Health Benefits of the Diverse Volatile Oils in Native Plants of Ancient Ironwood-Giant Cactus Forests of the Sonoran Desert: An Adaptation to Climate Change?
Abstract
:1. Introduction
2. Objectives
3. Materials and Methods
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nabhan, G.P.; Daugherty, E.; Hartung, T. Why does the desert smell like rain?: “Bathing” in the diverse fragrances of plants and soil microbes in ancient ironwood-giant cactus forests of the Sonoran Desert. Desert Plants, 2022, in press.
- Ali, N.A.; Al-Wabel, S.; Shams, A.; Ahamad, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2005, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Bharkatiya, M.; Nema, R.; Rathore, K.; Panchawat, S. Aromatherapy: Short overview. Int. J. Green Pharm. 2008, 2, 13. [Google Scholar] [CrossRef]
- Schnaubelt, K. Advanced Aromatherapy. In The Science of Essential Oil Therapy; Healing Arts Press: Rochester, VT, USA, 1998. [Google Scholar]
- Kerns, A.N. Elucidating the Absorption and Metabolism of Linalool to Understand Its Potential Health Benefits. Master’s Thesis, Ohio State University, Columbus, OH, USA, 2017. [Google Scholar]
- Stein, S.W.; Thiel, C.G. The history of therapeutic aerosols: A chronological review. J. Aerosol Med. Pulm. Drug Deliv. 2017, 30, 20–41. [Google Scholar] [CrossRef]
- Nabhan, G.P. The Desert Smells Like Rain; North Point Press: San Francisco, CA, USA, 1982. [Google Scholar]
- Abe, T.M.; Hisama, S.; Tanimoto, H.; Shibayama, Y.; Nomura, M. Antioxidant effects and antimicrobial activities of phytoncide. Biocontrol Sci. 2008, 13, 23–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guenther, A.; Geron, C.; Pierce, T.; Lamb, B.; Hanley, P.; Fall, R. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos. Environ. 2000, 34, 2205–2230. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, M.; Donelli, D.; Barbieri, G.; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest volatile organic compounds and their effects on human health: A state-of-the-art review. Int. J. Environ. Res. Public Health 2020, 17, 6506. [Google Scholar] [CrossRef] [PubMed]
- Kotera, Y.; Richardson, M.; Sheffield, D. Effects of Shinrin-Yoku (forest bathing) and nature therapy on mental health: A Systematic Review and Meta-analysis. Int. J. Ment. Health Addict. 2020, 1–25. [Google Scholar] [CrossRef]
- Jardine, K.; Abrell, L.; Kurc, S.A.; Huxman, T.; Ortega, J.; Guenther, A. Volatile organic compound emissions from Larrea tridentata (creosotebush). Atmos. Chem. Phys. 2010, 10, 12191–12206. [Google Scholar] [CrossRef] [Green Version]
- Rinnan, R.; Steinke, M.; McGenity, T.; Loreto, F. Plant volatiles in extreme terrestrial and marine environments. Plant Cell Environ. 2014, 37, 1776–1789. [Google Scholar] [CrossRef]
- Buchmann, S. The Reason for Flowers: Their History, Culture and Biology; Scribner’s: New York, NY, USA, 2015. [Google Scholar]
- Strobel, G.; Singh, S.; Riyaz-Ul-Hassa, A.; Mitchell, M.; Geary, B.; Sears, J. An endophytic/pathogenic Phoma sp. from creosote-bush producing biologically-active volatile compounds having fuel potential. FEMS Microbiol. Lett. 2011, 320, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arteaga, S.; Andrade-Cetto, A.; Cárdenas, R. Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J. Ethnopharm. 2005, 98, 231–239. [Google Scholar] [CrossRef]
- McGee, H. Nose Dive: A Field Guide to the World’s Smells; Penguin: New York, NY, USA, 2020. [Google Scholar]
- Felger, R.S.; Rutman, S.; Malusa, J.; Van Devender, T.R. Ajo Peak to Tinajas Altas: Flora of southwestern Arizona: An introduction. Phytoneuron 2013, 5, 1–40. [Google Scholar]
- Palermo, E. Why Does the Desert Smell Good? Live Science. Available online: https://www.livescience.com/37648-good-smells-rain-petrichor.html (accessed on 21 July 2013).
- Miyazaki, Y. Shinrin-Yoku: The Japanese Way of Forest Bathing for Health and Relaxation; Timber Press: Portland, OR, USA, 2018. [Google Scholar]
- Lee, J.; Cho, K.S.; Jeon, Y.; Kim, J.B.; Lim, Y.-R.; Lee, K.; Lee, I.-S. Characteristics and distribution of terpenes in South Korean forests. J. Ecol. Environ. 2017, 41, 19. [Google Scholar] [CrossRef] [Green Version]
- Rondeau, R.J.; Van Devender, T.R.; Bertelsen, C.D.; Jenkins, P.D.; Van Devender, R.K.; Dimmitt, M.A. Flora and vegetation of the Tucson Mountains, Pima County, Arizona. Desert Plants. 1983. Available online: https://cals.arizona.edu/herbarium/content/flora-and-vegetation-tucson-mountains-pima-county-arizona (accessed on 24 January 2022).
- Suzán, H.; Nabhan, G.P.; Patten, D.T. The importance of Olneya tesota as a nurse plant in the Sonoran Desert. J. Veg. Sci. 1996, 7, 635–644. [Google Scholar] [CrossRef]
- Nabhan, G.P.; Behan, M. Desert Ironwood Primer: Biodiversity and Uses Associated with Ancient Legume and Cactus Forest in the Sonoran Desert; Arizona-Sonora Desert Museum: Tucson, AZ, USA, 2000. [Google Scholar]
- Raguso, R.A.; Henzel, C.; Buchmann, S.L.; Nabhan, G.P. Trumpet flowers of the Sonoran Desert: Floral biology of Peniocereus cacti and sacred Datura. Bot. Gaz. 2003, 164, 877–892. [Google Scholar] [CrossRef]
- Suzan, H.; Nabhan, G.P.; Patten, D.T. Nurse plant and floral biology of a rare night-blooming Cereus, Peniocereus striatus (Brandegee) F. Buxbaum. Conserv. Biol. 1994, 8, 461–470. [Google Scholar] [CrossRef]
- Nabhan, G.P.; Carr, J.L. Ironwood: An Ecological and Cultural Keystone of the Sonoran Desert; Conservation International: Arlington, VA, USA, 1994. [Google Scholar]
- Bowers, J.E. Flora of Organ Pipe Cactus National Monument. J. Ariz. Nev. Acad. Sci. 1980, 15, 33–47. [Google Scholar]
- Najar, B.; Ferri, B.; Cioni, P.L.; Pistelli, L. Volatile emission and essential oil composition of Sambucus nigra L. organs during different developmental stages. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2020, 155, 721–729. [Google Scholar] [CrossRef]
- Duymus, A.H.; Demirci, B.; Demirci, F.; Kirimer, N. The volatile compounds of the elderflowers extract and the essential oil. Records Nat. Prod. 2017, 11, 491–496. [Google Scholar]
- Geron, C.; Guenther, A.; Greenberg, J.; Karl, T.; Rasmussen, R. Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. Atmos. Environ. 2006, 40, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Payne, W.W.; Scora, R.W.; Kumamoto, J. The volatile oils of Ambrosia (Compositae: Ambrosieae). Brittonia 1972, 24, 189–198. [Google Scholar] [CrossRef]
- Mabry, T.J.; Difeo, D.R. The role of the secondary plant chemistry in the evolution of the Mediterranean scrub vegetation. In Mediterranean Type Ecosystems. Ecological Studies (Analysis and Synthesis); di Castri, F., Mooney, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1973. [Google Scholar] [CrossRef]
- Loayza, I.; Abujder, D.; Aranda, R.; Jakupovic, J.; Collin, G.; Deslauriers, H.; Jean, F.-I. Essential oils of Baccharis salicifolia, B. latifolia and B. dracunculifolia. Phytochemistry 1995, 38, 381–389. [Google Scholar] [CrossRef]
- Bohlmann, F.; Suwita, A.; Mabry, T.J. New labdane derivatives and further constituents of Brickellia species. Phytochemistry 1978, 17, 763–765. [Google Scholar] [CrossRef]
- Wright, C.; Chhetri, B.K.; Setzer, W.N. Chemical composition and phytotoxicity of the essential oil of Encelia farinosa growing in the Sonoran Desert. Am. J. Essent. Oils Nat. Prod. 2013, 1, 18–22. [Google Scholar]
- Kumamoto, J.; Scora, R.W.; Clerx, W.A. Composition of leaf oils in the genus Parthenium L. Compositae. J. Agric. Food Chem. 1985, 33, 650–652. [Google Scholar] [CrossRef]
- Zdero, C.; Bohlmann, F.; Niemeyer, H. Sesquiterpene lactones from Perityle emoryi. Phytochemistry 1990, 29, 891–894. [Google Scholar] [CrossRef]
- Tucker, A.O.; Maciarello, M.J.; Brown, R.C.; Landrum, L.R.; Lafferty, D. Essential oils from the oleo-gum-resins of elephant tree or Torote (Bursera microphylla A. Gray, Burseraceae) from Arizona. J. Essent. Oil Res. 2009, 21, 57–58. [Google Scholar] [CrossRef]
- Bradley, C.E.; Haagen-Smit, A.J. The essential oil of Bursera microphylla. J. Am. Pharm. Assoc. 1951, 40, 591–592. [Google Scholar] [CrossRef]
- Ho, H.A. Chemical Constituents of the Saguaro (Carnegiea gigantea Br. & R.). Master’s Thesis, University of Arizona Monographs, Tuscon, AZ, USA, 1960. [Google Scholar]
- Wright, C.R.; Setzer, W.N. Volatile compositions of two cactus species growing in the Sonoran Desert of Southern Arizona. Am. J. Essent. Oils Nat. Prod. 2013, 1, 41–47. [Google Scholar]
- Paudel, P.; Satyal, P.; Maharjan, S.; Shrestha, N.; Setzer, W.N. Volatile analysis and antimicrobial screening of the parasitic plant Cuscuta reflexa Roxb. from Nepal. Nat. Prod. Res. 2013, 28, 106–110. [Google Scholar] [CrossRef]
- Samoylenko, V.; Ashfaq, M.K.; Jacob, M.R.; Tekwani, B.L.; Khan, S.I.; Manly, S.P.; Joshi, V.C.; Walker, L.A.; Muhammad, I. Indolizidine, antiinfective and antiparasitic compounds from Prosopis glandulosa Torr. Var. glandulosa. Planta Med. 2009, 75, 48. [Google Scholar] [CrossRef] [Green Version]
- Senthil Kumar, R.; Rajkapoor, B.; Perumal, P.; Dhanasekaran, T.; Alvin Jose, M.; Ajothimanivannan, C. Antitumor activity of Prosopis glandulosa Torr on Ehrlich Ascites Carcinoma (EAC) tumor bearing mice. Iran. J. Pharm. Res. 2011, 10, 505–510. [Google Scholar] [PubMed]
- Matsunaga, S.N.; Guenther, A.B.; Greenberg, J.P.; Potosnak, M.; Papiez, M.; Hiura, T.; Kato, S.; Nishida, S.; Harley, P.; Kajii, Y. Leaf level emission measurement of sesquiterpenes and oxygenated sesquiterpenes from desert shrubs and temperate forest trees using a liquid extraction technique. Geochem. J. 2009, 43, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Tamowitz, B.D.; Junak, S.A.; Smith, D.M. Terpenoids in Hyptis emoryi. J. Nat. Prod. 1984, 47, 739–740. [Google Scholar] [CrossRef]
- Levin, R.A.; Raguso, R.A.; McDade, L.A. Fragrance chemistry and pollinator affinities in Nyctaginaceae. Phytochemistry 2001, 58, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Raguso, R.A.; Pichersky, E. New perspectives in pollination biology: Floral fragrances. A day in the life of a linalool molecule: Chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant Species Biol. 1999, 14, 95–120. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Jamshidi, A.; Raeisi, M.; Azizzadeh, M. Effect of sodium alginate coating containing clove (Syzgium aromaticum) and lemon verbena (Aloysia citriodora) essential oils and different packaging treatments on shelf life extension of refrigerated chicken breast. J. Food Proc. Pres. 2020, 45, e14946. [Google Scholar] [CrossRef]
- Joung, D.C.; Song, H.; Ikei, T.; Okuda, T.; Igarashi, M. Physiological and psychological effects of olfactory stimulation with D-limonene. Adv. Hortic. Sci. 2014, 28, 90–94. [Google Scholar]
- Weston-Green, K.; Clunas, H.; Naranjo, C.J. A review of the potential use of pinene and linalool as terpene-based medicines for brain health: Discovering novel therapeutics in the flavours and fragrances of Cannabis. Front. Psychiatry 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene—What are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021, 8, 400. [Google Scholar] [CrossRef] [PubMed]
- Okuniewski, M.; Paduszyński, K.; Domańska, U. Thermodynamic study of molecular interactions in eutectic mixtures containing camphene. J. Phys. Chem. 2016, 120, 12928–12936. [Google Scholar] [CrossRef] [PubMed]
- Hashiesh, H.M.; Meeran, M.F.N.; Sharma, C.; Sadek, B.; Al Kaabi, J.; Ojha, S.K. Therapeutic potential of β-Caryophyllene: A dietary cannabinoid in diabetes and associated complications. Nutrients 2020, 12, 2963. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, J.; Prabhakar, P.K.; Gupta, P.; Solanki, P.; Rajput, A. Phytochemical repurposing of natural molecule: Sabinene for identification of novel therapeutic benefits using in silico and in vitro approaches. ASSAY Drug Dev. Technol. 2019, 17, 339–351. [Google Scholar] [CrossRef]
- Juergens, U.R. Anti-inflammatory properties of the monoterpene 1.8-cineole: Current evidence for co-medication in inflammatory airway diseases. Drug Res. 2014, 64, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.E.; Türkez, H.; Mardinoğlu, A. In vitro neuroprotective effects of farnesene sesquiterpene on alzheimer’s disease model of differentiated neuroblastoma cell line. Int. J. Neurosci. 2020, 131, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.-I.; Rhee, K.-J.; Eom, Y.-B. Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Can. J. Microbiol. 2020, 66, 389–399. [Google Scholar] [CrossRef]
- Leite, G.M.D.L.; Barbosa, M.D.O.; Lopes, M.J.P.; Delmondes, G.D.A.; Bezerra, D.S.; Araújo, I.M.; de Alencar, C.D.C.; Coutinho, H.D.M.; Peixoto, L.R.; Filho, J.M.B.; et al. Pharmacological and toxicological activities of α-humulene and its isomers: A systematic review. Trends Food Sci. Technol. 2021, 115, 255–274. [Google Scholar] [CrossRef]
- Shafaroodi, H.; Roozbahani, S.; Asgarpanah, J. The essential oil from Ferulago angulata (Schltdl.) Boiss. fruits exerting potent analgesic and anti-inflammatory effects. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2021, 72, 81–87. [Google Scholar]
- Calvo, M. Anti-inflammatory and analgesic activity of the topical preparation of Verbena officinalis L. J. Ethnopharmacol. 2006, 107, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Alcock, J. Sonoran Desert Summer; University of Arizona Press: Tucson, AZ, USA, 1985. [Google Scholar]
- Liddicoat, C.; Bi, P.; Waycott, M.; Glover, J.; Breed, M.; Weinstein, P. Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia. Sci. Total Environ. 2018, 626, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Neff, E.P. Stop and smell the geosmin. Lab Anim. 2018, 47, 270. [Google Scholar] [CrossRef] [Green Version]
- Fox, A. How Rain Evolved Its Distinct Scent—and Why Animals and Humans Love It. Smithsonian Magazine. Available online: https://www.smithsonianmag.com/smart-news/smell-rain-explained-180974692/ (accessed on 17 April 2020).
- Nabhan, G.P.; Orlando, L.; Monti, L.S.; Aronson, J. Hands-on ecological restoration as a nature-based health intervention: Reciprocal restoration for people and ecosystems. Ecopsychology 2020, 12, 195–202. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Udall, B. Climate change and the aridification of North America. Proc. Natl. Acad. Sci. USA 2020, 117, 11856–11858. [Google Scholar] [CrossRef]
- Letchamo, W.; Gosselin, A. Transpiration, essential oil glands, epicuticular wax and morphology of Thymus vulgaris are influenced by light intensity and water supply. J. Hortic. Sci. 1996, 71, 123–134. [Google Scholar] [CrossRef]
- Mehalaine, S.; Chenchouni, H. Effect of climatic factors on essential oil accumulation in two Lamiaceae species from Algerian semiarid lands. In Conference of the Arabian Journal of Geosciences; Springer: Cham, Germany, 2018; pp. 57–60. [Google Scholar]
- Nabhan, G.P.; Riordan, E.C.; Monti, L.; Rea, A.M.; Wilder, B.T.; Ezcurra, E.; Mabry, J.B.; Aronson, J.; Barron-Gafford, G.A.; García, J.M.; et al. An Aridamerican model for agriculture in a hotter, water scarce world. Plants People Planet 2020, 2, 627–639. [Google Scholar] [CrossRef]
Region | Area in Acres | Total Taxa in Flora | Number of Species in Ancient Ironwood-Giant Cactus Guild in So. Arizona | Number of Species with Odors Described in Floras | Number of Species with BVOCs Documented from Flowers or Foliage | Number of Species with the 5 BVOCs Most Active in Forest Bathing Health Benefits: α-Pinene, β-Pinene, β-Myrcene, Camphene, & D-Limonene |
---|---|---|---|---|---|---|
Organ Pipe Cactus N.M. | 15,360 | 657 | 114 | 54–55 (48%) | 23 (20.2%) | 13 (11.4%) |
Saguaro National Park West/Tucson Mountains | 19,600 | 630 | 94 | 47–48 (50%) | 20 (21.3%) | 11 (11.7%) |
Total | ca 35,000 | — | 178 | 66 | 26 | 15 |
Family | Species Known from Under Ironwood in Ancient Desert Forests in Arizona Uplands | Common Names (English & Spanish) | Contains Known BVOCs | Contains One or More of the 5 BVOCs Most Associated with Health Benefits | References |
---|---|---|---|---|---|
Adoxaceae | Sambucus canadensis | Elderberry | X | [29,30] | |
Amaranthaceae | Atriplex canescens | Fourwing saltbush | X | X | [31] |
Asteraceae | Ambrosia ambrosioides | Ambrosia-leaf Bur-ragweed, canyon ragweed, ambrosia bursage, chicura | X | X | [32] |
Ambrosia confertiflora | Slimleaf bursage, weak-leaf bur-ragweed, estafiate, istafiate | X | X | [32,33] | |
Ambrosia deltoidea | Triangle-leaf bursage, triangle bur ragweed, triangle bursage, chicurilla, ambrosia, estafiate, chamizo forrajero | X | X | [32] | |
Ambrosia dumosa | White burrowbush, burro-weed, chicurilla, estafiate | X | X | [32] | |
Baccharis salicifolia | Douglas’ false willow, mule-fat, seepwillow, batamote, jarilla, hierba del pasmo | X | [34] | ||
Brickellia coulteri | Coulter brickellbush | X | [35] | ||
Encelia farinosa | Brittlebush, incienso | X | X | [36] | |
Parthenium incanum | Mariola, hierba ceniza, hierba del guayule | X | X | [37] | |
Perityle emoryi | Emory’s rockdaisy, desert rock daisy, Emory’s rocklily | X | [38] | ||
Burseraceae | Bursera microphylla | Elephant tree, torote blanco | X | X | [39,40] |
Cactaceae | Carnegiea gigantea | Saguaro, giant cactus, sahuaro | X | [41] | |
Opuntia phaecantha | Tulip pricklypear, dark-spined prickly pear, nopal | X | [42] | ||
Peniocereus greggii | Night-blooming cereus, desert queen-of-the-night, sarramatraca | X | [25] | ||
Convolvulaceae | Cuscuta sp. | Dodder | X | X | [43] |
Fabaceae | Prosopis glandulosa | Honey mesquite, mezquite | X | [44,45,46] | |
Lamiaceae | Condea emoryi | Desert lavender | X | X | [47] |
Nyctaginaceae | Mirabilis multiflora | Colorado four o’clock | X | X | [48] |
Onagraceae | Oenothera arizonica | Arizona evening primrose | X | [49] | |
Portulacaceae | Portulaca oleracea | Common purslane, verdolaga | X | [49] | |
Solanaceae | Datura discolor | Sacred datura | X | [25] | |
Datura wrightii | Sacred datura, sacred thorn-apple | X | X | [25] | |
Lycium andersonii | X | X | [31] | ||
Verbenaceae | Aloysia wrightii | Lemon verbena, oreganillo | X | X | [50] |
Zygophyllaceae | Larrea tridentata | Creosote, hediondilla | X | X | [12] |
Molecule | Chemical Family | Sonoran Desert Plant Species |
---|---|---|
isoprene | Isoprenoids | Larrea tridentata |
cis-3-hexen-1-ol | Green leaf volatiles | Mirabilis multiflora |
cis-3-hexenal | Green leaf volatiles | Larrea tridentata, Cylindoopuntia acanthocarpa |
cis-3-hexenyl acetate | Green leaf volatiles | Mirabilis multiflora |
d-limonene | Monoterpene hydrocarbons | Aloysia wrightii, Ambrosia confertifolia, A. dumosa, Bursera microphylla, Capsicum annuum, Condea emoryi, Cuscuta tuberculata, Encelia farinosa, Larrea tridentata, Lycium andersonii, Mirabilis multiflora, Parthenium incanum |
α-pinene | Monoterpene hydrocarbons | Ambrosia ambrosioides, A. confertifolia, A. dumosa, Atriplex canescens, Bursera microphylla, Condea emoryi, Encelia farinosa, Larrea tridentata, Lycium andersonii, Parthenium incanum |
(E)-β-ocimene | Monoterpene hydrocarbons | Ambrosia confertifolia, Datura wrightii, Larrea tridentata, Mirabilis multiflora, Parthenium incanum |
1,8-cineole | Monoterpenoid ethers | Ambrosia ambrosioides, A. confertifolia, Condea emoryi, Datura wrightii, Parthenium incanum |
camphor | Monoterpenoid ketones | Larrea tridentata |
linalool | Monoterpenoid alcohol | Condea emoryi, Datura wrightii, Oenothera arizonica, Opuntia phaeacantha, Parthenium incanum, Portulaca umbracticola, Sambucus canadensis |
p-cymene | Aromatic monoterpene hydrocarbons | Larrea tridentata |
sabinene | Monoterpene hydrocarbons | Ambrosia ambrosioides, A. deltodea, A. dumosa, Bursera microphylla, Encelia farinosa, Parthenium incanum |
β-caryophyllene | Sesquiterpene hydrocarbons | Ambrosia ambrosioides, A. confertifolia, A. deltoidea, A. dumosa, Bursera microphylla, Larrea tridentata, Parthenium incanum, Perityle emoryi, Prosopis glandulosa |
β-myrcene | Monoterpene hydrocarbons | Ambrosia dumosa, Atriplex canescens, Bursera microphylla, Datura wrightii, Lycium andersonii, Parthenium incanum |
β-pinene | Monoterpene hydrocarbons | Ambrosia ambrosioides, A. deltoidea, A. dumosa, Bursera microphylla, Lycium andersonii, Parthenium incanum |
β-3-carene | Monoterpene hydrocarbons | Larrea tridentata |
borneol | Monoterpenoid alcohol | Larrea tridentata |
bornyl acetate | Monoteropene-derived ester | |
camphene | Monoterpene hydrocarbons | Ambrosia confertifolia, Atriplex canescens, Larrea tridentata, Lycium andersonii |
terpinen-4-ol | Monoterpenoid alcohol | |
α-copaene | Sesquiterpene hydrocarbons | |
α-humulene | Sesquiterpene hydrocarbons | Ambrosia ambrosioides, A. confertifolia, A. deltoidea, A. dumosa |
α-phellandrene | Monoterpene hydrocarbons | Baccharis salicifolia, Carnegiea gigantea |
α-terpinene | Monoterpene hydrocarbons | Ambrosia confertifolia, A. deltoidea, A. dumosa, Parthenium incanum |
α-terpineol | Monoterpenoid alcohol | |
α-terpinolene | Monoterpene hydrocarbons | Parthenium incanum |
β-phellandrene | Monoterpene hydrocarbons | Carnegiea gigantea |
β-terpinene | Monoterpene hydrocarbons | Ambrosia confertifolia, A. deltoidea, A. dumosa, Parthenium incanum |
(Z)-β-ocimene | Monoterpene hydrocarbons | Ambrosia confertifolia, Datura wrightii, Larrea tridentata, Mirabilis multiflora, Parthenium incanum |
bergamotene | Sesquiterpene hydrocarbons | Prosopis glandulosa |
DMNT | Homoterpene hydrocarbons | Mirabilis multiflora |
longifolene | Sesquiterpene hydrocarbons | |
methyl jasmonate | Jasmonate ester | |
methyl salicylate | Benzoate ester | Datura wrightii, Larrea tridentata, Mirabilis multiflora, Peniocereus greggii |
TMTT | Homoterpene hydrocarbons | |
α-thujene | Monoterpene hydrocarbons | Condea emoryi |
β-farnesene | Sesquiterpene hydrocarbons | Ambrosia ambrosioides, A. confertifolia, A. deltoidei, A. dumosa, Prosopis glandulosa |
BVOCs and Their Sonoran Desert Plant Examples | Known Benefit or Effect | References |
---|---|---|
D-limonene (Anderson Wolfberry, Brittlebush, Chiltepin, Colorado Four O’clock, Desert Lavender, Dodder, Creosote-bush, Elephant Tree, Mariola, Oreganillo, Weakleaf Bur Ragweed) | Antioxidant, antiproliferative, antidepressant, anti-inflammatory, antinociceptive, anxiolytic, blood pressure lowering, heart rate decrease | [10,51] |
α-pinene (Anderson Wolfberry, Brittlebush, Creosote-bush, Desert Lavender, Mariola, Triangle-leaf bursage, Weakleaf Bur Ragweed, White Burrow-bush) | Antioxidant, anti-inflammatory, anxiolytic, antiproliferative, analgesic, sedative, neuroprotective, antidepressant, sleep improvement | [10,52] |
β-pinene (Anderson Wolfberry, Elephant Tree, Mariola, Triangle-leaf Bursage, White Burrow-bush) | Antioxidant, antiproliferative, antidepressant, anti-inflammatory, anxiolytic, neuroprotective, sleep improvement | [10,52] |
Myrcene (Anderson Wolfberry, Elephant Tree, Four-winged Saltbush, Mariola, Sacred Datura) | Analgesic, antiproliferative, anti-inflammatory, sedative, gastroprotective, myorelaxant, antidiabetic, antibacterial, anticancer, anticonvulsant | [10,53] |
Camphene (Creosote-bush Four-winged Saltbush, Weakleaf Bur Ragweed) | Antioxidant, antinociceptive, antihyperlipidemic, antiproliferative, anti-inflammatory, anti-cancer, anti-fungal, anti-gastric ulcers | [10,54] |
Caryophyllene (Canyon Ragweed, Elephant Tree, Emory’s Rockdaisy, Mariola, Weakleaf Bur Ragweed, White Burrow-bush) | Antioxidant, anti-inflammatory, antihyperglycemic, full agonist of cannabinoid receptor type 2, anti-microbial, chemopreventive, nephroprotective, cardioprotective, neuroprotective | [55] |
Linalool(s) (Arizona Evening Primrose, Chiltepin, Creosote-bush, Desert Prickly Pear Cactus, Mariola, Purslane, Sacred Datura) | Antioxidant, neuroprotective, anti-inflammatory, anxiolytic, antidepressant | [52] |
Sabinene (Brittlebush, Elephant Tree, Triangle-leaf Bursage, White Burrow-bush) | Antioxidant, antibacterial, anti-inflammatory, angiostatic, antiangiogenic, cytoprotective, anticancer | [56] |
Cineole (Canyon Ragweed, Desert Lavender, Mariola, Mexican (Desert) Oregano, Sacred Datura) | Antioxidant, anti-inflammatory, mucolytic and spasmolytic in the respiratory tract, antiseptic, antimicrobial, gastrointestinal protective, hepatoprotective, analgesic, anti-nociceptive | [57] |
Farnesene (Desert Prickly Pear Cactus, Honey Mesquite, Triangle-leaf Bursage, Weakleaf Bur Ragweed) | Antioxidant, neuroprotective, anti-inflammatory | [58] |
Humulene (Brittlebush, Weakleaf Bur Ragweed, Triangle-leaf Bursage, White Burrow-bush, White Bursage) | Antioxidant, antibacterial, antibiofilm, anti-inflammatory, antitumor, gastroprotective, cicatrizing, analgesic | [59,60] |
Ocimene (Brittlebush, Mariola, Weakleaf Bur Ragweed, Sacred Datura) | Analgesic, anti-inflammatory | [61] |
Methyl Salicylate (Colorado Four O’clock Night-blooming Cereus Cactus, Sacred Datura, Sweet Acacia/Huisache) | Analgesic, antiseptic, anti-inflammatory | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabhan, G.P.; Daugherty, E.; Hartung, T. Health Benefits of the Diverse Volatile Oils in Native Plants of Ancient Ironwood-Giant Cactus Forests of the Sonoran Desert: An Adaptation to Climate Change? Int. J. Environ. Res. Public Health 2022, 19, 3250. https://doi.org/10.3390/ijerph19063250
Nabhan GP, Daugherty E, Hartung T. Health Benefits of the Diverse Volatile Oils in Native Plants of Ancient Ironwood-Giant Cactus Forests of the Sonoran Desert: An Adaptation to Climate Change? International Journal of Environmental Research and Public Health. 2022; 19(6):3250. https://doi.org/10.3390/ijerph19063250
Chicago/Turabian StyleNabhan, Gary Paul, Eric Daugherty, and Tammi Hartung. 2022. "Health Benefits of the Diverse Volatile Oils in Native Plants of Ancient Ironwood-Giant Cactus Forests of the Sonoran Desert: An Adaptation to Climate Change?" International Journal of Environmental Research and Public Health 19, no. 6: 3250. https://doi.org/10.3390/ijerph19063250
APA StyleNabhan, G. P., Daugherty, E., & Hartung, T. (2022). Health Benefits of the Diverse Volatile Oils in Native Plants of Ancient Ironwood-Giant Cactus Forests of the Sonoran Desert: An Adaptation to Climate Change? International Journal of Environmental Research and Public Health, 19(6), 3250. https://doi.org/10.3390/ijerph19063250