Pollution Assessment and Source Apportionment of Soil Heavy Metals in a Coastal Industrial City, Zhejiang, Southeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preparation
2.3. Statistical Analysis Method
2.4. Pollution Index Method
Single Pollution Index | Nemerow Integrated Pollution Index | Geo-Accumulation Index | |||
---|---|---|---|---|---|
SPI ≤ 1 | non-polluting | NIPI ≤ 0.7 | background areas | GI < 0 | no pollution |
1 < SPI ≤ 2 | mild pollution | 0.7 < NIPI ≤ 1 | warning areas | 0 ≤ GI < 1 | no pollution-moderate pollution |
2 < SPI ≤ 3 | moderate pollution | 1 < NIPI ≤ 2 | mildly polluted areas | 1 ≤ GI < 2 | moderate pollution |
SPI > 3 | severe pollution | 2 < NIPI ≤ 3 | moderately polluted areas | 2 ≤ GI < 3 | moderate pollution-heavy pollution |
NIPI > 3 | heavily polluted areas | 3 ≤ GI < 4 | heavy pollution | ||
4 ≤ GI < 5 | heavy pollution-extremely heavy pollution | ||||
GI ≥ 5 | extremely heavy pollution |
2.5. Positive Matrix Factorization Model
2.6. Unmix Model
2.7. Data Analysis
3. Results
3.1. Descriptive Statistical Analysis
3.2. Heavy Metal Pollution Assessment
3.3. Source Apportionment Based on the PMF Model
3.4. Source Apportionment Based on the Unmix Model
4. Discussion
4.1. Effects of the Types of Industrial Enterprises on Soil Heavy Metal Pollution
4.2. Policy Implications including a Combination of Administrative Compulsion and Economic Incentives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brtnický, M.; Pecina, V.; Hladký, J.; Radziemska, M.; Koudelkova, Z.; Klimanek, M.; Richtera, L.; Adamcova, D.; Elbl, J.; Galiova, M.V.; et al. Assessment of phytotoxicity, environmental and health risks of historical urban park soils. Chemosphere 2019, 220, 678–686. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Zhang, Z.D.; Zhu, Y.F.; Hou, H.; Zhao, L.; Sun, Z.J.; Xue, W.J.; Shi, H.D. Linkage between human population and trace elements in soils of the Pearl River Delta: Implications for source identification and risk assessment. Sci. Total Environ. 2018, 610, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, S.S.; Li, X.Y.; Zhao, Z.Q.; Chen, S.B. An overview of current status of copper pollution in soil and remediation efforts in China. Earth Sci. Front. 2018, 25, 305–313. [Google Scholar]
- Zhang, Y.; Guo, Z.H.; Peng, C.; Deng, H.Y.; Xiao, X.Y. A questionnaire based probabilistic risk assessment (PRA) of heavy metals in urban and suburban soils under different land uses and receptor populations. Sci. Total Environ. 2021, 793, 148525. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, T.; Iancu, O.G.; Pintilei, M.; Chicos, M.M. Spatial distribution and geochemistry of heavy metals in soils: A case study from the NE area of Vaslui county, Romania. J. Geochem. Explor. 2017, 176, 20–32. [Google Scholar] [CrossRef]
- Huang, Y.; Li, T.Q.; Wu, C.X.; He, Z.L.; Japenga, J.; Deng, M.H.; Yang, X.E. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. J. Hazard. Mater. 2015, 299, 540–549. [Google Scholar] [CrossRef]
- Lv, J.S. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environ. Pollut. 2019, 244, 72–83. [Google Scholar] [CrossRef]
- Nouri, J.; Khorasani, N.; Lorestani, B.; Karami, M.; Hassani, A.H.; Yousefi, N. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci. 2009, 59, 315–323. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Li, Z.Y.; Lu, X.N.; Duan, Q.N.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and ag-ricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Lv, J.S.; Liu, Y. An integrated approach to identify quantitative sources and hazardous areas of heavy metals in soils. Sci. Total Environ. 2019, 646, 19–28. [Google Scholar] [CrossRef]
- Ye, L.; Huang, M.; Zhong, B.; Wang, X.; Tu, Q.; Sun, H.; Wang, C.; Wu, L.; Chang, M. Wet and dry deposition fluxes of heavy metals in Pearl River Delta region (China): Characteristics, ecological risk assessment, and source apportionment. J. Environ. Sci. 2018, 70, 106–123. [Google Scholar] [CrossRef]
- Gulan, L.; Milenkovic, B.; Zeremski, T.; Milic, G.; Vuckovic, B. Persistent organic pollutants, heavy metals and radioactivity in the urban soil of Priština City, Kosovo and Metohija. Chemosphere 2017, 171, 415–426. [Google Scholar] [CrossRef]
- Wang, Y.S.; Wu, F.X.; Gu, Y.G.; Huang, H.H.; Gong, X.Y.; Liao, X.L. Polycyclic Aromatic Hydrocarbons (PAHs) in the intertidal sediments of Pearl River Estuary: Characterization, source diagnostics, and ecological risk assessment. Mar. Pollut. Bull. 2021, 173, 113140. [Google Scholar] [CrossRef]
- Ahamad, A.; Raju, N.J.; Madhav, S.; Gossel, W.; Ram, P.; Wycisk, P. Potentially toxic elements in soil and road dust around Sonbhadra industrial region, Uttar Pradesh, India: Source apportionment and health risk assessment. Environ. Res. 2021, 202, 111685. [Google Scholar] [CrossRef]
- Yang, Z.P.; Li, X.Y.; Wang, Y.; Chang, J.Z.; Liu, X.R. Trace element contamination in urban topsoil in China during 2000–2009 and 2010–2019: Pollution assessment and spatiotemporal analysis. Sci. Total Environ. 2021, 758, 143647. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zheng, M.; Cai, J.; Yan, C.Q.; Hu, Y.T.; Russell, A.G.; Wang, X.S.; Wang, S.X.; Zhang, Y.H. Comparison and overview of PM2.5 source apportionment methods. Chin. Sci. Bull. 2015, 60, 109–121. (In Chinese) [Google Scholar]
- Santos, J.M.; Reis, N.C.; Galvao, E.S.; Silveira, A.; Goulart, E.V.; Lima, A.T. Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil. Environ. Sci. Pollut. Res. 2017, 24, 22026–22039. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Duan, X.J.; Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. 2020, 710, 134953. [Google Scholar] [CrossRef]
- Yang, Y.; Christakos, G.; Guo, M.W.; Xiao, L.; Huang, W. Space-time quantitative source apportionment of soil heavy metal concentration increments. Environ. Pollut. 2017, 223, 560–566. [Google Scholar] [CrossRef]
- Chai, L.; Wang, X.; Ma, L.; Cheng, Z.X.; Su, L.M.; Wang, Y.H. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models. China Environ. Sci. 2020, 40, 3919–3929. [Google Scholar]
- Liu, L.L.; An, Y.F.; Ma, J.; Chen, Y.X.; Wu, Y.H.; Li, J.Y.; Huang, J.X. Source Apportionment of Soil Heavy Metals in Beijing Urban Park Based on the UNMIX Model. Res. Environ. Sci. 2020, 33, 2856–2863. [Google Scholar]
- Diakite, M.L.; Hu, Y.A.; Cheng, H.F. Source apportionment based on the comparative approach of two receptor models in a large-scale region in China. Environ. Sci. Pollut. Res. 2021, 28, 56696–56710. [Google Scholar] [CrossRef]
- Deng, J.J.; Zhang, Y.R.; Qiu, Y.Q.; Zhang, H.L.; Du, W.J.; Xu, L.L.; Hong, Y.W.; Chen, Y.T.; Chen, J.S. Source apportionment of PM2.5 at the Lin’an regional background site in China with three receptor models. Atmos. Res. 2018, 202, 23–32. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Najmeddin, A.; Moore, F.; Moghaddam, P.A. Risk-based assessment of soil pollution by potentially toxic elements in the industrialized urban and peri-urban areas of Ahvaz metropolis, southwest of Iran. Ecotox. Environ. Saf. 2019, 167, 365–375. [Google Scholar] [CrossRef]
- Hong, D.Y. Progress of China’s petrochemical industry in 2013 and outlook for 2014. Chem. Ind. Eng. Prog. 2014, 7, 1633–1658. [Google Scholar]
- Zhenhai STATS. Statistical Bulletin of National Economic and Social Development of Zhenhai District in 2020. Ningbo. 2021. Available online: http://www.zh.gov.cn/art/2021/2/26/art_1229054145_3707153.html (accessed on 12 February 2022).
- Cui, S.H.; Li, G.; Liu, J.H.; Song, W.H.; Shen, S. Assessment and Analysis of Trajectory Measurement Data Based on Skewness and Kurtosis. J. Proj. Rockets Missiles Guid. 2015, 6, 98–100, 105. [Google Scholar]
- Karim, Z.; Qureshi, B.A.; Mumtaz, M. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol. Indic. 2015, 48, 358–364. [Google Scholar] [CrossRef]
- Wang, Q.H.; Dong, Y.X.; Zheng, W.; Zhou, G.H. Soil geochemical baseline values and environmental background values in Zhejiang, China. Geol. Bull. China 2007, 5, 590–597. [Google Scholar]
- Fang, X.B.; Shi, J.; Liao, X.F.; Lou, Z.; Zhou, L.Y.; Yu, H.X.; Yao, L.; Sun, L.P. Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin’an. Chin. J. Appl. Ecol. 2015, 26, 1883–1891. [Google Scholar]
- Singh, M.; Ansari, A.A.; Muller, G.; Singh, I.B. Heavy metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River): Effects of human activities. Environ. Geol. 1997, 29, 246–252. [Google Scholar] [CrossRef]
- Wang, Z.H.; Liu, X.Y.; Qin, H.Y. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. J. Geochem. Explor. 2019, 200, 159–166. [Google Scholar] [CrossRef]
- Luo, Q.; Li, Y.J.; Qin, F.X.; Huang, X.F.; Jiang, X. Contamination status and risk assessment of heavy metals in soil aggregates of Pb-Zn mining area. Ecol. Environ. Sci. 2020, 29, 605–614. [Google Scholar]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Li, J.; Teng, Y.G.; Wu, J.; Jiang, J.Y.; Huang, Y. Source Apportionment of Soil Heavy Metal in the Middle and Upper Reaches of Le’an River based on PMF Model and Geostatistics. Res. Environ. Sci. 2019, 32, 984–992. [Google Scholar]
- Uchimiya, M.; Chang, S.; Klasson, K.T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 2011, 1–3, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 2014, 3, 781–797. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.H.; Duan, J.C.; Ma, Y.L.; He, K.B.; Cheng, Y.; Deng, S.X.; Huang, Y.L.; Si-Tu, S.P. Long-term trends of chemical characteristics and sources of fine particle in Foshan City, Pearl River Delta: 2008–2014. Sci. Total Environ. 2016, 565, 519–528. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef]
- Hopke, P.K. Recent developments in receptor modeling. J. Chemom. 2003, 17, 255–265. [Google Scholar] [CrossRef]
- Henry, R.C. History and fundamentals of multivariate air duality receptor models. Chemometr. Intell. Lab. Syst. 1997, 37, 37–42. [Google Scholar] [CrossRef]
- Henry, R.C. Multivariate receptor modeling by N-dimensional edge detection. Chemometr. Intell. Lab. Syst. 2003, 2, 179–189. [Google Scholar] [CrossRef]
- Lang, Y.H.; Li, G.L.; Wang, X.M.; Peng, P. Combination of Unmix and PMF receptor model to apportion the potential sources and contributions of PAHs in wetland soils from Jiaozhou Bay, China. Mar. Pollut. Bull. 2015, 1–2, 129–134. [Google Scholar] [CrossRef]
- Hu, K.; Wang, M.; Wang, H.L.; Jiang, S.A.; Chen, W.T.; Lu, X.D. Source Apportionment of Ambient Carbonyl Compounds Based on a PMF and Source Tracer Ratio Method: A Case Based on Observations in Nanjing. Chin. J. Environ. Sci. 2021, 42, 45–54. [Google Scholar]
- Dong, D.C.; Hu, M.L.; Luo, Y.; Wang, J.; Feng, K.P.; Zeng, H.P. Pollution evaluation and source apportionment of heavy metals in vegetable fields of Luliang County. Environ. Pollut. Control 2021, 43, 732–737. [Google Scholar]
- Han, Y.M.; Du, P.X.; Cao, J.J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 335, 176–186. [Google Scholar]
- Sakizadeh, M.; Zhang, C.S. Source identification and contribution of land uses to the observed values of heavy metals in soil samples of the border between the Northern Ireland and Republic of Ireland by receptor models and redundancy analysis. Geoderma 2021, 404, 115313. [Google Scholar] [CrossRef]
- Chen, J.P.; Liu, Y.X.; Zeng, C.C.; Pan, L.P.; Xing, Y.; Liao, Q.; Liang, P.X.; Jiang, Z.P. Research advances in the effects of rainfall on soil selenium migration and transformation. Chin. J. Ecol. 2019, 38, 1909–1915. [Google Scholar]
- Yang, L.; Wang, C.S.; Xia, J.G. Assessment of Heavy Metal Pollution and the Potential Ecological Hazard of Farmland Soils alongside Chengle Highway. J. Sichuan Agric. Univ. 2020, 38, 168–175. [Google Scholar]
- Zhang, A.G.; Wei, X.P. Pollution and source analysis of heavy metals in soils of typical karst troughs in southwestern China. Huanjing Kexue Yu Jishu 2020, 43, 166–176. [Google Scholar]
- Lv, J.S.; Liu, Y.; Zhang, Z.L.; Dai, J.R.; Dai, B.; Zhu, Y.C. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. J. Soils Sediments 2015, 15, 163–178. [Google Scholar] [CrossRef]
- Lin, C.Q.; Hu, G.R.; Yu, R.L.; Yang, Q.L.; Yu, W.H. Pollution assessment and source analysis of heavy metals in offshore surface sediments from Jiulong River. China Environ. Sci. 2016, 36, 1218–1225. [Google Scholar]
- Xiang, L.; Li, Y.X.; Shi, J.H.; Liu, J.L. Investigation of Heavy Metal and Polycyclic Aromatic Hydrocarbons Contamination in Street Dusts in Urban Beijing. Chin. J. Environ. Sci. 2010, 31, 159–167. [Google Scholar]
- Guo, G.H.; Lei, M.; Chen, T.B.; Song, B.; Li, X.Y. Effect of traffic on heavy metals in road dusts and roadside soils. Acta Sci. Circumstantiae 2008, 28, 1937–1945. [Google Scholar]
- Zhao, L.; Liang, Y.P.; Chen, Q.; Xu, Q.; Jing, H.W. Spatial Distribution, Contamination Assessment, and Sources of Heavy Metals in the Urban Green Space Soils of a City in North China. Chin. J. Environ. Sci. 2020, 41, 5552–5561. [Google Scholar]
- Zhang, F.G.; Peng, M.; Wang, H.Y.; Ma, H.H.; Xu, R.T.; Cheng, X.M.; Hou, Z.L.; Chen, Z.W.; Li, K.; Cheng, H.X. Ecological Risk Assessment of Heavy Metals at Township Scale in the High Background of Heavy Metals, Southwestern, China. Chin. J. Environ. Sci. 2020, 41, 4197–4209. [Google Scholar]
- Wu, J.; Li, J.; Teng, Y.G.; Chen, H.Y.; Wang, Y.Y. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J. Hazard. Mater. 2020, 388, 121766. [Google Scholar] [CrossRef]
- Lv, J.S.; He, H.C. Identifying the origins and spatial distributions of heavy metals in the soils of the Jiangsu Coast. Chin. J. Environ. Sci. 2018, 39, 2853–2864. [Google Scholar]
- Wu, J.; Lu, J.; Li, L.M.; Min, X.Y.; Luo, Y.M. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere 2018, 201, 234–242. [Google Scholar] [CrossRef]
- Wang, X.R.; Li, L.; Yan, X.H.; Tian, Y.Q. Progress in remediation of chromium-contaminated sites. Environ. Eng. 2020, 38, 1–8, 23. [Google Scholar]
- Ning, C.P.; Li, G.C.; Wang, Y.H.; Li, B.; Tian, L.; Wang, S.C. Evaluation and source apportionment of heavy metal pollution in Xihe watershed farmland soil. J. Agro-Environ. Sci. 2017, 36, 487–495. [Google Scholar]
- Zheng, Y.M.; Song, B.; Chen, T.B.; Zheng, G.D.; Huang, Z.C. Zinc accumulation and pollution risk in soils under different land use types in Beijing. J. Nat. Resour. 2006, 21, 64–72. [Google Scholar]
- Van Bohemen, H.D.; Van De Leek, W.H.J. The influence of road infrastructure and traffic on soil, water, and air quality. Environ. Manag. 2003, 31, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Li, Q.; Ma, T.; Li, C.X.; Teng, Y.J.; Yin, J.M.; Gao, X.X.; Jia, L.Y. Heavy metal pollution in soil and its effect on plants on the main roads of Lanzhou City. J. Lanchow Univ. Nat. Sci. 2017, 53, 664–670. [Google Scholar]
- Bai, Y.R.; Zhang, X.; Zhao, Y.P.; Wang, Y.Q.; Zhong, Y.X. Spatial Distribution Characteristics and Source Apportionment of Soil Heavy Metals in Chinese Wolfberry Land Based on GIS and the Receptor Model. Chin. J. Environ. Sci. 2019, 40, 2885–2894. [Google Scholar]
- Wang, W.F.; Qin, Y.; Song, D.Y. Study on the mobility and release of trace elements in coal-fired power plant. Acta Sci. Circumstantiae 2003, 23, 748–752. [Google Scholar]
- Shao, X.X.; Huang, B.; Sun, W.X.; Gu, Z.Q.; Qian, W.F.; Deng, X.M.; Luo, Y.M. Effect of industrial distribution on soil heavy metal accumulation in a typical area of the Yangtze River Delta. Acta Pedol. Sin. 2006, 43, 397–404. [Google Scholar]
- Zhang, P.; Qin, C.; Hong, X.; Kang, G.; Qin, M.; Yang, D.; Pang, B.; Li, Y.; He, J.; Dick, R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef]
- Yuan, Z.W.; Luo, T.; Liu, X.W.; Hua, H.; Zhuang, Y.J.; Zhang, X.H.; Zhang, L.; Zhang, Y.; Xu, W.W.; Ren, J.H. Tracing anthropogenic cadmium emissions: From sources to pollution. Sci. Total Environ. 2019, 676, 87–96. [Google Scholar] [CrossRef]
- Tan, H.J.; Huang, Z.Z.; Song, Q.M.; Chen, M.Y.; Wu, W.C. Characterization of Soil Contaminations in Brownfield Sites in a Typical City in Guangdong-Hong Kong-Macao Greater Bay Area. Res. Environ. Sci. 2021, 34, 976–986. [Google Scholar]
- Li, L.F.; Su, F.L.; Guan, C.; Guo, C.N. The effect of irrigation with paper-making wastewater on the accumulation of heavy metals and their fate assessment in wetland soil. Acta Sci. Circumstantiae 2015, 35, 2964–2970. [Google Scholar]
- Liu, H.L.; Li, L.Q.; Pan, G.X. Profile Distribution of Total Cu, Pb, Hg, As in Some Paddy Soils from the Southern Jiangsu, China and the Influencing Factors. J. Agro-Environ. Sci. 2006, 25, 1221–1227. [Google Scholar]
- Wang, X.F.; Wang, F.; Wang, Q.; Zhang, C.; Zhang, F. Optimized chemical extraction method for mercury speciation of papermaking white mud. Environ. Pollut. Control 2014, 36, 52–55. [Google Scholar]
- Zhu, X.F.; Zhang, C. Competitive application system: Policy pilot of sustainable development and transformation of central-local relations. China Popul. Resour. Environ. 2020, 1, 170–176. [Google Scholar]
- Li, H.B.; Zhou, L.A. Political turnover and economic performance: The incentive role of personnel control in China. J. Public Econ. 2005, 9–10, 1743–1762. [Google Scholar] [CrossRef]
- Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia. Environ. Manag. 2018, 4, 700–715. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Z.; Guo, C.X.; Sun, T.F. Chinese Imperfect Mechanism of Industrial Pollution Regulation and Its Improvement. Chin. Ind. Econ. 2006, 8, 29–35. [Google Scholar]
- Malik, A.; Alam, I.; Faridi, M.R.; Ayub, S. Corporate social irresponsibility towards the planet: A study of heavy metals contamination in groundwater due to industrial wastewater. Soc. Responsib. J. 2020, 16, 793–807. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Peng, P.G.; Liu, C.S.; Song, J.Z.; Bi, X.H. Heavy metal contaminations and chemical speciation of farmland soils in an e-waste recycling town in South China. Ecol. Environ. Sci. 2012, 21, 1742–1748. [Google Scholar]
- Xia, F.; Zhu, Y.W.; Hu, B.F.; Chen, X.Y.; Li, H.Y.; Shi, K.J.; Xu, L.C. Pollution Characteristics, Spatial Patterns, and Sources of Toxic Elements in Soils from a Typical Industrial City of Eastern China. Land 2021, 11, 1126. [Google Scholar] [CrossRef]
Heavy Metals | Sample Numbers | Minimum (mg kg−1) | Maximum (mg kg−1) | Mean (mg kg−1) | Standard Deviation (mg kg−1) | Median (mg kg−1) | Skewness | Kurtosis | Coefficient of Variation (%) | National Risk Screening Values (mg kg−1) | Background Value (mg kg−1) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agricultural Land | Construction Land | ||||||||||||||
pH ≤ 5.5 | 5.5 < pH ≤ 6.5 | 6.5 < pH ≤ 7.5 | pH > 7.5 | ||||||||||||
Cd | 248 | 0.014 | 4.52 | 0.2187 | 0.3892 | 0.124 | 7.333 | 70.21 | 178.00 | 0.3 | 0.4 | 0.6 | 0.8 | 65.0 | 0.14 |
Cr | 248 | 12.6 | 4770 | 95.771 | 299.52 | 81.75 | 15.42 | 241.1 | 312.75 | 250.0 | 250.0 | 300.0 | 350.0 | 5.7 | 47.62 |
Ni | 248 | 5.6 | 2580 | 45.45 | 162.22 | 36.4 | 15.47 | 242.2 | 356.92 | 60.0 | 70.0 | 100.0 | 190.0 | 900.0 | 21.51 |
Pb | 248 | 18.4 | 187 | 46.187 | 17.85 | 42.25 | 3.411 | 21.75 | 38.65 | 80.0 | 100.0 | 140.0 | 240.0 | 800.0 | 31.62 |
Zn | 248 | 55.4 | 4740 | 157.15 | 312.34 | 113.5 | 13.05 | 189.1 | 198.75 | 200.0 | 200.0 | 250.0 | 300.0 | 200.0 | 78.21 |
Cu | 248 | 8.31 | 253 | 39.997 | 25.717 | 34.5 | 4.304 | 28.18 | 64.30 | 150.0 | 150.0 | 100.0 | 100.0 | 18,000.0 | 20.98 |
Hg | 248 | 0.008 | 4.59 | 0.3511 | 0.5372 | 0.1655 | 4.762 | 32.82 | 152.99 | 1.3 | 1.8 | 2.4 | 1.0 | 38.0 | 0.15 |
As | 248 | 2.03 | 24.4 | 9.0885 | 3.3277 | 8.405 | 1.399 | 6.345 | 36.61 | 40.0 | 40.0 | 30.0 | 20.0 | 60.0 | 5.4 |
Co | 248 | 3.3 | 49.3 | 15.373 | 4.9647 | 15.2 | 1.903 | 13.73 | 32.29 | 70.0 | 70.0 | 70.0 | 70.0 | 70.0 | 10.15 |
V | 248 | 29.6 | 376 | 107.48 | 32.088 | 111 | 2.049 | 21.29 | 29.85 | 165.0 | 165.0 | 165.0 | 165.0 | 752.0 | 87.21 |
Se | 248 | 0.036 | 2.23 | 0.3062 | 0.2181 | 0.364 | 3.891 | 28.87 | 71.23 | 1 | 1 | 1 | 1 | 1 | 0.29 |
Mn | 248 | 150 | 3070 | 771 | 338.85 | 721.5 | 2.293 | 13.7 | 43.95 | 1500 | 1500 | 1500 | 1500 | 1500 | 651.13 |
Method | Number | Pollution Sources | Main Heavy Metals |
---|---|---|---|
PMF model | 1 | geological source | As (84.9%) |
2 | atmospheric deposition source | Se (84.9%), Pb (38.9%), Zn (35.8%) | |
3 | traffic emissions source | Cd (98.2%) | |
4 | agricultural and industrial sources | Hg (78.4%) | |
5 | geological and industrial sources | V (90.59%), Co (90.14%), Ni (88.59%), Cr (79.39%), Mn (78.84%), Cu (58.52%) | |
Unmix model | 1 | geological, agricultural, and industrial sources | V (58.33%), Hg (39.14%), Ni (34.09%), Cr (30.30%) |
2 | traffic emissions source | Zn (333.33%), Pb (88.64%) | |
3 | geological source | As (43.14%), Mn (41.67%) | |
4 | geological and industrial sources | V (12.72%), Ni (8.37%), Mn (8.15%), Co (7.39%), Cr (6.52%) |
Enterprise Type | Sample Counts | Cd | Cr | Ni | Pb | Zn | Cu | Hg | As | Co | V | Se | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BV | / | 0.14 | 47.63 | 21.51 | 31.62 | 78.21 | 20.98 | 0.15 | 5.4 | 10.15 | 87.21 | 0.29 | 651.13 |
Electrical appliances | 52 | 0.23 | 89.46 | 37.35 | 51.61 | 209.08 | 58.17 | 0.36 | 8.65 | 14.83 | 104.44 | 0.32 | 806.42 |
Textiles | 110 | 0.15 | 82.75 | 36.38 | 49.6 | 196.91 | 45.37 | 0.33 | 8.23 | 15 | 106.09 | 0.31 | 805.77 |
Iron and steel | 21 | 0.17 | 71.3 | 34.76 | 49.89 | 178.37 | 42.72 | 0.38 | 10.1 | 15.76 | 102.69 | 0.28 | 752.19 |
Chemicals | 15 | 0.19 | 85.96 | 46.82 | 43.45 | 439.3 | 50.93 | 0.37 | 8.34 | 15.51 | 131.14 | 0.23 | 865.87 |
Machinery | 366 | 0.18 | 85.76 | 36.99 | 51.3 | 170.74 | 50.07 | 0.4 | 8.91 | 15.43 | 107.93 | 0.32 | 773.68 |
Metals | 153 | 0.23 | 114.34 | 51.76 | 50.92 | 186.31 | 53.39 | 0.37 | 9.05 | 15.22 | 102.31 | 0.32 | 815.94 |
Coal | 35 | 0.24 | 70.5 | 28.28 | 56.68 | 115.49 | 43.89 | 0.18 | 9.88 | 14.32 | 87.93 | 0.37 | 851.8 |
Plastics | 56 | 0.16 | 80 | 34.97 | 49.02 | 156.75 | 51.12 | 0.33 | 9.19 | 14.25 | 102.69 | 0.31 | 684.04 |
Rubber | 16 | 0.22 | 77.01 | 33.39 | 53.87 | 137.71 | 46.28 | 0.33 | 8.14 | 14.85 | 109.14 | 0.26 | 669.75 |
Paper | 29 | 0.2 | 70.88 | 31.74 | 50.53 | 223.93 | 46.73 | 0.41 | 10.66 | 14.67 | 93.77 | 0.35 | 722.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, Y.; Cheng, J.; Li, Y.; Li, F.; Li, Y.; Shi, Z. Pollution Assessment and Source Apportionment of Soil Heavy Metals in a Coastal Industrial City, Zhejiang, Southeastern China. Int. J. Environ. Res. Public Health 2022, 19, 3335. https://doi.org/10.3390/ijerph19063335
Wang S, Zhang Y, Cheng J, Li Y, Li F, Li Y, Shi Z. Pollution Assessment and Source Apportionment of Soil Heavy Metals in a Coastal Industrial City, Zhejiang, Southeastern China. International Journal of Environmental Research and Public Health. 2022; 19(6):3335. https://doi.org/10.3390/ijerph19063335
Chicago/Turabian StyleWang, Shiyi, Yanbin Zhang, Jieliang Cheng, Yi Li, Feng Li, Yan Li, and Zhou Shi. 2022. "Pollution Assessment and Source Apportionment of Soil Heavy Metals in a Coastal Industrial City, Zhejiang, Southeastern China" International Journal of Environmental Research and Public Health 19, no. 6: 3335. https://doi.org/10.3390/ijerph19063335
APA StyleWang, S., Zhang, Y., Cheng, J., Li, Y., Li, F., Li, Y., & Shi, Z. (2022). Pollution Assessment and Source Apportionment of Soil Heavy Metals in a Coastal Industrial City, Zhejiang, Southeastern China. International Journal of Environmental Research and Public Health, 19(6), 3335. https://doi.org/10.3390/ijerph19063335