 | 4 | 1 | 4 | |||
pH of soil | 5.0~6.5 | 395.5 | 27.18 | 0 | 0 | 3 | 3 | 3 | ||
6.5~7.5 | 1027.39 | 70.62 | 4 | 4 | 4 | 4 | 4 | |||
7.5~8.5 | 31.99 | 2.2 | 2 | 2 | 3 | 3 | 3 |
References
- Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.C.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; et al. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science 2006, 314, 787–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Xu, J.; Wang, Y.; Yan, B. Analyzing the influence of land use/land cover change on landscape pattern and ecosystem services in the Poyang Lake Region, China. Environ. Sci. Pollut. Res. 2021, 28, 27193–27206. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Pei, S.; Liu, X.; Qiao, Q.; Liu, C. Mapping and analysing tradeoffs, synergies and losses among multiple ecosystem services across a transitional area in Beijing, China. Ecol. Indic. 2021, 123, 107329. [Google Scholar] [CrossRef]
- Mu, L.; Fang, L.; Dou, W.; Wang, C.; Qu, X.; Yu, Y. Urbanization-induced spatio-temporal variation of water resources utilization in northwestern China: A spatial panel model based approach. Ecol. Indic. 2021, 125, 107457. [Google Scholar] [CrossRef]
- Ulucak, R.; Erdogan, F.; Bostanci, S.H. A STIRPAT-based investigation on the role of economic growth, urbanization, and energy consumption in shaping a sustainable environment in the Mediterranean region. Environ. Sci. Pollut. Res. 2021, 28, 55290–55301. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Wu, Z.X.; Zhang, Q.; Song, C.Q.; Zhang, F.; Zhu, X.D.; Sun, P.; Fan, K.K.; Yu, H.Q.; Shen, Z.X. Impacts of urbanization on spatio-temporal variations of temperature over the Pearl River Delta. Acta Geogr. Sin. 2019, 74, 2342–2357. [Google Scholar] [CrossRef]
- Zięba-Kulawik, K.; Hawryło, P.; Wężyk, P.; Matczak, P.; Przewoźna, P.; Inglot, A.; Mączka, K. Improving methods to calculate the loss of ecosystem services provided by urban trees using LiDAR and aerial orthophotos. Urban For. Urban Green. 2021, 63, 127195. [Google Scholar] [CrossRef]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Feng, J.; Jia, X.; Li, J. Dynamics of spatial relationships among ecosystem services and their determinants: Implications for land use system reform in Northwestern China. Land Use Policy 2021, 102, 105231. [Google Scholar] [CrossRef]
- Elhacham, E.; Alpert, P. Temperature patterns along an arid coastline experiencing extreme and rapid urbanization, case study: Dubai. Sci. Total Environ. 2021, 784, 147168. [Google Scholar] [CrossRef] [PubMed]
- Millennium Ecosystem Assessment. In Ecosystems and Human Well-Being. Synthesis; Island Press: Washington DC, USA, 2005.
- Kim, I.; Lee, J.; Kwon, H. Participatory ecosystem service assessment to enhance environmental decision-making in a border city of South Korea. Ecosyst. Serv. 2021, 51, 101337. [Google Scholar] [CrossRef]
- Shah, M.; Cummings, A.R. An analysis of the influence of the human presence on the distribution of provisioning ecosystem services: A Guyana case study. Ecol. Indic. 2021, 122, 107255. [Google Scholar] [CrossRef]
- Dong, X.; Wang, X.; Wei, H.; Fu, B.; Wang, J.; Uriarte-Ruiz, M. Trade-offs between local farmers’ demand for ecosystem services and ecological restoration of the Loess Plateau, China. Ecosyst. Serv. 2021, 49, 101295. [Google Scholar] [CrossRef]
- Giefer, M.M.; An, L.; Chen, X. Normative, livelihood, and demographic influences on enrollment in a payment for ecosystem services program. Land Use Policy 2021, 108, 105525. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, Z.; Tan, J. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: A case study in three gorges reservoir area of Chongqing, China. Environ. Sci. Pollut. Res. 2019, 26, 20669–20688. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, Y. Construction of super-resolution model of remote sensing image based on deep convolutional neural network. Comput. Commun. 2021, 178, 191–200. [Google Scholar] [CrossRef]
- Mamanis, G.; Vrahnakis, M.; Chouvardas, D.; Nasiakou, S.; Kleftoyanni, V. Land Use Demands for the CLUE-S Spatiotemporal Model in an Agroforestry Perspective. Land 2021, 10, 1097. [Google Scholar] [CrossRef]
- Hu, S.; Chen, L.; Li, L.; Zhang, T.; Yuan, L.; Cheng, L.; Wang, J.; Wen, M. Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China. Int. J. Environ. Res. Public Health 2020, 17, 4228. [Google Scholar] [CrossRef]
- Motlagh, Z.K.; Lotfi, A.; Pourmanafi, S.; Ahmadizadeh, S.; Soffianian, A. Spatial modeling of land-use change in a rapidly urbanizing landscape in central Iran: Integration of remote sensing, CA-Markov, and landscape metrics. Environ. Monit. Assess. 2020, 192, 695. [Google Scholar] [CrossRef]
- Huang, S.; Xi, F.; Chen, Y.; Gao, M.; Pan, X.; Ren, C. Land Use Optimization and Simulation of Low-Carbon-Oriented—A Case Study of Jinhua, China. Land 2021, 10, 1020. [Google Scholar] [CrossRef]
- Manca, F.; Robinson, E.; Dillon, J.F.; Boyd, K.A. Eradicating hepatitis C: Are novel screening strategies for people who inject drugs cost-effective? Int. J. Drug Policy 2020, 82, 102811. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, J.; Luo, H.; Wang, H. Prediction of hydrological responses to land use change. Sci. Total Environ. 2020, 708, 134998. [Google Scholar] [CrossRef] [PubMed]
- Jenerette, G.D.; Wu, J. Analysis and simulation of land-use change in the central Arizona—Phoenix region, USA. Landsc. Ecol. 2001, 16, 616–626. [Google Scholar] [CrossRef]
- Nourqolipour, R.; Mohamed Shariff, A.R.B.; Balasundram, S.K.; Ahmad, N.B.; Sood, A.M.; Buyong, T.; Amiri, F. A GIS-based model to analyze the spatial and temporal development of oil palm land use in Kuala Langat district, Malaysia. Environ. Earth Sci. 2015, 73, 1687–1700. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J.; van Vuuren, D.; Ringler, C.; Cramer, W.; Masui, T.; Alder, J.; Schulze, K. Changes in Nature’s Balance Sheet: Model-based Estimates of Future Worldwide Ecosystem Services. Ecol. Soc. 2005, 10, art19. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, P.R.; Ehrlich, A.H. Environmental Problem Solving. Ecology 1987, 68, 2067–2068. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Raskin, P.D. Global Scenarios: Background Review for the Millennium Ecosystem Assessment. Ecosystems 2005, 8, 133–142. [Google Scholar] [CrossRef]
- Heydinger, J.M. Reinforcing the Ecosystem Services Perspective: The Temporal Component. Ecosystems 2016, 19, 661–673. [Google Scholar] [CrossRef]
- Foudi, S.; Osés-Eraso, N.; Tamayo, I. Integrated spatial flood risk assessment: The case of Zaragoza. Land Use Policy 2015, 42, 278–292. [Google Scholar] [CrossRef]
- FU, B.J. The integrated studies of geography: Coupling of patterns and processes. Acta Geogr. Sin. 2014, 69, 1052–1059. [Google Scholar] [CrossRef]
- Ożgo, M.; Urbańska, M.; Marzec, M.; Kamocki, A.; Andrzejewski, W.; Golski, J.; Lewandowski, K.; Geist, J. Lake-stream transition zones support hotspots of freshwater ecosystem services: Evidence from a 35-year study on unionid mussels. Sci. Total Environ. 2021, 774, 145114. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Shi, Y.; Feng, C.; Guo, L. The spatial relationship between ecosystem service scarcity value and urbanization from the perspective of heterogeneity in typical arid and semiarid regions of China. Ecol. Indic. 2021, 132, 108299. [Google Scholar] [CrossRef]
- Lee, L.S.H.; Zhang, H.; Jim, C.Y. Serviceable tree volume: An alternative tool to assess ecosystem services provided by ornamental trees in urban forests. Urban For. Urban Green. 2021, 59, 127003. [Google Scholar] [CrossRef]
- Grunhut, J.H.; Wade, G.A.; Marcolino, W.L.F.; Petit, V. A MiMeS analysis of the magnetic field and circumstellar environment of the weak-wind O9 sub-giant star HD 57682. Proc. Int. Astron. Union 2010, 6, 188–189. [Google Scholar] [CrossRef] [Green Version]
- Boumans, R.; Costanza, R.; Farley, J.; Wilson, M.A.; Portela, R.; Rotmans, J.; Villa, F.; Grasso, M. Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecol. Econ. 2002, 41, 529–560. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, H.; Liu, J.; Wei, X.; Peng, C.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.; Ju, W. Evaluating the spatiotemporal variations of water budget across China over 1951-2006 using IBIS model. Hydrol. Process. 2010, 24, 429–445. [Google Scholar] [CrossRef]
- Carver, A.D.; Unger, D.R.; Parks, C.L. Modeling Energy Savings from Urban Shade Trees: An Assessment of the CITYgreen® Energy Conservation Module. Environ. Manag. 2004, 34, 650–655. [Google Scholar] [CrossRef]
- Lahiji, R.N.; Dinan, N.M.; Liaghati, H.; Ghaffarzadeh, H.; Vafaeinejad, A. Scenario-based estimation of catchment carbon storage: Linking multi-objective land allocation with InVEST model in a mixed agriculture-forest landscape. Front. Earth Sci. 2020, 14, 637–646. [Google Scholar] [CrossRef]
- Caro, C.; Marques, J.C.; Cunha, P.P.; Teixeira, Z. Ecosystem services as a resilience descriptor in habitat risk assessment using the InVEST model. Ecol. Indic. 2020, 115, 106426. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Sun, X.; Yang, P.; Tao, Y.; Bian, H. Improving ecosystem services supply provides insights for sustainable landscape planning: A case study in Beijing, China. Sci. Total Environ. 2022, 802, 149849. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Shi, M.; Liu, C.; Wang, B.; Kang, H.; Hu, X. Changes of Ecosystem Services and Landscape Patterns in Mountainous Areas: A Case Study in the Mentougou District in Beijing. Sustainability 2018, 10, 3689. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Zhao, Y.; Ding, G.; Gao, G.; Shi, M.; Cao, Y. Effects of Urbanization on Landscape Patterns in a Mountainous Area: A Case Study in the Mentougou District, Beijing, China. Sustainability 2016, 8, 1190. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liu, X.; Zhao, D.; Wang, B.; Jin, J.; Hu, D. Evaluating and modeling ecosystem service loss of coal mining: A case study of Mentougou district of Beijing, China. Ecol. Complex. 2011, 8, 139–143. [Google Scholar] [CrossRef]
- Liu, L.; Qin, M.; Tian, N.; Zhou, C.; Wang, D.; Basinger, J.F.; Xue, J. Belowground rhizomes and roots in waterlogged paleosols: Examples from the Middle Jurassic of Beijing, China. Geobios 2018, 51, 419–433. [Google Scholar] [CrossRef]
- Sheng, W.; Zhen, L.; Xie, G.; Xiao, Y. Determining eco-compensation standards based on the ecosystem services value of the mountain ecological forests in Beijing, China. Ecosyst. Serv. 2017, 26, 422–430. [Google Scholar] [CrossRef]
- Mentougou District Local Chronicles Compilation Committee of Beijing Municipality. Beijing Mentougou Yearbook; Chinese Communist Party History Publishing House: Beijing, China, 2015. [Google Scholar]
- Mentougou District People's Government of Beijing Municipality. Overall Land Use Planning of Mentougou District (2006-2020). 2010. Available online: http://www.mnr.gov.cn/gk/ghjh/201811/t20181101_2324823.html (accessed on 7 October 2021).
- People’s Government of Beijing Municipality. In Beijing urban master plan (2004-2020); 2007. Available online: http://ghzrzyw.beijing.gov.cn/zhengwuxinxi/zxzt/bjcsztgh2004/202201/t20220110_2587452.html (accessed on 7 October 2021).
- United States Geological Survey. Remote Sensing Images. Available online: https://www.usgs.gov/ (accessed on 19 October 2021).
- Geospatial Data Cloud. Remote Sensing Images. Available online: https://www.gscloud.cn/ (accessed on 11 October 2021).
- Chinese Academy of Sciences. National Earth System Science Data Sharing Infrastructure. Available online: http://www.geodata.cn/ (accessed on 27 October 2021).
- Jia, J.L.; Zhang, Y.; Wang, C.; Li, D.; Liu, B.W.; Liu, Y.; Zhao, L.; Yang, S.Q. Soil organic pollution characteristics and microbial properties in coal mining areas of mentougou. Huanjing Kexue/Environ. Sci. 2011, 32, 875–879. [Google Scholar]
- Krzywinski, M.I.; Schein, J.E.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Y.; Zhang, C.; Zhang, G.; Xing, L.; Zhong, Q.; Liu, J.; Lin, Y.; Zheng, X.; Yang, N.; Sun, H.; et al. Effects of Urbanization on Landscape Patterns in the Middle Reaches of the Yangtze River Region. Land 2021, 10, 1025. [Google Scholar] [CrossRef]
- Wu, H.; Hu, X.; Sun, S.; Dai, J.; Ye, S.; Du, C.; Chen, H.; Yu, G.; Zhou, L.; Chen, J. Effect of increasing of water level during the middle of dry season on landscape pattern of the two largest freshwater lakes of China. Ecol. Indic. 2020, 113, 106283. [Google Scholar] [CrossRef]
- Yi, Y.; Shi, M.; Liu, C.; Kang, H.; Wang, B. On Landscape Patterns in Typical Mountainous Counties Middle Reaches of the Yangtze River in China. Int. J. Environ. Res. Public Health 2021, 18, 4000. [Google Scholar] [CrossRef]
- Feng, X.; Xiu, C.; Bai, L.; Zhong, Y.; Wei, Y. Comprehensive evaluation of urban resilience based on the perspective of landscape pattern: A case study of Shenyang city. Cities 2020, 104, 102722. [Google Scholar] [CrossRef]
- Kurttila, M.; Pesonen, M.; Kangas, J.; Kajanus, M. Utilizing the analytic hierarchy process (AHP) in SWOT analysis—A hybrid method and its application to a forest-certification case. For. Policy Econ. 2000, 1, 41–52. [Google Scholar] [CrossRef]
- Adhikari, S.; Southworth, J. Simulating Forest Cover Changes of Bannerghatta National Park Based on a CA-Markov Model: A Remote Sensing Approach. Remote Sens. 2012, 4, 3215–3243. [Google Scholar] [CrossRef] [Green Version]
- Etemadi, H.; Smoak, J.M.; Karami, J. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environ. Earth Sci. 2018, 77, 208. [Google Scholar] [CrossRef]
- Guo, H.W.; Sun, X.Y.; Lian, L.S.; Zhang, D.Z.; Xu, Y. Response of water yield function of ecosystem to land use change in Nansi Lake Basin based on CLUE-S model and InVEST-model. Chin. J. Appl. Ecol. 2016, 27, 2899–2906. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.J.; Zhu, D.; Zhang, J. Spatiotemporal changes in ecosystem services in the conservation priorities of the southern hill and mountain belt, China. Ecol. Indic. 2021, 122, 107225. [Google Scholar] [CrossRef]
- Zhang, C.; Ju, W.; Chen, J.M.; Zan, M.; Li, D.; Zhou, Y.; Wang, X. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Clim. Change. 2013, 118, 933–948. [Google Scholar] [CrossRef]
- Edmondson, J.L.; Davies, Z.G.; McCormack, S.A.; Gaston, K.J.; Leake, J.R. Land-cover effects on soil organic carbon stocks in a European city. Sci. Total Environ. 2014, 472, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Jin, X.; Chen, T.; Wu, J. Understanding trade-offs and synergies of ecosystem services to support the decision-making in the Beijing–Tianjin–Hebei region. Land Use Policy 2021, 106, 105446. [Google Scholar] [CrossRef]
- Jin, J.; Wang, R.S.; Li, F.; Huang, J.L.; Zhou, C.B.; Zhang, H.T.; Yang, W.R. Conjugate ecological restoration approach with a case study in Mentougou district, Beijing. Ecol. Complex. 2011, 8, 161–170. [Google Scholar] [CrossRef]
- Du, J.; Thill, J.C.; Peiser, R.B.; Feng, C. Urban land market and land-use changes in post-reform China: A case study of Beijing. Landsc. Urban Plan. 2014, 124, 118–128. [Google Scholar] [CrossRef]
- Du, J.; Thill, J.C.; Peiser, R.B. Land pricing and its impact on land use efficiency in post-land-reform China: A case study of Beijing. Cities 2016, 50, 68–74. [Google Scholar] [CrossRef]
- Zhou, D.C.; Zhao, S.Q.; Zhu, C. The Impact of the Grain for Green Project on the Land Use/Cover Change in the Northern Farming-pastoral Ecotone, China—A Case Study of Kezuohouqi County. Sci. Geogr. Sin. 2012, 32, 442–449. [Google Scholar] [CrossRef]
- Historic Land Use Conversion 1984–2010. Available online: http://www.conservation.ca.gov/dlrp/fmmp/products/Pages/DownloadGISdata.aspx (accessed on 7 October 2021).
- Duan, M.; Liu, Y.; Yu, Z.; Li, L.; Wang, C.; Axmacher, J.C. Environmental factors acting at multiple scales determine assemblages of insects and plants in agricultural mountain landscapes of northern China. Agric. Ecosyst. Environ. 2016, 224, 86–94. [Google Scholar] [CrossRef]
- Qin, D.T.; Cai, B.F. Risk Assessment of Biological Invasion in Beijing. Environ. Prot. 2004, 44–47. [Google Scholar] [CrossRef]
- Wang, H.H.; Liu, J.L.; Zhang, R.; Liu, J.K.; Zou, Y.Q.; Zou, D.L.; Nan, H.L.; Zhang, Z.M. The Study of Invasive Alien Plants in Beijing. J. Agric. 2014, 4, 49–52. [Google Scholar] [CrossRef]
- Bai, Y.L.; Wang, R.S.; Jin, J.S. Water eco-service assessment and compensation in a coal mining region—A case study in the Mentougou District in Beijing. Ecol. Complex. 2011, 8, 144–152. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; Pham, B.T.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Lokesh, R.; Pradhan, B.; Alamri, A. Factors Affecting Landslide Susceptibility Mapping: Assessing the Influence of Different Machine Learning Approaches, Sampling Strategies and Data Splitting. Land 2021, 10, 989. [Google Scholar] [CrossRef]
Types | Model Name | Calculation Method | Connotation |
---|---|---|---|
Area/ Density | NP | The number of patches in landscape. | |
PD | The density of landscape | ||
MPS | ) | It can be used to characterize landscape fragmentation. | |
Aggregation | COHESION | It reflects the aggregation degree of patches in the landscape. |
Type | CL | OC | FL | GL | SL |
---|---|---|---|---|---|
Appropriate | 16.45 | 27.79 | 1341.78 | 1331.26 | 1346.02 |
Relatively appropriate | 497.91 | 1102.86 | 9.16 | 19.68 | 4.92 |
Inappropriate | 940.52 | 324.23 | 103.94 | 103.94 | 103.94 |
LUCC | 2014 | Prediction of 2030 (Scenario_1) | Optimization of 2030 (Scenario_2) |
---|---|---|---|
CL | 9.93 | 5.07 | 9.93 |
OC | 53.21 | 41.43 | 53.21 |
FL | 556.54 | 503.07 | 579.45 |
SL | 689.23 | 759.39 | 689.23 |
GL | 17.98 | 13.05 | 0.19 |
WB | 16.45 | 16.17 | 22.33 |
BUL | 86.27 | 90.81 | 99.32 |
WL | 24.05 | 25.27 | 0.00 |
BL | 1.22 | 0.61 | 1.22 |
ES | 2014 | Prediction for 2030 (Scenario_1) | Optimization for 2030 (Scenario_2) |
---|---|---|---|
WY(m3) | 2.02 × 108 | 1.86 × 108 | 2.65 × 108 |
CS(t) | 1713.54 × 104 | 1707.39 × 104 | 1707.53 × 104 |
SC(t) | 0.50 × 108 | 0.42 × 108 | 0.56 × 108 |
SLO(t) | 0.66 × 106 | 0.74 × 106 | 0.60 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.; Zhang, C.; Zhu, J.; Zhang, Y.; Sun, H.; Kang, H. Spatio-Temporal Evolution, Prediction and Optimization of LUCC Based on CA-Markov and InVEST Models: A Case Study of Mentougou District, Beijing. Int. J. Environ. Res. Public Health 2022, 19, 2432. https://doi.org/10.3390/ijerph19042432
Yi Y, Zhang C, Zhu J, Zhang Y, Sun H, Kang H. Spatio-Temporal Evolution, Prediction and Optimization of LUCC Based on CA-Markov and InVEST Models: A Case Study of Mentougou District, Beijing. International Journal of Environmental Research and Public Health. 2022; 19(4):2432. https://doi.org/10.3390/ijerph19042432
Chicago/Turabian StyleYi, Yang, Chen Zhang, Jinqi Zhu, Yugang Zhang, Hao Sun, and Hongzhang Kang. 2022. "Spatio-Temporal Evolution, Prediction and Optimization of LUCC Based on CA-Markov and InVEST Models: A Case Study of Mentougou District, Beijing" International Journal of Environmental Research and Public Health 19, no. 4: 2432. https://doi.org/10.3390/ijerph19042432
APA StyleYi, Y., Zhang, C., Zhu, J., Zhang, Y., Sun, H., & Kang, H. (2022). Spatio-Temporal Evolution, Prediction and Optimization of LUCC Based on CA-Markov and InVEST Models: A Case Study of Mentougou District, Beijing. International Journal of Environmental Research and Public Health, 19(4), 2432. https://doi.org/10.3390/ijerph19042432