Acceptability and Preliminary Results of Technology-Assisted Balance Training in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical Assessment Description
2.3. Training Program
Instrumentation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Age | Sex | Marital Status | Educational Level | H&Y | Rankin Scale | GDS | FAC | MMSE | |
---|---|---|---|---|---|---|---|---|---|
Pt 1 | 80 | F | Married | University | 2 | 1 | 0 | 4 | 30 |
Pt 2 | 79 | M | Married | Secondary | 1 | 1 | 4 | 4 | 29 |
Pt 3 | 75 | M | Married | Secondary | 2 | 2 | 1 | 5 | 29 |
Pt 4 | 65 | M | Married | University | 2 | 3 | 4 | 4 | 24 |
Pt 5 | 83 | M | Married | Primary | 2 | 3 | 3 | 4 | 24 |
Pt 6 | 66 | F | Married | Primary | 1 | 1 | 4 | 5 | 27 |
Pt 7 | 77 | F | Married | Primary | 3 | 1 | 0 | 5 | 28 |
Pt 8 | 67 | F | Married | Primary | 2 | 1 | 1 | 4 | 26 |
Pt 9 | 78 | M | Married | Primary | 2 | 1 | 3 | 5 | 28 |
Pt 10 | 65 | F | Married | Primary | 1 | 1 | 3 | 5 | 29 |
Pt 11 | 68 | M | Married | University | 1 | 1 | 3 | 5 | 30 |
Pt 12 | 69 | M | Married | Secondary | 1 | 1 | 4 | 5 | 30 |
Pt 13 | 71 | F | Married | Primary | 1 | 0 | 3 | 5 | 26 |
Pt 14 | 67 | F | Widowed | Secondary | 1 | 1 | 0 | 5 | 26 |
Pt 15 | 74 | F | Married | Primary | 3 | 1 | 3 | 4 | 27 |
Pt 16 | 81 | F | Widowed | Secondary | 3 | 1 | 3 | 5 | 28 |
Appendix B
POMA | POMA | |||||
---|---|---|---|---|---|---|
BI | Gait | Balance | SF-12 | FES-I | Gait Speed | |
Pt 1 | 90 | 12 | 16 | 36 | 9 | 1.42 |
Pt 2 | 85 | 12 | 12 | 33 | 21 | 1.63 |
Pt 3 | 70 | 11 | 11 | 34 | 12 | 1.5 |
Pt 4 | 70 | 8 | 10 | 32 | 12 | 1.36 |
Pt 5 | 80 | 7 | 9 | 30 | 17 | 1.04 |
Pt 6 | 100 | 12 | 12 | 32 | 16 | 2.19 |
Pt 7 | 75 | 12 | 14 | 33 | 17 | 1.36 |
Pt 8 | 100 | 12 | 16 | 30 | 10 | 2.63 |
Pt 9 | 95 | 9 | 14 | 26 | 11 | 1.44 |
Pt 10 | 95 | 12 | 14 | 29 | 11 | 2.54 |
Pt 11 | 100 | 12 | 12 | 32 | 6 | 2.76 |
Pt 12 | 100 | 12 | 16 | 29 | 6 | 2.95 |
Pt 13 | 100 | 10 | 16 | 31 | 6 | 2 |
Pt 14 | 100 | 12 | 16 | 30 | 11 | 2.89 |
Pt 15 | 85 | 12 | 14 | 36 | 8 | 1.54 |
Pt 16 | 100 | 11 | 15 | 30 | 13 | 1.66 |
Appendix C
BI | POMA Gait | POMA Balance | SF-12 | FES-I | Gait Speed | PIADS | |||
---|---|---|---|---|---|---|---|---|---|
Competence Subscale | Adaptability Subscale | Self-Esteem Subscale | |||||||
Pt 1 | 90 | 12 | 16 | 35 | 9 | 1.6 | 0.50 | 1.33 | 0.625 |
Pt 2 | 100 | 11 | 13 | 30 | 8 | 1.52 | 2.67 | 3.00 | 2.375 |
Pt 3 | 80 | 12 | 13 | 33 | 19 | 1.54 | 1.42 | 1.17 | 1.375 |
Pt 4 | 40 | 11 | 11 | 30 | 15 | 1.32 | 0.67 | 1.83 | 0.5 |
Pt 5 | 90 | 8 | 10 | 28 | 13 | 0.88 | 1.83 | 1.83 | 1.875 |
Pt 6 | 100 | 12 | 15 | 33 | 12 | 1.5 | 0.58 | 1.33 | 0.875 |
Pt 7 | 100 | 12 | 16 | 31 | 14 | 1.36 | 0.42 | 2.00 | 0.875 |
Pt 8 | 100 | 12 | 16 | 29 | 9 | 3.56 | 1.17 | 1.00 | 1.75 |
Pt 9 | 100 | 11 | 15 | 25 | 9 | 1.44 | 1.33 | 1.17 | 1.5 |
Pt 10 | 100 | 12 | 15 | 28 | 10 | 2.48 | 0.75 | 2.33 | 0.75 |
Pt 11 | 100 | 12 | 16 | 32 | 8 | 3.06 | 1.00 | 1.50 | 1 |
Pt 12 | 100 | 12 | 16 | 33 | 7 | 2.19 | 1.00 | 2.33 | 1.125 |
Pt 13 | 100 | 12 | 16 | 31 | 7 | 1.6 | 1.00 | 1.83 | 0.75 |
Pt 14 | 100 | 12 | 16 | 31 | 10 | 3.81 | 3.00 | 3.00 | 3 |
Pt 15 | 90 | 11 | 13 | 31 | 23 | 1.98 | 1.24 | 1.83 | 1.31 |
Pt 16 | 100 | 12 | 16 | 28 | 28 | 1.98 | 0.78 | 0.65 | 0.72 |
References
- de Rijk, M.C.; Breteler, M.M.; Graveland, G.A.; Ott, A.; Grobbee, D.E.; van der Meché, F.G.; Hofman, A. Prevalence of Parkinson’s disease in the elderly: The Rotterdam Study. Neurology 1995, 45, 2143–2146. [Google Scholar] [CrossRef] [PubMed]
- Rinalduzzi, S.; Trompetto, C.; Marinelli, L.; Alibardi, A.; Missori, P.; Fattapposta, F.; Pierelli, F.; Currà, A. Balance dysfunction in Parkinson’s disease. Biomed. Res. Int. 2015, 2015, 434683. [Google Scholar] [CrossRef] [PubMed]
- Goubault, E.; Nguyen, H.P.; Bogard, S.; Blanchet, P.J.; Bézard, E.; Vincent, C.; Langlois, M.; Duval, C. Cardinal Motor Features of Parkinson’s Disease Coexist with Peak-Dose Choreic-Type Drug-Induced Dyskinesia. J. Parkinsons. Dis. 2018, 8, 323–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ondo, W.; Warrior, D.; Overby, A.; Calmes, J.; Hendersen, N.; Olson, S.; Jankovic, J. Computerized posturography analysis of pro-gressive supranuclear palsy: A case-control comparison with Parkinson’s disease and healthy controls. Arch. Neurol. 2000, 57, 1464–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Kang, Y.J.; Horak, F.B. What Is Wrong with Balance in Parkinson’s Disease? J. Mov. Disord. 2015, 8, 109–114. [Google Scholar] [CrossRef]
- Alster, P.; Madetko, N.; Koziorowski, D.; Friedman, A. Microglial Activation and Inflammation as a Factor in the Pathogenesis of Progressive Supranuclear Palsy (PSP). Front. Neurosci. 2020, 14, 893. [Google Scholar] [CrossRef]
- Moro, E.; Hamani, C.; Poon, Y.Y.; Al-Khairallah, T.; Dostrovsky, J.O.; Hutchison, W.D.; Lozano, A.M. Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 2010, 33, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Rinne, J.O.; Ma, S.Y.; Lee, M.S.; Collan, Y.; Röyttä, M. Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism. Relat. Disord. 2008, 14, 553–557. [Google Scholar] [CrossRef]
- Craig, C.E.; Jenkinson, N.J.; Brittain, J.S.; Grothe, M.J.; Rochester, L.; Silverdale, M.; Alho, A.T.D.L.; Alho, E.J.L.; Holmes, P.S.; Ray, N.J. Pedunculopontine Nucleus Microstructure Predicts Postural and Gait Symptoms in Parkinson’s Disease. Mov. Disord. 2020, 35, 1199–1207. [Google Scholar] [CrossRef]
- Allen, N.E.; Sherrington, C.; Paul, S.S.; Canning, C.G. Balance and falls in Parkinson’s disease: A meta-analysis of the effect of exercise and motor training. Mov. Disord. 2011, 26, 1605–1615. [Google Scholar] [CrossRef]
- Keus, S.H.; Bloem, B.R.; Hendriks, E.J.; Bredero-Cohen, A.B.; Munneke, M. Practice Recommendations Development Group. Evidence-based analysis of physical therapy in Parkinson’s disease with recommendations for practice and research. Mov. Disord. 2007, 22, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.; Wong, J.S.; Bryce, J.; Knorr, S.; Patterson, K.K. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys Ther. 2015, 95, 700–709. [Google Scholar] [CrossRef] [PubMed]
- de Kam, D.; Nonnekes, J.; Oude Nijhuis, L.B.; Geurts, A.C.; Bloem, B.R.; Weerdesteyn, V. Dopaminergic medication does not improve stepping responses following backward and forward balance perturbations in patients with Parkinson’s disease. J. Neurol. 2014, 261, 2330–2337. [Google Scholar] [CrossRef] [PubMed]
- Dhall, R.; Krishnamurthi, N.; Lieberman, A.; Dhanani, S.; Pan, D. Why Levodopa May Increase Falls in Parkinson’s Disease (P06.091). Neurology 2013, 80. Available online: https://n.neurology.org/content/80/7_Supplement/P06.091 (accessed on 13 December 2021).
- Ellis, T.; Goede, C.J.; Feldman, R.; Wolters, E.C.; Kwakkel, G.; Wageenar, R.C. Efficacy of a physical therapy program in patients with Parkinson’s disease:a randomized clinical trial. Arch. Phys. Med. Rehabil. 2005, 4, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Keus, S.H.J.; Hendriks, E.J.M.; Bloem, B. KNGF Guidelines for physical therapy in patients with Parkinson’s disease. Suppl. Dutch Physioth. 2004, 114, 1–86. [Google Scholar]
- Gordt, K.; Gerhardy, T.; Najafi, B.; Schwenk, M. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gerontology 2018, 64, 74–89. [Google Scholar] [CrossRef]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Neuroplasticity: Changes in grey matter induced by training. Nature 2004, 427, 311–312. [Google Scholar] [CrossRef]
- Sehm, B.; Taubert, M.; Conde, V.; Weise, D.; Classen, J.; Dukart, J.; Draganski, B.; Villringer, A.; Ragert, P. Structural brain plasticity in Parkinson’s disease induced by balance training. Neurobiol. Aging 2014, 35, 232–239. [Google Scholar] [CrossRef]
- Abbruzzese, G.; Marchese, R.; Avanzino, L.; Pelosin, E. Rehabilitation for Parkinson’s disease: Current outlook and future challenges. Parkinsonism Relat. Disord. 2016, 22, 560–564. [Google Scholar] [CrossRef]
- Cakit, B.D.; Saracoglu, M.; Genc, H.; Erdem, H.R.; Inan, L. The effects of incremental speed-dependent treadmill training on postural instability and fear of falling in Parkinson’s disease. Clin. Rehabil. 2007, 21, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Picelli, A.; Tamburin, S.; Passuello, M.; Waldner, A.; Smania, N. Robot-assisted arm training in patients with Parkinson’s disease: A pilot study. J. Neuroeng. Rehabil. 2014, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilczyński, J.; Ścipniak, M.; Ścipniak, K.; Margiel, K.; Wilczyński, I.; Zieliński, R.; Sobolewski, P. Assessment of Risk Factors for Falls among Patients with Parkinson’s Disease. Biomed. Res. Int. 2021, 2021, 5531331. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Hagströmer, M.; Grooten, W.J.A.; Franzén, E. Exercise-Induced Neuroplasticity in Parkinson’s Disease: A Meta-synthesis of the Literature. Neural. Plast. 2020, 8961493. [Google Scholar] [CrossRef]
- Smania, N.; Corato, E.; Tinazzi, M.; Stanzani, C.; Fiaschi, A.; Girardi, P.; Gandolfi, M. Effect of balance training on postural instability in patients with idiopathic Parkinson’s disease. Neurorehabil. Neural. Repair. 2010, 24, 826–834. [Google Scholar] [CrossRef]
- Swanson, R.; Robinson, K.M. Geriatric Rehabilitation: Gait in the Elderly, Fall Prevention and Parkinson Disease. Med. Clin. N. Am. 2020, 104, 327–343. [Google Scholar] [CrossRef]
- Barry, G.; Galna, B.; Rochester, L. The role of exergaming in Parkinson’s disease rehabilitation: A systematic review of the evidence. J. Neuroeng. Rehabil. 2014, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Mirelman, A.; Maidan, I.; Deutsch, J.E. Virtual reality and motor imagery: Promising tools for assessment and therapy in Parkinson’s disease. Mov. Disord. 2013, 28, 1597–1608. [Google Scholar] [CrossRef]
- Bevilacqua, R.; Maranesi, E.; Di Rosa, M.; Luzi, R.; Casoni, E.; Rinaldi, N.; Baldoni, R.; Lattanzio, F.; Di Donna, V.; Pelliccioni, G.; et al. Rehabilitation of older people with Parkinson’s disease: An innovative protocol for RCT study to evaluate the potential of robotic-based technologies. BMC Neurol. 2020, 20, 186. [Google Scholar] [CrossRef]
- Hoehn, M.; Yahr, M. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R. Gait assesment for neurologically imparired. Standards for outcome assessment. Phys. Ther. 1986, 66, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.A.; van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, P.; Mecocci, P.; Benedetti, C.; Ercolani, S.; Bregnocchi, M.; Menculini, G.; Catani, M.; Senin, U.; Cherubini, A. Validation of the five-item geriatric depression scale in elderly subjects in three different settings. J. Am. Geriatr. Soc. 2003, 51, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. A pratical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Morris, J.C. Clinical Dementia Rating: A Reliable and Valid Diagnostic and Staging Measure for Dementia of the Alzheimer Type. Int. Psychogeriatr. 1997, 9, 173–176. [Google Scholar] [CrossRef]
- Jutai, J.; Day, H. Psychosocial Impact of Assistive devices Scale (PIADS). Technol. Disabil. 2002, 14, 107–111. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Tinetti, M.E. Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Ware, J.E.; Kosinski, M.; Keller, S.D. SF-12: How to Score the SF-12 Physical and Mental Health Summary Scales, 3rd ed.; QualityMetric Incorporated: Lincoln, RI, USA, 1998. [Google Scholar]
- Ruggiero, C.; Mariani, T.; Gugliotta, R.; Gasperini, B.; Patacchini, F.; Nguyen, H.N.; Zampi, E.; Serra, R.; Dell’aquila, G.; Cirinei, E.; et al. Validation of the Italian version of the falls efficacy scale international (FES-I) and the SHORT FES-I in community dwelling older persons. Arch. Gerontol. Geriatr. 2009, 49, 211–219. [Google Scholar] [CrossRef]
- Padala, K.P.; Padala, P.R.; Burke, W.J. Wii-Fit as an adjunct for mild cognitive impairment: Clinical perspectives. J. Am. Geriatr. Soc. 2011, 59, 932–933. [Google Scholar] [CrossRef]
- Pradhan, S.; Kelly, V.E. Quantifying physical activity in early Parkinson disease using a commercial activity monitor. Parkinsonism Relat. Disord. 2019, 66, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Martignon, C.; Pedrinolla, A.; Ruzzante, F.; Giuriato, G.; Laginestra, F.G.; Bouça-Machado, R.; Ferreira, J.J.; Tinazzi, M.; Schena, F.; Venturelli, M. Guidelines on exercise testing and prescription for patients at different stages of Parkinson’s disease. Aging Clin. Exp. Res. 2021, 33, 221–246. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, R.; Casaccia, S.; Cortellessa, G.; Astell, A.; Lattanzio, F.; Corsonello, A.; D’Ascoli, P.; Paolini, S.; Di Rosa, M.; Rossi, L.; et al. Coaching Through Technology: A Systematic Review into Efficacy and Effectiveness for the Ageing Population. Int. J. Environ. Res. Public Health 2020, 17, 5930. [Google Scholar] [CrossRef] [PubMed]
- Duroseau, N.; Abramson, T.; Pergament, K.; Chan, V.; Govindavari, J.P.; Ciraco, C.; Tegay, D.; Krishnamachari, B. Acceptance of technology-based tools in a sample of Parkinson’s patients. Chronic. Illn. 2017, 13, 3–13. [Google Scholar] [CrossRef]
- Sveistrup, H. Motor rehabilitation using virtual reality. J. Neuro Eng. Rehabil. 2004, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Sveistrup, H.; McComas, J.; Thornton, M.; Marshall, S.; Finestone, H.; McCormick, A.; Babulic, K.; Mayhew, A. Experimental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. Cyberpsychol. Behav. 2003, 6, 245–249. [Google Scholar] [CrossRef]
- Garcia-Agundez, A.; Folkerts, A.K.; Konrad, R.; Caserman, P.; Tregel, T.; Goosses, M.; Göbel, S.; Kalbe, E. Recent advances in rehabilitation for Parkinson’s Disease with Exergames: A Systematic Review. J. Neuro Eng. Rehabil. 2019, 16, 17. [Google Scholar] [CrossRef]
- Allen, N.E.; Song, J.; Paul, S.S.; Smith, S.; O’Duffy, J.; Schmidt, M.; Love, R.; Sherrington, C.; Canning, C.G. An interactive videogame for arm and hand exercise in people with Parkinson’s disease: A randomized controlled trial. Parkinsonism Relat. Disord. 2017, 41, 66–72. [Google Scholar] [CrossRef]
- Xu, D.; Cole, M.H.; Mengersen, K.; Silburn, P.A.; Qiu, F.; Graepel, C.; Kerr, G.K. Executive function and postural instability in people with Parkinson’s disease. Parkinsons Dis. 2014, 2014, 684758. [Google Scholar] [CrossRef]
Scale | Definition | Items |
---|---|---|
Competence | The competence subscale is composed of 12 items related to perceived functional capability, independence, and performance | Competence |
Adequacy | ||
Efficacy | ||
Productivity | ||
Capability | ||
Usefulness | ||
Expertise | ||
Performance | ||
Skillfulness | ||
Independence | ||
Quality of life | ||
Confusion | ||
Adaptability | The adaptability subscale is composed of six items that reflect inclination or motivation to participate socially and take risks | Willingness to take chances |
Ability to participate | ||
Eagerness to try new things | ||
Ability to adapt to activities of daily living | ||
Ability to take advantage of opportunities | ||
Self-esteem | The self-esteem subscale is composed of eight items reflecting self-confidence, self-esteem, and emotional wellbeing | Self-esteem |
Security | ||
Sense of power | ||
Embarrassment | ||
Happiness | ||
Sense of control | ||
Frustration | ||
Self-confidence |
Total n = 16 | Male n = 7 | Female n = 9 | p | |
---|---|---|---|---|
Age, mean ± SD | 72.8 ± 6.3 | 73.8 ± 6.6 | 72.0 ± 6.3 | 0.574 |
Marital status, n (%) | 0.182 | |||
Married | 14 (87.5%) | 7 (100%) | 7 (77.8%) | |
Widowed | 2 (12.5%) | 0 (0%) | 2 (22.2%) | |
Educational level, n (%) | 0.314 | |||
Primary education | 8 (50%) | 2 (28.6%) | 6 (66.7%) | |
Secondary education | 5 (31.25%) | 3 (42.8%) | 2 (22.2%) | |
University or more | 3 (18.75) | 2 (28.6%) | 1 (11.1%) | |
Hoehn and Yahr score, mean ± SD | 1.7 ± 0.7 | 1.7 ± 0.95 | 1.7 ± 0.75 | 0.9 |
Rankin scale score, mean ± SD | 1.3 ± 0.7 | 1.7 ± 0.9 | 0.9 ± 0.3 | 0.031 ^ |
GDS, mean ± SD | 2.4 ± 1.5 | 3.1 ± 1.1 | 1.9 ± 1.6 | 0.099 |
FAC, mean ± SD | 4.6 ± 0.5 | 4.6 ± 0.5 | 4.7 ± 0.5 | 0.719 |
MMSE, mean ± SD | 27.5 ± 1.9 | 27.7 ± 2.6 | 27.4 ± 1.4 | 0.796 |
Pre | Post | p | |
---|---|---|---|
BI | 90.3 ± 11.3 | 93.1 ± 15.3 | 0.058 |
POMA Gait | 11.0 ± 1.6 | 11.5 ± 1.03 | 0.118 |
POMA Balance | 13.5 ± 2.3 | 14.5 ± 1.9 | 0.006 ^ |
SF-12 | 31.4 ± 2.6 | 30.5 ± 2.5 | 0.078 |
FES-I | 11.5 ± 4.4 | 12.5 ± 6.1 | 0.640 |
Gait Speed [m/s] | 1.9 ± 0.6 | 1.9 ± 0.8 | 0.717 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maranesi, E.; Di Donna, V.; Pelliccioni, G.; Cameriere, V.; Casoni, E.; Baldoni, R.; Benadduci, M.; Rinaldi, N.; Fantechi, L.; Giammarchi, C.; et al. Acceptability and Preliminary Results of Technology-Assisted Balance Training in Parkinson’s Disease. Int. J. Environ. Res. Public Health 2022, 19, 2655. https://doi.org/10.3390/ijerph19052655
Maranesi E, Di Donna V, Pelliccioni G, Cameriere V, Casoni E, Baldoni R, Benadduci M, Rinaldi N, Fantechi L, Giammarchi C, et al. Acceptability and Preliminary Results of Technology-Assisted Balance Training in Parkinson’s Disease. International Journal of Environmental Research and Public Health. 2022; 19(5):2655. https://doi.org/10.3390/ijerph19052655
Chicago/Turabian StyleMaranesi, Elvira, Valentina Di Donna, Giuseppe Pelliccioni, Valentina Cameriere, Elisa Casoni, Renato Baldoni, Marco Benadduci, Nadia Rinaldi, Lorenzo Fantechi, Cinzia Giammarchi, and et al. 2022. "Acceptability and Preliminary Results of Technology-Assisted Balance Training in Parkinson’s Disease" International Journal of Environmental Research and Public Health 19, no. 5: 2655. https://doi.org/10.3390/ijerph19052655
APA StyleMaranesi, E., Di Donna, V., Pelliccioni, G., Cameriere, V., Casoni, E., Baldoni, R., Benadduci, M., Rinaldi, N., Fantechi, L., Giammarchi, C., Luzi, R., Pelliccioni, P., Di Rosa, M., Scendoni, P., Riccardi, G. R., & Bevilacqua, R. (2022). Acceptability and Preliminary Results of Technology-Assisted Balance Training in Parkinson’s Disease. International Journal of Environmental Research and Public Health, 19(5), 2655. https://doi.org/10.3390/ijerph19052655