new; cls;

filename = "u:\\CostFVSabrina\\Costs2020";
outfile ="u:\\CostFV4\\Savings.out";
save path= u:\CostFV4;

load path= u:\CostFVSabrina;

open input = AMilename VARINDXI;

print rowsf(input);

print input;

data = readr(input, ROWSF(input));

names = getnamef(input);

checkl = close(input);

n = rows(data);

itemcode = datal.,iitemcode];

juice = datal.,ijuice];

cost2016 = datal.,icost2016];

cost = datal.,icost2020];

groupcode = datal.,iGROUPCOD];

/**

3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k %k %k 3k 3k >k 3k 3k 3k %k >k %k %k >k 3k 5k 3k >k %k %k >k %k 3k 3k 3k >k k k k k

ok ok oK ok ok ok ok ok K ok ok ok 3 ok ok ok ok ok 3k o K ok ok ok 3k ok o oK ok ok sk ok ok K ok ok ok 3k ok oK ok ok ok ok o ok oK ok ok 3k ok o K ok ok ok 3k o ok ok ok 3k 3k ok ok ok ok ok 3k o ok ok ok ok ok ok o ok ok ok ok ko

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k %k %k 3k 3k 3k %k 3k sk 3k 5k 3k sk 3k 3k 5k 5k 3k sk 3k 3k ok 5k %k %k %k kok sk k

Specify the number of combinations to create, the price thresholds for each bin, and insert the number
of

half cup-equivalents from each group. However, you will generate some combinations in which fruit
juice accounts

for more than half of all consumed fruit . In fact, as you create baskets with a greater share of items
from the

first bin (cheapest price range), that share will grow. You must therefore generate extra fruit
combinations

beyond the number of combinations you want to simulate. You can throw away those illegimate
combinations.

You specify the how many extra fruit combinations to generate using juicefactor = 2,3,4,... to create
twice, three

times as many, etc. juice combinations.

You cannot use simple random sampling. For example, weights = [3,1,0] will get you baskets with about
50% of items

from bin 1, on average, though some may have as few as 40% and others have as many 60% from bin
1. Also, using

weights = [7.5,1,0] will get you a basket with about 70% of items from bin 1. And using weights =
[31,1,0] will get

you a basket with about 90% of items from bin 1.

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk 3k 3k sk sk sk sk 3k sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk 5k sk sk sk sk 3k sk sk sk sk 3k 3k 3k sk sk sk 3k 3k 3k sk sk sk 3k 3k sk sk sk 3k ok sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk k ki k

3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k k %k 3k 3k 3k %k %k %k %k 3k 3k %k >k %k 5k 5k 3k %k %k %k >k 5k 3k %k %k k ok kk

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k 3k 3k 3k 3%k %k %k %k >k 3k 3k 3k >k %k %k >k 3k 3k 3k 3%k 3k %k >k >k >k 3k 3k 3k 3%k 3k >k >k 3k >k 3k 5%k 3k >k >k %k >k 3k 3k 3k >k 3%k %k >k >k 3k 3k %k 3k >k %k %k >k 3k >k 3k 5%k 3%k %k %k %k %k 3k 3k *k *k

***/

bss = 1000;
thresholdpricel = 0.45;

thresholdprice2 = 0.90;

weightbinl = 2.5;
weightbin2 = 1;
weightbin3 = 0;

juicefactor = 50;

/**

ok ok oK ok ok ok o ok K oK ok ok ok ok ok ok ok ok ok ok K ok ok ok sk ok K Kk sk sk ok Kk ok kR kK

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k 3k %k ok sk 3k 5k 3k sk sk 3k 5k 5k sk sk sk 3k 5k 5k 5k 3k sk 3k 3k sk 3k sk sk 3k 3k 3k sk sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k %k 3k 5k 5k 5k 3k 3k sk sk 5k ok %k %k %k %k %k sk %k k k ok

ok ok ok ok ok ok ok ok K ok ok ok ok ok ok oK ok ok ok ok oK ok ok ok sk ok K Kk sk sk ok K Kk ok kR

Specify the amount of foods the household must eat in half cup-equivalents, and their budget.

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k k %k 3k 3k 3k %k >k %k >k 5k 3k >k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k %k %k >k 5k 5k 3k %k %k 3%k 3k 3k k %k %k 3%k 3k 3k 3k %k %k 3%k 3%k 3k %k %k %k 3%k 3k 3k %k >k 5%k 3k 5k 3k %k %k %k 5%k 3k 3k %k %k %k >k 5k %k k k¥

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k k %k %k 3k 3k %k %k %k %k 3k 3k %k %k %k 5k 5k 3k %k %k %k 5k 5k 3k %k %k kK kk

3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k sk %k %k 3k 3k %k %k %k >k 5k 3k 3k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k k %k 3%k 3k 3k k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k 3%k 3k 3k 3k %k %k %k 5%k 3k 3k %k %k %k >k >k %k k k¥

***/

numfruit = 104;

numdg = 14;
numrd = 46;
numlg = 14;

numstrch = 44;

numother = 36;

SNAP = 157;
FVbudgetl = SNAP;

FVbudget2 = 1.21*SNAP;

print "We generated";; print bss;; print "this many combinations of fruits and vegetables that would
satsify DGAs.";

/**

ok ok ok ok ok sk o ok K ok ok ok ok o ok oK ok ok ok ok oK ok ok ok ok ok K K ok ok sk ok ok ok Kk K ok ok ok

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k 3k %k ok 3k 3k 5k 3k sk sk 3k 5k 5k 3k sk 3k 3k 5k 5k 5k 3k sk 3k 3k sk 3k sk sk 3k 3k 3k sk sk 3k 3k 3k 3k %k sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k %k 3k 5k 5k 5k 3k sk sk sk 5k 5k %k %k %k %k k sk sk k k ok

ok ok ok ok ok ok ok o K ok ok ok ok ok ok oK ok ok ok ok K ok ok ok kR K Kk sk ok ok Kk Kk k ok ok

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k 5k 3k 3k %k 3k 3k 3k 5k 3k sk 3k 3k 5k 5k sk 3k 3k 3k 5k 5k %k sk sk ok 5k ok %k %k kok sk %k k Geneﬁ“ethE\Ne@hts

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3%k 3k 3k >k %k >k 5k 3k >k >k >k 5k 5k 3k 3k %k >k 5k 5k 5k 3k %k >k 5%k 5k 3k >k k %k 3k 3k %k %k %k %k k *k*kkk

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k k %k 3k 3k 3k %k >k %k >k 5k 3k 3k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k k %k 3%k 3k 3k k %k %k 3%k 3%k 3k %k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k 5%k 3k 5k 3k %k %k %k 5% 3k 3k %k %k %k >k 5k %k k k¥

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3k 3k %k %k %k %k 3k 3k %k >k >k 5k 5k 3k %k %k %k 5%k 5k 3k %k *k kK k k

3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k k %k 3k 3k 3k %k >k %k >k 5k 3k >k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k k %k 3%k 3k 3k k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k %k 3%k 3k 3k %k %k 5%k 3k 3k 3k %k %k %k 5% 3k 3k %k %k %k >k 5k %k k k¥

***/

binweight = zeros(n,1);

for c(1,n,1);

if cost[c,1] < thresholdpricel; binweight[c,1] = weightbin1;
elseif cost[c,1] < thresholdprice2; binweight[c,1] = weightbin2;
else; binweight[c,1] = weightbin3;

endif;

endfor;

x = groupcode~itemcode~juice~cost~binweight;

/**

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 3k 3k 3k 3k >k >k 5k 5k 3k >k %k %k >k 5k %k %k %k k ok k k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k >k 5k 3k sk sk 3k 5k 5k 3k 3k 3k 3k 3k 5k 5k 3k sk 3k 5k 5k 3k sk sk 3k 3k 3k 3k sk %k 3k 3k 3k 3k 3k %k 3k 3k 3k sk sk >k 3k 3k 3k 3k %k 3k 3k 5k 3k %k %k >k 5k 5k %k %k %k %k %k %k %k k kk

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k >k 3k 3k 3k %k >k %k %k 3k 3k 5k 3k >k %k %k >k %k 3k 3k 3k %k k k k k

3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k >k 3k 3k 3k %k %k %k 3k 3k 3k sk %k >k 5k 5k 3k 3k %k >k 5k 5k 3k %k %k %k 5k 5k %k %k %k >k %k %k k Geneﬁneertconﬂﬂnaﬂons

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k >k sk 3k 3k %k %k %k >k 3k 3k 3k 5%k %k %k >k 3k >k 3k 5k 3k >k %k %k >k >k 3k 3k 3k 3k %k k %k

ok ok oK ok ok ok ok ok K ok ok ok 3 ok ok ok ok ok 3k o K ok ok ok 3k ok o oK ok ok sk ok ok K ok ok ok 3k ok oK ok ok ok ok o ok oK ok ok 3k ok o K ok ok ok 3k o ok ok ok 3k 3k ok ok ok ok ok 3k o ok ok ok ok ok ok o ok ok ok ok ko

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 3k 3k 3k %k 3k sk 3k 5k 3k sk sk 3k 5k 5k 3k sk 3k 3k 5k 5k %k %k k kK k k k

ok ok oK ok ok ok ok o K oK ok ok ok ok o oK ok ok 3k ok ok ok ok ok 3k ok o oK oK ok 3k ok ok K oK ok ok ok ok oK oK ok ok ok o ok oK ok ok ok ok o ok oK ok ok 3k o o oK ok ok ok ok ok ok ok ok sk ok o ok ok ok ok ok ok o oK ok ok ok ok X

***/

print "Each combination includes:";

print "Number of fruit half cup-equivalents (servings) is";; print numfruit;

fruits = selif(x, x[.,1] .== 1.0);
fruitcosts = fruits[.,4]./2;

nfruit = rows(fruits);

/* Picture an empirical density function. For the nth fruit or vegetable in the group, the second column

gives the item number and the third column gives the left side of the bar on the number line. */

sumfruitweights = sumc(fruits[.,5]);

fruitweights = fruits[.,5]/sumfruitweights;

shares = zeros(nfruit+1,3);
shares[1,1] = 1;
shares[1,2] =fruits[1,2];

shares[1,3] =0;

for i(2,nfruit,1);

shares|[i,1] = i;

shares[i,2] = fruits][i,2];

shares[i,3] = shares[i-1,3] + fruitweights[i-1,.];

endfor;

shares[nfruit+1,1] = nfruit+1;

shares[nfruit+1,3] = 1;

/* Sample with replacement numfruit different fruits. Fruitbasket holds number of servings of each fruit
to include in the basket. */

bssfruit = juicefactor*bss;

fruitbasket = zeros(nfruit,bssfruit);

for b(1,bssfruit,1);

bb=rndu(numfruit,1);

bb = sortc(bb,1);

/*For each value of the uniform random sample that | generated, the following
"do loop" finds the appropriate location in the cumulative histogram.
| start by tallying the number of times the last fruit in my data is in the

combination. This avoids the problem of the index being out of range. */

el = zeros(numfruit,1);

for c(1,numfruit,1);

if bb[c,1] < shares[2,3]; el[c,1] = 1;
endif;

endfor;

first = sumc(el);

e2 = zeros(numfruit,1);

for c(1,numfruit,1);
if bb[c,1] >= shares[nfruit,3]; e2[c,1] = 1;
endif;

endfor;

last = sumc(e2);

/* You delete rows that belong to the first and last PSU, if random number fell in first or last interval.

Then you do the others, but code only works for those somewhere in the middle of the interval */

e =el+e2;

bbb = delif(bb,e);
bk = rows(bbb);

others = zeros(nfruit,1);

if numfruit == first + last;

fruitbasket([.,b] = first| others[2:nfruit-1,1] | last;

else;

for c(1,bk,1);

r=2;

do until shares[r-1,3] < bbb[c,1] < shares[r,3] ;
r=r+1;

endo;

k=r-2;

others[k,1] = others[k,1] + 1;

endfor;

fruitbasket([.,b] = first| others[2:nfruit-1,1] | last;

endif;

endfor;

juicechecker = zeros(nfruit,bssfruit);
for p(1,bssfruit,1);
juicechecker(.,p] = fruitbasket[.,p]. *fruits[.,3];

endfor;

juicetest = sumc(juicechecker);

flag = zeros(bssfruit,1);

for j(1,bssfruit,1);

if juicetest[j,1] > 0.5*numfruit; flag[j,1] = 1; endif;

endfor;

combos2 = flag™~fruitbasket';

fruitbasket2 = selif(combos2, combos2[.,1] .== 0.0);

fruitbasket3 = fruitbasket2[.,2:nfruit+1]’;

fruitbasket4 = fruitbasket3[.,1:bss];

/**

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k %k %k 3k 3k 3k %k 3k sk 3k 5k 3k sk 3k 3k 5k 5k 3k sk 3k 3k ok 5k %k %k %k kok sk k

ok ok oK ok ok ok ok o K oK ok ok ok ok o oK ok ok 3k ok ok ok ok ok 3k ok o oK oK ok 3k ok ok K oK ok ok ok ok oK oK ok ok ok o ok oK ok ok ok ok o ok oK ok ok 3k o o oK ok ok ok ok ok ok ok ok sk ok o ok ok ok ok ok ok o oK ok ok ok ok X

3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 5k %k %k 3k 5k 3k %k sk sk 3k 3k 3k sk sk sk 5k 5k 3k sk 3k 3k >k 5k sk %k k kk %k k

FAH AR AR AR Rk R Rk KRR KRR KRR Ganerate dark green combinations

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k 3k 3k 3k %k ok 3k 3k 5k 3k sk sk 3k 5k 5k 5k 3k sk 3k 3k 3k 5k 3k sk 3k 3k 3k 3k sk sk %k %k %k %k k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k sk 3k 3k 3k 3k 5k 3k 3k 3k 5k 3k sk sk 3k 5k 5k 3k sk 3k 3k 5k 5k 3k sk sk 3k 3k sk 3k sk sk 3k 3k 3k 3k sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k %k 3k 5k 5k 5k %k sk sk >k 5k ok %k %k %k %k %k sk sk k k ok

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 5k %k %k 3k 5k 3k %k %k 3k 3k 3k 3k sk sk 3k 5k 5k 3k sk 3k 3k 5k 5k %k %k k ko k k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k 3k %k ok 3k 3k 3k 3k sk sk 3k 5k 5k sk sk sk 3k 5k 5k 5k sk sk 3k 3k sk 3k sk sk 3k 3k 3k sk sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k 3k 3k 5k 3k 5k 3k sk sk 3k 5k ok %k %k %k %k %k sk %k k k ok

***/

darkgreens = selif(x, x[.,1] .== 2.0);
dgcosts = darkgreens|.,4]./2;
ndg = rows(darkgreens);

print "Number of dark green vegetable half cup-equivalents (servings) is";; print numdg;

/* Picture an empirical density function. For the nth fruit or vegetable in the group, the second column

gives the item number and the third column gives the left side of the bar on the number line. */

sumweights = sumc(darkgreens|.,5]);

weights = darkgreens|.,5]/sumweights;

shares = zeros(ndg+1,3);
shares[1,1] = 1;
shares[1,2] =darkgreens[1,2];

shares[1,3] =0;

fori(2,ndg,1);
shares|[i,1] = i;

shares[i,2] = darkgreens]i,2];

shares[i,3] = shares[i-1,3] + weights[i-1,.];
endfor;
shares[ndg+1,1] = ndg+1;

shares[ndg+1,3] = 1;

/* Sample with replacement numsize different fruits. This may be number of full or half cup-
equivalents. You will need to cut

cost in half at the end if you go with half cup-equivalents. */

dgbasket = zeros(ndg,bss);

for b(1,bss,1);

bb=rndu(numdg,1);

bb = sortc(bb,1);

/*For each value of the uniform random sample that | generated, the following
"do loop" finds the appropriate location in the cumulative histogram.
| start by tallying the number of times the first and last fruit in my data are in the

combination. This avoids the problem of the index being out of range. */

el = zeros(numdg,1);

for c(1,numdg,1);

if bb[c,1] < shares[2,3]; el[c,1] = 1;
endif;

endfor;

first = sumc(el);

e2 = zeros(numdg,1);

for ¢(1,numdg,1);

if bb[c,1] >= shares[ndg,3]; e2[c,1] = 1;

endif;

endfor;

last = sumc(e2);

/* You delete rows that belong to the first and last PSU, if random number fell in first or last interval.

Then you do the others, but code only works for those somewhere in the middle of the interval */

e =el+e2;

bbb = delif(bb,e);
bk = rows(bbb);

others = zeros(ndg,1);

if numdg == first + last;

dgbasket[.,b] = first| others[2:ndg-1,1] | last;

else;

for c(1,bk,1);

r=2;

do until shares[r-1,3] < bbb[c,1] < shares[r,3] ;

r=r+1;
endo;
k=r-2;
others[k,1] = others[k,1] + 1;

endfor;

dgbasket[.,b] = first| others[2:ndg-1,1] | last;

endif;

endfor;

/**

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 5k %k 3k 3k 3k sk sk 3k sk 3k 5k sk 3k 3k 3k 5k 5k sk sk ok sk ok 5k %k sk k ko k k

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 3k 3k 3k >k >k >k 5k 5k 3k >k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k >k 3k 3k 3k 3k k >k 3k 3k 3k sk %k %k 3k >k >k 5k 3k 3k %k %k 3%k 3k 3k %k %k %k 3%k 3k %k %k %k %k 3%k 3k %k %k k *k *kkkk

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk %k %k 3k 3k sk sk sk sk 3k sk sk sk 3k sk ok sk sk sk sk sk ok ok sk sk sk %k k k k

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k 3k >k %k %k 3%k 3k %k %k %k >k 5k 3k 3k %k %k %k 5k %k %k %k %k %k 5k 5k %k k k Generate red and orange Combinations
3k 3k 3k 3k 3k 5k 3k %k 3k 3k sk 5k sk 3k 3k 3k sk 5k 3k 3k 3k sk 3k sk 3k 3k 5k sk sk ok >k >k ok %k sk %k >k %k sk sk k k k

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 5k 3k 3k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k >k 3k 3k %k k %k %k 3k 3k 3k >k %k %k 3k 3k 3k 3k 3k %k %k %k 3k 3k 3k %k %k %k 3%k 3k 3k %k %k %k 3%k 3k %k %k k *k Kk kk

3k 3k 3k 3k 3k 5k 3k %k 3k 3k sk sk %k %k 3k 3k sk sk sk sk 3k sk sk sk 3k 3k ok sk sk sk sk sk ok sk sk sk sk %k k sk k

3k 3k 3k 3k 3k 3k 3k %k 3k 3k sk sk sk sk 3k 3k sk sk sk sk 3k sk sk sk sk sk ok sk sk sk 3k 3k ok sk sk sk sk 3k 3k sk sk sk sk 3k sk sk sk sk 3k 3k 3k sk sk sk 3k 3k 3k sk sk sk 3k 3k sk sk sk 3k 3k 5k sk sk sk sk 3k 5k sk sk sk sk kosk sk sk k ki k

***/

redveggies = selif(x, x[.,1] .== 3.0);
redcosts = redveggies|.,4]./2;
nrd = rows(redveggies);

print "Number of red and orange vegetable half cup-equivalents (servings) is";; print numrd;

/* Picture an empirical density function. For the nth fruit or vegetable in the group, the second column

gives the item number and the third column gives the left side of the bar on the number line. */

sumweights = sumc(redveggies|.,5]);

weights = redveggies|.,5]/sumweights;

shares = zeros(nrd+1,3);
shares[1,1] = 1;
shares[1,2] =redveggies|[1,2];

shares[1,3] =0;

fori(2,nrd,1);

shares|i,1] = i;

shares[i,2] = redveggiesli,2];

shares[i,3] = shares[i-1,3] + weights[i-1,.];
endfor;

shares[nrd+1,1] = nrd+1;

shares[nrd+1,3] = 1;

/* Sample with replacement numsize different fruits. This may be number of full or half cup-
equivalents. You will need to cut

cost in half at the end if you go with half cup-equivalents. */

redbasket = zeros(nrd, bss);

for b(1,bss,1);

bb=rndu(numrd,1);

bb = sortc(bb,1);

/*For each value of the uniform random sample that | generated, the following
"do loop" finds the appropriate location in the cumulative histogram.
| start by tallying the number of times the last fruit in my data is in the

combination. This avoids the problem of the index being out of range. */

el = zeros(numrd,1);

for c(1,numrd,1);

if bb[c,1] < shares[2,3]; el[c,1] = 1;
endif;

endfor;

first = sumc(el);

e2 = zeros(numrd,1);

for c(1,numrd,1);

if bb[c,1] >= shares[nrd,3]; e2[c,1] = 1;

endif;

endfor;

last = sumc(e2);

/* You delete rows that belong to the first and last PSU, if random number fell in first or last interval.

Then you do the others, but code only works for those somewhere in the middle of the interval */

e =el+e2;

bbb = delif(bb,e);

bk = rows(bbb);

others = zeros(nrd,1);

if numrd == first + last;

redbasket[.,b] = first| others[2:nrd-1,1] | last;

else;

for c(1,bk,1);

r=2;

do until shares[r-1,3] < bbb[c,1] < shares[r,3] ;
r=r+l;

endo;

k=r-2;

others[k,1] = others[k,1] + 1;

endfor;

redbasket[.,b] = first|others[2:nrd-1,1]|last;

endif;

endfor;

/**

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 3k 3k 3k 3k >k %k 5k 5k 3k %k %k %k 5k 5k %k %k %k kk ok k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 3k 5k 3k sk 3k 3k 5k 5k 3k 3k 3k 3k 3k 5k 5k 3k sk 3k 3k 5k 3k sk sk 3k 3k 3k 3k sk %k 3k 3k 3k 3k 3k >k 3k 3k 3k sk sk >k >k 3k 3k 3k %k 5k 3k 5k %k %k %k >k 5k 5k %k %k %k k> %k %k k k¥

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k 3k 3k 3k 3k %k %k %k 3k 3k 3k 3k 3k %k %k %k >k %k 3k 3k 3k *k k k k k

ok ok ok ok ok sk o ok K ok ok ok 3k ok ok oK ok ok 3k ok ok oK ok ok 3k ok o K oK ok ok ok o o oK ok ok ok ok ok K Kok ko K GenerateIegunwesconﬂﬂnaﬂons

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 3k 3k 3k %k ok 3k 3k 5k 3k sk sk 3k 5k 5k 5k 3k sk 3k 3k 3k 5k 3k sk 3k 3k 3k %k sk sk %k %k %k %k k

ok ok oK ok ok ok ok o K oK ok ok ok ok o oK ok ok 3k ok ok ok ok ok 3k ok o oK oK ok 3k ok ok K oK ok ok ok ok oK oK ok ok ok o ok oK ok ok ok ok o ok oK ok ok 3k o o oK ok ok ok ok ok ok ok ok sk ok o ok ok ok ok ok ok o oK ok ok ok ok X

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 3k 5k 3k %k 3k 3k 3k 3k 3k sk sk 3k 5k 5k 3k sk 3k 3k >k 5k %k %k sk kok %k k

ok ok oK ok ok ok ok ok K oK ok ok ok ok ok oK ok ok ok ok ok ok ok ok 3k ok o oK oK ok sk ok o K oK ok ok ok ok oK oK oK ok ok ok ok oK ok ok ok ok o ok oK ok ok 3k o o oK ok 3k 3k ok ok ok ok ok sk ok o oK ok ok ok ok o ok ok ok ok ok ok X

***/

legumes = selif(x, x[.,1] .== 6.0);
legcosts = legumes].,4]./2;
nlg = rows(legumes);

print "Number of legumes half cup-equivalents (servings) is";; print numlg;

/* Picture an empirical density function. For the nth fruit or vegetable in the group, the second column

gives the item number and the third column gives the left side of the bar on the number line. */

sumweights = sumc(legumes|.,5]);

weights = legumes|.,5]/sumweights;

shares = zeros(nlg+1,3);
shares[1,1] = 1;
shares[1,2] =legumes[1,2];

shares[1,3] =0;

fori(2,nlg,1);

shares|[i,1] = i;

shares[i,2] = legumesi,2];

shares[i,3] = shares[i-1,3] + weights[i-1,.];
endfor;

shares[nlg+1,1] = nlg+1;

shares[nlg+1,3] = 1;

/* Sample with replacement numsize different fruits. This may be number of full or half cup-
equivalents. You will need to cut

cost in half at the end if you go with half cup-equivalents. */

legumesbasket = zeros(nlg,bss);

for b(1,bss,1);

bb=rndu(numlg,1);
bb = sortc(bb,1);

/*For each value of the uniform random sample that | generated, the following
"do loop" finds the appropriate location in the cumulative histogram.
| start by tallying the number of times the last fruit in my data is in the

combination. This avoids the problem of the index being out of range. */

el = zeros(numlg,1);

for c(1,numlig,1);

if bb[c,1] < shares[2,3]; el[c,1] = 1;
endif;

endfor;

first = sumc(el);

e2 = zeros(numlg,1);

for c(1,numlig,1);

if bb[c,1] >= shares[nlg,3]; e2[c,1] = 1;

endif;

endfor;

last = sumc(e2);

/* You delete rows that belong to the first and last PSU, if random number fell in first or last interval.

Then you do the others, but code only works for those somewhere in the middle of the interval */

e =el+e2;

bbb = delif(bb,e);
bk = rows(bbb);

others = zeros(nlg,1);

if numlg == first + last;

legumesbasket[.,b] = first| others[2:nlg-1,1] | last;

else;

for c(1,bk,1);

r=2;

do until shares[r-1,3] < bbb[c,1] < shares[r,3] ;
r=r+1;

endo;

k=r-2;

others[k,1] = others[k,1] + 1;

endfor;

legumesbasket[.,b] = first| others[2:nlg-1,1] | last;

endif;

endfor;

/**

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3%k 3k %k %k %k %k 3k 3k %k >k %k 5k 5k 3k %k %k %k 5k 5k 3k %k *k kK k k

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k sk %k 3k 3k 3k %k %k %k >k 5k 3k >k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k %k %k >k 5k 5k 3k k %k 3%k 3k 3k %k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k %k >k 3k 3k %k %k 5%k 5k 3k 3k %k %k %k 5% 3k 3k %k %k %k >k 5k k k k¥

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3k 3k %k %k %k %k 3k 3k %k >k %k 5k 5k 3k %k %k %k 5k 5k 3k %k %k kK k k

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3k 3k %k %k %k %k 5k 3k %k >k >k 5k 5k 3k %k %k >k 5k 3k 3k %k %k %k 5k 5k %k %k %k >k %k %k k Generate starchy Combinations

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k k %k %k 3%k 3k 3k >k %k >k 5k 3k 3k >k >k 5k 5k 3k 3k %k >k 5%k 3k 5k 3k %k >k 3%k 3% %k %k %k %k 5k %k %k k

3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k sk %k %k 3k 3k %k %k %k >k 5k 3k 3k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k k %k 3%k 3k 3k k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k 3%k 3k 3k 3k %k %k %k 5%k 3k 3k %k %k %k >k >k %k k k¥

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k 3k 3k 3k sk sk 3k sk 3k 5k 3k sk sk sk 5k 5k sk sk 3k 3k ok 5k %k sk k %k k sk k

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k k %k 3k 3k 3k %k %k %k >k 5k 3k 3k >k >k 5k 5k 3k >k %k >k 5k 5k 3k %k %k >k 5k 5k 3k k >k 3%k 3k 3k k %k %k 3%k 3k 3k 3k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k 3%k 3k 3k 3k %k %k %k 5% 3k 3k %k %k %k 5%k %k %k k k¥

***/

starchies = selif(x, x[.,1] .== 4.0);
starchycosts = starchies|.,4]./2;
ns = rows(starchies);

print "Number of starchy vegetable half cup-equivalents (servings) is";; print numstrch;

/* Picture an empirical density function. For the nth fruit or vegetable in the group, the second column

gives the item number and the third column gives the left side of the bar on the number line. */

sumweights = sumc(starchies|.,5]);

weights = starchies[.,5]/sumweights;

shares = zeros(ns+1,3);
shares[1,1] =1;
shares[1,2] =starchies[1,2];

shares[1,3] =0;

fori(2,ns,1);

shares|i,1] = i;

shares[i,2] = starchies][i,2];

shares[i,3] = shares[i-1,3] + weights][i-1,.];
endfor;

shares[ns+1,1] = ns+1;

shares[ns+1,3] = 1;

/* Sample with replacement numsize different fruits. This may be number of full or half cup-
equivalents. You will need to cut

cost in half at the end if you go with half cup-equivalents. */

starchybasket = zeros(ns,bss);

for b(1,bss,1);

bb=rndu(numstrch,1);

bb = sortc(bb,1);

/*For each value of the uniform random sample that | generated, the following

"do loop" finds the appropriate location in the cumulative histogram.

| start by tallying the number of times the last fruit in my data is in the

combination. This avoids the problem of the index being out of range. */

el = zeros(numstrch,1);

for c(1,numstrch,1);

if bb[c,1] < shares[2,3]; el[c,1] = 1;
endif;

endfor;

first = sumc(el);

e2 = zeros(numstrch,1);

for c(1,numstrch,1);

if bb[c,1] >= shares[ns,3]; e2[c,1] = 1;

endif;

endfor;

last = sumc(e2);

/* You delete rows that belong to the first and last PSU, if random number fell in first or last interval.

Then you do the others, but code only works for those somewhere in the middle of the interval */

e =el+e2;

bbb = delif(bb,e);

bk = rows(bbb);

others = zeros(ns,1);

if numstrch == first + last;

starchybasket].,b] = first|others[2:ns-1,1]]|last;

else;

for c(1,bk,1);

r=2;

do until shares[r-1,3] < bbb[c,1] < shares[r,3] ;
r=r+l;

endo;

k=r-2;

others[k,1] = others[k,1] + 1;

endfor;

starchybasket[.,b] = first|others[2:ns-1,1]] last;

endif;

endfor;

/**

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k %k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k >k 5k 5k 3k %k %k %k >k 5k %k %k %k k ok ok k

3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k %k %k >k 3k 3k 3k 3k 3k %k %k %k >k 3k 3k 3k 5%k %k %k >k 3k >k 3k 3k 3k >k >k %k >k >k 3k 3k 3k 3k >k >k 3k >k 3k 3k 3k 5%k %k %k >k 3k >k 3k 5%k 3k %k %k >k >k >k >k 5k 5%k 3%k %k %k 3k >k 3k 3% 3% %k %k %k %k %k %k 3k k

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 3k 3k 3k 3k >k %k 5k 5k 3k >k %k %k 5k 5k %k %k %k kk ok k

3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k >k 3k 3k 3k >k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k %k %k %k 5k 5k %k %k %k >k %k %k k Generate Other Veggie Combinations

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k 3k >k 3k 3k 3k sk >k 5k 5k 3k 3k %k 3k 5k 5k 5k %k %k %k 5k 5k %k %k %k k k ok kk

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k >k 5k 3k sk sk 3k 5k 5k 3k 3k 3k 3k 3k 5k 5k 3k sk 3k 5k 5k 3k sk sk 3k 3k 3k 3k sk >k 3k 3k 3k 3k 3k >k 3k 3k 3k sk sk >k 3k 3k 3k 3k >k 5k 3k 5k 3k %k %k >k 5k 5k %k %k %k k %k %k %k k kk

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k >k 3k 3k 3k %k %k %k %k 3k 3k 5k 3k %k %k %k >k %k 3k 3k 3k >k k k k k

ok ok oK ok ok ok ok ok K ok ok ok 3 ok ok ok ok ok 3k o K ok ok ok 3k ok o oK ok ok sk ok ok K ok ok ok 3k ok oK ok ok ok ok o ok oK ok ok 3k ok o K ok ok ok 3k o ok ok ok 3k 3k ok ok ok ok ok 3k o ok ok ok ok ok ok o ok ok ok ok ko

***/

otherveggies = selif(x, x[.,1] .== 5.0);
othervegcosts = otherveggies|.,4]./2;
nov = rows(otherveggies);

print "Number of other vegetable half cup-equivalents (servings) is";; print numother;

/* Picture an empirical density function. For the nth fruit or vegetable in the group, the second column

gives the item number and the third column gives the left side of the bar on the number line. */

sumweights = sumc(otherveggies|.,5]);

weights = otherveggies|.,5]/sumweights;

shares = zeros(nov+1,3);
shares[1,1] = 1;
shares[1,2] =otherveggies[1,2];

shares[1,3] =0;

fori(2,nov,1);

shares|[i,1] = i;

shares[i,2] = otherveggies[i,2];

shares[i,3] = shares[i-1,3] + weights[i-1,.];
endfor;

shares[nov+1,1] = nov+1;

shares[nov+1,3] = 1;

/* Sample with replacement numsize different fruits. This may be number of full or half cup-
equivalents. You will need to cut

cost in half at the end if you go with half cup-equivalents. */

otherbasket = zeros(nov,bss);

for b(1,bss,1);

bb=rndu(numother,1);

bb = sortc(bb,1);

/*For each value of the uniform random sample that | generated, the following
"do loop" finds the appropriate location in the cumulative histogram.
| start by tallying the number of times the last fruit in my data is in the

combination. This avoids the problem of the index being out of range. */

el = zeros(numother,1);

for c(1,numother,1);

if bb[c,1] < shares[2,3]; el[c,1] = 1;
endif;

endfor;

first = sumc(el);

e2 = zeros(numother,1);
for c(1,numother,1);
if bb[c,1] >= shares[nov,3]; e2[c,1] = 1;

endif;

endfor;

last = sumc(e2);

/* You delete rows that belong to the first and last PSU, if random number fell in first or last interval.

Then you do the others, but code only works for those somewhere in the middle of the interval */

e =el+e2;

bbb = delif(bb,e);
bk = rows(bbb);

others = zeros(nov,1);

if numother == first + last;

otherbasket[.,b] = first| others[2:nov-1,1] | last;

else;

for c(1,bk,1);

r=2;

do until shares[r-1,3] < bbb[c,1] < shares[r,3] ;
r=r+l;

endo;

k=r-2;

others[k,1] = others[k,1] + 1;

endfor;

otherbasket[.,b] = first|others[2:nov-1,1] | last;

endif;

endfor;

/**

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k k %k %k 3%k 3k %k %k %k %k 5k 3k %k >k %k 5k 5k 3k %k %k %k >k 5k 3k %k %k kK kk

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k sk %k 3k 3k 3k %k %k %k >k 5k 3k >k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k %k %k >k 5k 5k 3k k %k 3%k 3k 3k %k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k %k >k 3k 3k %k %k 5%k 5k 3k 3k %k %k %k 5% 3k 3k %k %k %k >k 5k k k k¥

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3k 3k %k %k %k %k 3k 3k %k >k %k 5k 5k 3k %k %k %k 5k 5k 3k %k %k kK k k

FokAxAERIKEX Stack the subgroup combinations. And check the number of fruits and veggies included
ﬂ0n1eaChCOStrange 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k %k %k kosk sk ok kk k k k

3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k sk %k %k 3k 3k %k %k %k >k 5k 3k 3k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k k %k 3%k 3k 3k k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k 3%k 3k 3k 3k %k %k %k 5%k 3k 3k %k %k %k >k >k %k k k¥

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k 3k 3k 3k sk sk 3k sk 3k 5k 3k sk sk sk 5k 5k sk sk 3k 3k ok 5k %k sk k %k k sk k

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3k 3k 3k %k %k %k %k 3k 3k >k >k >k 5k 5k 3k >k %k >k 5k 5k 3k %k %k >k 5k 5k 3k %k >k 3k 5k %k %k %k %k 3k 3k 3k >k %k %k 3k 3k 3k >k %k >k 3k 3k 3k %k %k 5%k 5k 3k %k 5% 3k 3k %k %k %k 5%k 3k %k %k *k *k 3k %k k

***/

Combinations = fruitbasket4 | dgbasket|redbasket | starchybasket | otherbasket | legumesbasket;

foodcosts = fruitcosts | dgcosts | redcosts | starchycosts | othervegcosts | legcosts;

binlcalculator = zeros(rows(Combinations),bss);

for p(1,bss,1);

for v(1,rows(combinations),1);

if foodcosts|[v,.] < thresholdprice1/2; binlcalculator[v,p] = Combinations[v,p]; endif;
endfor;

endfor;

binltotal = sumc(binlcalculator);

binlshare = binltotal/(numfruit + numdg + numrd + numlg + numstrch + numother);

print "Share of baskets from bin 1 is";; print meanc(binlshare);

/**

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k %k %k 3k 3k 3k %k 3k sk 3k 5k 3k sk 3k 3k 5k 5k 3k sk 3k 3k ok 5k %k %k %k kok sk k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk 3k 3k 3k sk sk 3k 3k 3k sk sk sk sk sk ok sk sk sk sk sk sk 3k 3k 3k sk sk 3k 3k sk sk sk 3k 3k sk sk sk sk 3k sk 3k sk sk sk sk sk 3k sk sk sk sk 3k 3k sk %k sk 3k 3k 3k %k sk sk ok ok 3k %k sk sk k ki sk sk k ok

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 5k %k 3k 3k 3k sk sk 3k sk 3k sk sk sk sk 3k 5k sk sk sk 3k sk ok 5k %k sk k ko sk k

HA AR ARk Rk Rk kR ok X% Count the number of different types of products included.
3k 3k sk 3k sk 3k sk sk 3k sk 3k sk 3k sk sk sk sk 3k sk 3k sk sk 3k sk 3k sk ok sk ok sk sk sk skook skosk ksko sk skok k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k sk 3k 3k 3k sk sk 3k sk 3k ok sk sk sk 3k ok 5k 3k sk sk 3k 3k 5k 3k 3k sk 3k >k 5k 3k 3k sk sk 3k 3k 3k sk %k 3k 3k 3k sk sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k sk %k ok 5k 3k 3k 3k sk 3k ok 5k sk sk sk k ok sk sk sk k k

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3k 3k %k %k %k %k 5k 3k %k >k >k 5k 5k 3k %k %k %k 5k 5k 3k %k k k ok k k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k sk 3k 3k 3k sk sk ok sk 3k sk sk sk sk sk ok sk sk sk 3k 3k ok sk sk sk sk 3k 5k sk sk sk sk 3k sk sk sk sk 3k 3k 3k sk sk sk 3k 3k 3k sk sk sk 3k 3k 3k 3k sk 3k 3k 5k sk 3k sk sk 3k 5k ok %k sk sk %k sk sk sk sk kok

***/

numcounter = zeros(rows(Combinations),bss);

for p(1,bss,1);

for c(1,rows(Combinations),1);

if Combinations[c,p] >= 1; numcounter|c,p] = 1; else; numcounter|c,p] = 0; endif;

endfor;

endfor;

counters = sumc(numcounter);

counters2 = (sumc(counters))/bss;

print "The average number of different products in each basket is";; print counters2;

JRFFFA AR R KRR R R Rk sk sk R KRR R R R R R R R ok o

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k %k %k 3k 3k 3k %k 3k sk 3k 5k 3k sk 3k 3k 5k 5k 3k sk 3k 3k ok 5k %k %k %k kok sk k

ok ok ok ok ok ok ok o K oK ok ok ok o ok oK ok ok ok ok ok ok ok ok 3k ok o oK oK ok sk ok o K oK oK oK ok 3k o ok oK ok ok ok o oK oK ok ok ok ok oK oK ok ok ok ok ok oK ok ok ok ok oK oK oK ok sk ok ok K oK ok ok sk ok kK Kok ko

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k 3k 3k 3k %k 3k 3k 3k 5k 3k sk sk 3k 5k 5k 3k sk 3k sk 5k 5k %k %k k %k k sk k

R A H A AR KRR Ik R xR X XX Check basket costs and required budget shares in scenario #1 .
sk 3k sk 3k sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk sk sk ok

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k sk 3k 3k 3k sk sk 3k sk 3k sk sk sk sk 3k ok 5k 3k sk sk sk 3k 3k 3k sk sk sk 3k 3k sk 3k sk 3k 5k sk sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk 3k 3k sk %k 3k 3k 3k 3k %k sk 3k >k 3k 3k 3k sk %k >k >k %k %k k k

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3%k 3k %k %k %k %k 5k 3k %k %k >k 5k 5k 3k %k %k %k 5k 5k 3k %k %k kK k k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k sk 3k 3k 3k sk sk 3k sk 3k sk sk sk sk 3k ok sk sk sk sk 3k 5k sk sk sk sk 3k 5k sk sk sk sk 3k sk sk sk sk 3k 3k 3k sk sk sk 3k 3k 3k sk sk sk 3k 3k 3k sk sk 3k 3k 5k sk 3k sk sk sk 5k ok 3k sk %k %k sk sk sk k k ok

***/

foodcosts1 = foodcosts.*0.7;

pricechecker = zeros(rows(Combinations),bss);
for p(1,bss,1);
pricechecker[.,p] = Combinations[.,p].*foodcosts1;

endfor;

totalcost = (sumc(pricechecker));

pricetest = zeros(bss,4);

for p(1,bss,1);

pricetest[p,1] = p;

pricetest[p,2] = totalcost[p,.];
pricetest[p,3] = totalcost[p,.] / FVbudget1;
pricetest[p,4] = totalcost[p,.] / FVbudget2;

endfor;

print;

print "The average cost of the baskets at 70% of national average prices is";; print meanc(totalcost);
print;

print "Average required budget share with 100% of SNAP benefits is ";; print meanc(pricetest[.,3]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,3]);;

print ", a minimum of ";; print minc(pricetest[.,3]);;

print ", and a maximum of ";; print maxc(pricetest[.,3]);;

print;

print;

print "Average required budget share with 121% of SNAP benefits is ";; print meanc(pricetest[.,4]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,4]);;

print ", a minimum of ";; print minc(pricetest[.,4]);;

print ", and a maximum of ";; print maxc(pricetest|[.,4]);;

print;

print;

/**

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3%k 3k 3k %k %k %k %k 5k 3k %k %k %k 5k 5k 3k %k %k %k >k 5k 3k %k %k k ok kk

3k 3k 3k 3k 3k 3k 3k %k 3k 3k sk sk sk sk 3k 3k sk sk sk sk sk ok sk sk sk 3k ok ok sk sk sk 3k ok 5k sk sk sk 3k 3k 5k sk sk sk 3k sk sk sk sk 3k 3k 3k sk sk sk 3k 3k 3k sk sk sk 3k 3k 3k sk sk 3k ok 5k sk sk sk sk 3k ok ok sk sk sk sk ok sk sk k k%

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 3%k 5k 3k >k %k %k 5k 5k 3k %k %k %k >k 5k 3k %k k k ok kk

AR AR Xk xRk xR XX Check basket costs and required budget shares in scenario #2 .
3k 3k 3k 3k 3k 3k 3k 3k 3k ok sk ok 3k 3k 3k 3k sk sk 3k sk 3k 3k 3k 3k 3k 3k sk 5k ok ok 3k sk 3k sk sk sk sk sk k sk k k ok

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 5k 3k 3k 3k >k 5k 3k 3k sk 3k 5k 5k 3k 3k 3k 3k 3k 5k 5k 3k sk 3k 5k 5k 3k sk sk 3k 3k 3k 3k sk >k 3k 3k 3k 3k 3k %k 3k 3k 3k sk sk >k >k 3k 3k %k %k 5k 3k 5k %k %k %k >k 5k 5k %k %k %k k %k %k %k k kk

3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k %k 3k 3k 3k 3k %k %k 5k 5k 3k %k %k %k >k 5k %k %k %k kk ok k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k sk 3k 3k 5k 3k 3k k 3k 3k 5k 5k 3k sk 3k 5k 5k 3k sk sk 3k 3k 3k 3k sk >k 3k 3k 3k sk 3k >k 3k 3k 3k sk sk >k >k 3k 3k 3k 3k 5k 3k 5k %k %k %k %k 5k 5k 3k %k %k k %k %k %k k kk

***/

foodcosts1 = foodcosts.*0.85;

pricechecker = zeros(rows(Combinations),bss);
for p(1,bss,1);
pricechecker[.,p] = Combinations[.,p].*foodcosts1;

endfor;

totalcost = (sumc(pricechecker));

pricetest = zeros(bss,4);

for p(1,bss,1);

pricetest[p,1] = p;

pricetest[p,2] = totalcost[p,.];
pricetest[p,3] = totalcost[p,.] / FVbudget1;
pricetest[p,4] = totalcost[p,.] / FVbudget2;

endfor;

print;

print "The average cost of the baskets at 85% of national average prices is";; print meanc(totalcost);
print;

print "Average required budget share with 100% of SNAP benefits is ";; print meanc(pricetest[.,3]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,3]);;

print ", a minimum of ";; print minc(pricetest[.,3]);;

print ", and a maximum of ";; print maxc(pricetest|[.,3]);;

print;

print;

print "Average required budget share with 121% of SNAP benefits is ";; print meanc(pricetest[.,4]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,4]);;

print ", a minimum of ";; print minc(pricetest[.,4]);;

print ", and a maximum of ";; print maxc(pricetest|[.,4]);;
print;

print;

/**

ok ok oK ok ok ok o ok K oK ok ok ok ok ok ok ok ok ok ok K ok ok ok sk ok K Kk sk sk ok Kk ok kR kK

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k 3k %k ok sk 3k 5k 3k sk sk 3k 5k 5k sk sk sk 3k 5k 5k 5k 3k sk 3k 3k sk 3k sk sk 3k 3k 3k sk sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k %k 3k 5k 5k 5k 3k 3k sk sk 5k ok %k %k %k %k %k sk %k k k ok

ok ok ok ok ok ok ok ok K ok ok ok ok ok ok oK ok ok ok ok oK ok ok ok sk ok K Kk sk sk ok K Kk ok kR

HAAHAA AR H KRR d R XXk X* Check basket costs and required budget shares in scenario #3 .
3k 3K 3k 3k sk 3k sk sk 3k sk 3k sk 3k sk 3k sk sk 3k sk 3k sk sk 3k sk sk sk ok sk sk skosk sk sk sk skosk sk sk sk sk kk sk

3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k sk %k %k 3k 3k %k %k %k >k 5k 3k 3k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k k %k 3%k 3k 3k k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k 3%k 3k 3k 3k %k %k %k 5%k 3k 3k %k %k %k >k >k %k k k¥

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3%k 3k %k %k %k %k 5k 3k >k %k %k 5k 5k 3k %k %k %k 5%k 5k 3k %k %k k ok kk

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k k %k 3k 3k 3k %k >k %k >k 5k 3k 3k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k k %k 3%k 3k 3k k %k %k 3%k 3k 3k 3k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k 3%k 3k 3k 3k %k %k %k 5% 5k 3k %k %k %k >k %k %k k k¥

***/

foodcosts1 = foodcosts.*1.0;

pricechecker = zeros(rows(Combinations),bss);
for p(1,bss,1);
pricechecker].,p] = Combinations[.,p].*foodcosts1;

endfor;

totalcost = (sumc(pricechecker));
pricetest = zeros(bss,4);

for p(1,bss,1);

pricetest[p,1] = p;

pricetest[p,2] = totalcost[p,.];

pricetest[p,3] = totalcost[p,.] / FVbudget1;

pricetest[p,4] = totalcost[p,.] / FVbudget2;

endfor;

print;

print "The average cost of the baskets at 100% of national average prices is";; print meanc(totalcost);
print;

print "Average required budget share with 100% of SNAP benefits is ";; print meanc(pricetest[.,3]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,3]);;

print ", a minimum of ";; print minc(pricetest[.,3]);;

print ", and a maximum of ";; print maxc(pricetest|[.,3]);;

print;

print;

print "Average required budget share with 121% of SNAP benefits is ";; print meanc(pricetest[.,4]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,4]);;

print ", a minimum of ";; print minc(pricetest([.,4]);;

print ", and a maximum of ";; print maxc(pricetest[.,4]);;

print;

print;

/**

3k 3k 3k 3k 3k 5k 3k %k 3k 3k sk sk sk 3k 3k 3k sk sk sk sk 3k sk sk sk 3k sk ok sk sk sk sk sk sk ok ok sk sk sk k ok k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k >k 5k 3k sk sk 3k 5k 5k 3k 3k k 3k 3k 5k 5k 3k sk 3k 5k 5k 3k 3k sk 3k 3k 3k 3k sk %k 3k 3k 3k sk 3k %k 3k 3k 3k sk sk >k >k 3k 3k %k %k 5k 3k 5k %k %k %k >k 5k 5k %k %k %k k %k %k %k k k¥

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k %k %k 3k 3k >k 3k 3k 3k %k >k %k %k 3k 3k 5k 3k %k %k %k >k %k 3k 3k 3k >k k k k k

HAAHARH AR AR XKk XX R XX Check basket costs and required budget shares in scenario #4 .
3k 3k sk 3k 3k 3k sk sk 3k sk 3k sk 3k sk sk sk sk 3k sk 3k sk sk 3k sk 3k 3k 3k sk 3k sk 3k sk sk sk sk ok sk sk sk ok ki sk k

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k 3k sk 3k 5k 3k sk sk 3k 5k 5k 3k 3k sk 3k 3k 5k 5k 3k sk 3k 5k 5k 3k sk sk 3k 3k 3k 3k sk >k 3k 3k 3k 3k 3k %k 3k 3k 3k sk sk >k >k 3k 3k 3k >k 5k 3k 5k %k %k %k >k 5k 5k %k %k %k %k >k %k %k k k¥

3k 3k 3k 3k 3k >k 3k >k 3k 3k 3k 3k >k %k 3k 3k >k 3k 3k 3k %k >k %k %k 3k 3k 5k 3k >k %k %k >k %k 3k 3k 3k *k k k k k

ok ok oK ok ok ok ok ok K ok ok ok 3 ok ok ok ok ok 3k o K ok ok ok 3k ok o oK ok ok sk ok ok K ok ok ok 3k ok oK ok ok ok ok o ok oK ok ok 3k ok o K ok ok ok 3k o ok ok ok 3k 3k ok ok ok ok ok 3k o ok ok ok ok ok ok o ok ok ok ok ko

***/

foodcosts1 = foodcosts.*1.15;

pricechecker = zeros(rows(Combinations),bss);
for p(1,bss,1);
pricechecker[.,p] = Combinations[.,p].*foodcosts1;

endfor;

totalcost = (sumc(pricechecker));

pricetest = zeros(bss,4);

for p(1,bss,1);

pricetest[p,1] = p;

pricetest[p,2] = totalcost[p,.];
pricetest[p,3] = totalcost[p,.] / FVbudget1;
pricetest[p,4] = totalcost[p,.] / FVbudget2;

endfor;

print;

print "The average cost of the baskets at 115% of national average prices is";; print meanc(totalcost);
print;

print "Average required budget share with 100% of SNAP benefits is ";; print meanc(pricetest[.,3]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,3]);;

print ", a minimum of ";; print minc(pricetest|[.,3]);;

print ", and a maximum of ";; print maxc(pricetest|[.,3]);;

print;

print;

print "Average required budget share with 121% of SNAP benefits is ";; print meanc(pricetest[.,4]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,4]);;

print ", a minimum of ";; print minc(pricetest[.,4]);;

print ", and a maximum of ";; print maxc(pricetest|[.,4]);;

print;

print;

/**

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3%k 3k %k %k %k %k 3k 3k >k %k >k 5k 5k 3k %k %k %k %k >k 3%k %k %k k k*kk

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k sk %k 3k 3k 3k %k %k %k >k 5k 3k >k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k %k %k >k 5k 5k 3k k %k 3%k 3k 3k %k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k %k >k 3k 3k %k %k 5%k 5k 3k 3k %k %k %k 5% 3k 3k %k %k %k >k 5k k k k¥

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k %k %k 3k 3k %k %k %k %k 3k 3k %k >k %k 5k 5k 3k %k %k %k 5k 5k 3k %k %k kK k k

HAA KA A AR AR XA X KA XX Check basket costs and required budget shares in scenario #5 .
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k %k %k 3k 3k 3k sk 3k 3k 3k %k 3k 3k 3k 3k 5k 3k %k %k k %k kok

3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k sk %k %k 3k 3k %k %k %k >k 5k 3k 3k >k >k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k >k 5k 5k 3k k %k 3%k 3k 3k k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k 3%k 3k 3k 3k %k %k %k 5%k 3k 3k %k %k %k >k >k %k k k¥

3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k %k 3k 3k 3k sk sk 3k sk 3k 5k 3k sk sk sk 5k 5k sk sk 3k 3k ok 5k %k sk k %k k sk k

3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k k %k 3k 3k 3k %k %k %k >k 5k 3k 3k >k >k 5k 5k 3k >k %k >k 5k 5k 3k %k %k >k 5k 5k 3k k >k 3%k 3k 3k k %k %k 3%k 3k 3k 3k %k %k 3%k 3k 3k >k %k %k 3%k 3k 3k %k %k 3%k 3k 3k 3k %k %k %k 5% 3k 3k %k %k %k 5%k %k %k k k¥

***/

foodcosts1 = foodcosts.*1.29;

pricechecker = zeros(rows(Combinations),bss);
for p(1,bss,1);
pricechecker].,p] = Combinations[.,p].*foodcosts1;

endfor;

totalcost = (sumc(pricechecker));
pricetest = zeros(bss,4);

for p(1,bss,1);

pricetest[p,1] = p;

pricetest[p,2] = totalcost[p,.];
pricetest[p,3] = totalcost[p,.] / FVbudget1;
pricetest[p,4] = totalcost[p,.] / FVbudget2;

endfor;

print;

print "The average cost of the baskets at 129% of national average prices is";; print meanc(totalcost);
print;

print "Average required budget share with 100% of SNAP benefits is ";; print meanc(pricetest[.,3]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,3]);;

print ", a minimum of ";; print minc(pricetest[.,3]);;

print ", and a maximum of ";; print maxc(pricetest|[.,3]);;

print;

print;

print "Average required budget share with 121% of SNAP benefits is ";; print meanc(pricetest[.,4]);;
print "with a standard deviiation of ";; print stdc(pricetest[.,4]);;

print ", a minimum of ";; print minc(pricetest[.,4]);;

print ", and a maximum of ";; print maxc(pricetest|[.,4]);;

print;

print;

