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Abstract: Accurate air quality forecasts can provide data-driven supports for governmental depart-
ments to control air pollution and further protect the health of residents. However, existing air
quality forecasting models mainly focus on site-specific time series forecasts at a local level, and rarely
consider the spatiotemporal relationships among regional monitoring stations. As a novelty, we
construct a diffusion convolutional recurrent neural network (DCRNN) model that fully considers the
influence of geographic distance and dominant wind direction on the regional variations in air quality
through different combinations of directed and undirected graphs. The hourly fine particulate matter
(PM2.5) and ozone data from 123 air quality monitoring stations in the Yangtze River Delta, China are
used to evaluate the performance of the DCRNN model in the regional prediction of PM2.5 and ozone
concentrations. Results show that the proposed DCRNN model outperforms the baseline models
in prediction accuracy. Compared with the undirected graph model, the directed graph model con-
sidering the effects of wind direction performs better in 24 h predictions of pollutant concentrations.
In addition, more accurate forecasts of both PM2.5 and ozone are found at a regional level where
monitoring stations are distributed densely rather than sparsely. Therefore, the proposed model
can assist environmental researchers to further improve the technologies of air quality forecasts and
could also serve as tools for environmental policymakers to implement pollution control measures.

Keywords: fine particulate matter; ozone; air quality forecast; diffusion convolutional recurrent
neural network; deep learning

1. Introduction

In recent decades, developing countries such as China have experienced rapid eco-
nomic growth and urbanization, and the substantial problems of urban air pollution have
also emerged [1,2]. For example, frequent occurrences of haze weather have attracted
worldwide concerns due to the deterioration of urban particulate pollution closely related
to intensive emissions of fine particles (PM2.5) and coarse particles (PM10). According to
epidemiological studies, long-term exposure to higher concentration levels of particulate
matter (PM) can cause serious health risks, such as cardiovascular diseases, respiratory
diseases, and even deaths [3,4]. Additionally, PM-related visibility reduction also brings
negative effects on human production and daily life [5]. Tropospheric ozone is another
air pollutant and one of the most important greenhouse gases. Ozone can participate in
various atmospheric photochemical processes and contribute to the indirect formation
of secondary particulate matter, which also exhibits very detrimental effects on human
health [6,7]. Therefore, the accurate prediction of particulate matter and ozone in a high
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spatial and temporal resolution is essential in assisting governmental departments to de-
sign and implement the related emission and pollution control policies, and the refined
regional forecasts of PM and ozone concentrations could strongly enhance the protection of
public health.

Related research on air quality forecasts has mainly been conducted with determin-
istic models and empirical models. The deterministic models are developed based on
atmospheric physics and mechanisms, such as the Weather Research and Forecasting
model coupled with Chemistry (WRF-Chem) [8,9] and Community Multi-scale Air Quality
(CMAQ) model [10]. The models can help researchers understand the physical and chemi-
cal formation mechanisms of urban air pollution but require lots of parameters including
meteorological conditions and emission inventories as inputs, thus bringing high uncer-
tainty in air quality forecasts. Furthermore, emission inventories may change over time and
need to be updated from time to time, which are usually accompanied by larger amounts
of costs and difficulties. By contrast, the empirical models are built based on statistics
and machine learning approaches. Although the models could not deeply explore the
meteorological and chemical coupling patterns behind air pollution, they often only require
a few extra parameters as model inputs in addition to historical data of air pollutants.
Hence, statistical methods and machine learning models are widely used to achieve the
time series predictions of urban air pollution, such as Auto-regressive Integrated Moving
Average (ARIMA) [11], Support Vector Machine (SVM) [12], Classification and Regression
Tree (CART) [13], etc. These models could fully cover different types of inputs including air
pollutants, meteorology, land use, etc., but the spatial characteristics of air pollution data
cannot be sufficiently incorporated in the process of model construction.

Deep learning models have presented excellent performances in the fields of air
quality forecasts and environmental assessments, such as the Recurrent Neural Net-
work (RNN) [14], Long Short-Term Memory (LSTM) [15–19], and Gated Recurrent Unit
(GRU) [20,21]. However, these RNN-based models cannot fully consider the physical
characteristics of topology networks among air quality monitoring stations to characterize
the spatial correlations [22]. Motivated by the potentials of the Convolutional Neural
Network (CNN) in capturing the spatial relationships, CNN-LSTM [22] and Convolutional
LSTM [23] are employed to conduct air quality predictions by extracting both spatial and
temporal features in grid-structured data (e.g., images). However, the CNN-based models
only extract the spatial features of the research target areas from the input grid-structured
data and are incapable of modeling complex topological relationships among large-scale
air quality monitoring network. The graph neural network (GNN) is an emerging deep
learning model that could map the complex topological relationships of certain spatial areas
into a low-dimensional matrix. With this potential, the GNN have been widely applied
in air quality forecast tasks [24,25], and outperforms the common deep learning models
mentioned above. Generally, these GNN models [26] use undirected graphs to capture the
topological relationships among air quality monitoring network, but the undirected edges
between nodes cannot consider the effects of wind direction in the graph. Considering
that air pollutants can be transported following the direction of the wind, an integration
of the wind factors into the GNN model may improve the prediction performance. Thus,
an exploration of the GNN model driven by a directed graph is necessary to model the
influence of wind factors and further improve regional air quality prediction.

To fill the above research gaps, we develop a novel diffusion convolutional recurrent
neural network (DCRNN) model for the regional prediction of PM2.5 and ozone concentra-
tions. Specifically, different graph construction methods including undirected and directed
graphs are separately integrated into the proposed DCRNN model to fully consider the
spatial relationships among air quality monitoring stations. The main difference between
undirected and directed graphs lies in that the directed graph considers the network-level
dominant wind direction as an extra and important spatial dependency among monitoring
stations while the undirected graph does not. Then, we further evaluate the performances
of different DCRNN models in forecasting the PM2.5 and ozone concentrations and com-
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pare them with baseline models for various prediction lengths of time. Finally, we discuss
the influence of spatial characteristics within the proposed DCRNN model on the accuracy
of air quality forecasts.

2. Data and Methods
2.1. Data Description

The Yangtze River Delta region is selected as the study area covering three provincial
units (i.e., Zhejiang, Jiangsu, and Shanghai), and its latitude and longitude range from 27◦

N to 35◦ N and 116◦ E to 123◦ E, respectively. Figure 1 shows the geographical location
of the study area and the distributions of 123 air quality monitoring stations. In this
study, hourly data of six air pollutants (e.g., PM2.5, O3, PM10, SO2, NO2, and CO) from
monitoring stations between January 2015 and December 2018 are used to feed the proposed
deep learning model. Hourly grid-level weather data (e.g., temperature, humidity, air
pressure, precipitation, and wind speed at both X- and Y-axis) during the same period are
generated by the Weather Research and Forecasting (WRF) model with a grid resolution
of 5 km × 5 km, as extra model inputs. For convenience of graph construction, the air
pollutant and meteorology datasets are divided into two groups according to seasonal
discrepancies: one group contains the summer and autumn data from April to September
(higher ozone and lower PM2.5 concentrations) and the other group includes the winter
and spring data from October to March (lower ozone and higher PM2.5 concentrations).
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Figure 1. Geographical location of the study area and spatial distributions of 123 air quality monitor-
ing stations.

2.2. Diffusion Convolution

The Convolutional Neural Network (CNN) is a widely-used network structure that
uses the filters containing convolutional kernels to extract spatial features from grid-
structured data such as images. With this motivation, a similar idea can be extended
into the graph-structured data to extract spatial features from the data and build a model,
which is also the essential idea of diffusion convolution.

Diffusion convolution [24] is defined as a combination of the diffusion processes with
different steps over the graph. Specifically, the K diffusion steps represent the distance of
each node in the graph from the current forecasting position, i.e., how many edges are
passed to reach the center point, as shown in Figure 2. For each node, the model calculates
the neighbors from 0 to k steps away from itself separately and computes the corresponding
transition matrix for each step. The probability θ is a learnable parameter to combine all
transition matrices into a diffusion convolution filter when training the model. Here, the
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diffusion convolution operator FB over a graph signal X ∈ RI×N and the filter fθ are
defined as:

X:, nFB fθ = ∑K−1
k=0 (θk,1

(
D−1

up A
)k

+ θk,2

(
D−1

down AT
)k
)X:, n for n ∈ {0, . . . , N} (1)

where θ ∈ RK×2 is the probability parameter for the filter, Dup and Ddown represent the
in-degree and out-degree diagonal matrix of a graph, and D−1

up A and D−1
down AT represent

the transition matrices of the forward and backward diffusion processes, respectively. Par-
ticularly, for undirected graphs, Dup is equal to Ddown, and D−1

up A is also equal to D−1
down AT .

With the diffusion convolution filter and activation function, the diffusion convolution
layer in a neural network can map N-dimensional features to M-dimensional outputs.
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2.3. Diffusion Convolutional Recurrent Neural Network (DCRNN)

The DCRNN model captures the spatial dependencies extracted by diffusion convolu-
tion and integrates them into the Recurrent Neural Network (RNN) model to handle time
series data. The basic principle of RNN is to consider the current inputs as hidden states
and process the information from the previous inputs with a multi-gate mechanism [27].
Specifically, the initial GRU sets two internal gated recurrent units to capture the long-term
dependencies from time series data. The gate signals of GRU are first computed as follows:

r(t) = δ(WxrX(t) + Whr H(t−1) + br) (2)

z(t) = δ(WxzX(t) + Whz H(t−1) + bz) (3)

where r(t) is the reset gate and z(t) is the update gate at time t; Wxr, Whr, Wxz, Whz represent
different weight parameters; br and bz are the biases; the δ denotes logistics sigmoid
function. Then, the hidden state H(t) at time t is computed as follows:

C(t) = tanh(WxcX(t) + Whc(r(t)
⊙

H(t−1)) + bc) (4)

H(t) = z(t)
⊙

H(t−1) + (1− z(t))
⊙

C(t) (5)

where C(t) represents reset hidden states at time t; Wxc, Whc represent weight parameters;
bc is the bias; the operator

⊙
refers to the Hadamard product of two matrices; tanh denotes

hyperbolic tangent function. Then, the matrix multiplication in the GRU is replaced with
the diffusion convolution to build the DCRNN model as follows:

r(t) = δ(ΘrFB[X(t), H(t−1)] + br) (6)

z(t) = δ(ΘzFB[X(t), H(t−1)] + bz) (7)

C(t) = tanh(ΘCFB[X(t), (r(t)
⊙

H(t−1))] + bc) (8)

H(t) = z(t)
⊙

H(t−1) + (1− z(t))
⊙

C(t) (9)



Int. J. Environ. Res. Public Health 2022, 19, 3988 5 of 15

where FB represents the diffusion convolution as defined in Equation (1) and Θr, Θz, ΘC
are learnable parameters of the diffusion convolutional filters.

To perform multi-step air quality prediction, the DCRNN model utilizes the Sequence
to Sequence (Seq2Seq) architecture, which is a typical Encoder-Decoder architecture based
on RNN units [28,29]. In training the DCRNN model, we feed the input sequences (i.e., all
the historical features X ∈ RI×N) into the encoder and initialize the decoder using the final
state of the encoder. Then, the decoder emits the predictions based on the observations.
When testing the DCRNN model, we input the test set into the encoder and compare
the corresponding prediction results generated by the decoder with the measured data
to evaluate the proposed model. Generally, the DCRNN model can achieve accurate air
quality predictions by simultaneously capturing the spatial dependencies of topological
features among air quality monitoring network and temporal dependencies of multi-source
inputs of air quality time series data.

2.4. Graph Construction

Another important step of the DCRNN model is graph construction, which usually
reflects the spatial relationships among geospatial data. In this paper, we map the air
quality monitoring network with node and edge properties into one graph and calculate
the weight matrix among edges over the graph. Generally, one element wi,j of the weight
matrix is a reflection of the spatial correlation between nodes vi and vj. Here, we use two
types of graph construction methods: undirected and directed graphs. The construction
of the undirected graph only considers the geographic distance between two monitoring
stations as the spatial relationship:

dij = dgeo
(
(xi, yi),

(
xj, yj

))
(10)

Wi,j =

 exp
(
−

d2
ij

σ2

)
, dij < K(threshold)

0, otherwise
(11)

where (xi, yi) represents the latitude and longitude coordinates of the node vi, σ and
K(threshold) are two user-defined hyperparameters.

In terms of the directed graph, we consider the effects of wind direction because
wind direction is an important factor that greatly affects the dispersion of air pollutants, as
revealed by previous studies [12]. In the undirected graph, Wi,j is equal to Wj,i, but generally
they are not equal in the directed graph due to the consideration of wind factors. Here,
we use multiple transformations of the wind direction and geographic distance between
nodes to construct different directed graphs and explore their influences on the prediction
performances of the DCRNN model. Figure 3 illustrates the relationship between wind
direction and directed graph construction, and Equations (12)–(16) clearly present five
calculation methods of the edge weight matrix for the construction of different directed
graphs as follows:

Directed graph 1:

Wi,j =

 exp
(
−

d2
ij sec2 θij

σ2

)
,−90◦ ≤ θij ≤ 90◦

0, otherwise
(12)

Directed graph 2:

Wi,j =

 exp
(
−

d2
ij sin2 θij

σ2

)
,−90◦ ≤ θij ≤ 90◦

0, otherwise
(13)
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Directed graph 3:

Wi,j =

 exp
(
−

d2
ij(1+sin2 θij)

σ2

)
,−90◦ ≤ θij ≤ 90◦

0, otherwise
(14)

Directed graph 4:

Wi,j = exp

(
−

d2
ij
(
2− cos θij

)
σ2

)
(15)

Directed graph 5:

Wi,j =

 exp
(
−

d2
ij sin θij

σ2

)
,−90◦ ≤ θij ≤ 90◦

0, otherwise
(16)
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Summer and Autumn).

2.5. Experimental Design

The experiment is conducted on a server with Ubuntu 16.04 Linux system, 128 GB
memory, and NVIDIA Titan RTX (24GB GDDR5 VRAM) graphics card. Python 3.6, Pandas,
NumPy, TensorFlow, and Keras are used for data processing and model configuration.
In the experiment, the dataset is first divided into two groups according to the seasonal
discrepancies for model construction and verification. Roughly 70%, 10%, and 20% of the
dataset in each group are separately used for training, validating, and testing the proposed
DCRNN model. Specifically, the training set and validation set are used to train the model
and evaluate the model during the training process, respectively. The test set is only applied
to provide an unbiased evaluation of a final model fit on the training set.

The loss function uses Mean Absolute Error (MAE) and the optimizer adopts adaptive
moment estimation (Adam) to minimize the absolute error between the predicted and
measured data. Hyperparameters are determined according to the model performances
on the validation set. The early stopping technique is used for model training to improve
training efficiency and avoid overfitting. Specifically, when the validation error cannot be
further improved within the pre-specified number of cycles, the algorithm will terminate
early, which can help reduce the computational costs.
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In this paper, different statistical indicators including MAE, Root Mean Squared
Error (RMSE), and Pearson Correlation Coefficient (r) are used to evaluate the prediction
performances of the proposed model, as computed below:

MAE =
1
n ∑n

i=1|Oi − Pi| (17)

RMSE =

√
1
n ∑n

i=1(Oi − Pi)
2 (18)

r =
∑n

i=1
(
Oi −Oi

)(
Pi − Pi

)√
∑n

i=1
(
Oi −Oi

)2
√

∑n
i=1
(

Pi − Pi
)2

(19)

where Oi and Oi, respectively, refer to the observed values and their mean value, and Pi
and Pi, separately, refer to the prediction value and their mean value.

3. Results and Discussion
3.1. Prediction Performances of DCRNN Using Different Graph Construction Methods

Tables 1 and 2 present the prediction performances of the DCRNN models using dif-
ferent graph construction methods on the PM2.5 and ozone datasets, respectively. Figure 4
further illustrates the results of Tables 1 and 2. Overall, the DCRNN models using any
graph construction method all exhibit smaller error and higher precision for regional
prediction of PM2.5 and ozone concentrations than other baseline models.

Table 1. Model comparison between the DCRNN model and baseline models in the PM2.5 forecasts.

Model

Winter and Spring Summer and Autumn

MAE
(µg/m3)

RMSE
(µg/m3) r MAE

(µg/m3)
RMSE
(µg/m3) r

GRU 23.07 33.35 0.62 11.69 16.36 0.53
LSTM 22.82 32.93 0.63 12.15 16.60 0.53

Bidirectional LSTM 19.79 28.98 0.73 10.31 14.71 0.64
Seq2seq 18.50 28.71 0.75 9.84 14.44 0.65

DCRNN (undirected graph) 18.05 30.11 0.79 8.76 12.92 0.73
DCRNN (directed graph 1) 17.01 26.23 0.79 8.95 13.24 0.72
DCRNN (directed graph 2) 17.73 27.23 0.79 9.08 13.33 0.72
DCRNN (directed graph 3) 16.82 25.73 0.80 8.92 13.10 0.72
DCRNN (directed graph 4) 16.37 25.13 0.81 8.92 13.09 0.73
DCRNN (directed graph 5) 17.20 25.74 0.80 8.85 13.11 0.73

Table 2. Model comparison between the DCRNN model and baseline models in the ozone forecasts.

Model

Winter and Spring Summer and Autumn

MAE
(µg/m3)

RMSE
(µg/m3) r MAE

(µg/m3)
RMSE
(µg/m3) r

GRU 21.60 28.12 0.70 28.18 37.40 0.72
LSTM 21.84 28.49 0.68 28.44 37.89 0.71

Bidirectional LSTM 20.03 26.59 0.72 26.83 36.02 0.74
Seq2seq 19.87 26.82 0.70 25.35 34.59 0.75

DCRNN (undirected graph) 18.30 25.11 0.76 22.95 32.44 0.78
DCRNN (directed graph 1) 18.85 26.08 0.75 22.71 32.07 0.80
DCRNN (directed graph 2) 18.45 25.21 0.76 23.94 33.72 0.78
DCRNN (directed graph 3) 17.74 24.34 0.77 23.34 33.06 0.79
DCRNN (directed graph 4) 17.99 24.61 0.77 23.40 32.97 0.79
DCRNN (directed graph 5) 17.92 24.53 0.77 23.00 32.24 0.80
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As seen in Figure 4a, the PM2.5 prediction results of the DCRNN models using directed
graphs and undirected graphs both show smaller MAE than GRU, LSTM, bidirectional
LSTM, and Seq2Seq models. Figure 4b indicates that the evaluation metric RMSE presents
similar results with MAE in terms of model comparison. Furthermore, the MAE and RMSE
from the winter and spring data group are both smaller for the directed graph model
compared with the undirected graph model, particularly for the DCRNN models using
directed graphs 3, 4, and 5 as shown in Equations (14)–(16). The result is partly attributed
to the fact that the construction of directed graphs 3, 4, and 5 all consider the influences
of geographic distance and wind direction on the variations in pollutant concentrations.
By contrast, the prediction errors of the undirected graph model based on the summer
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and autumn data group are low enough so that the prediction performance of the directed
graph model hardly shows extra superiority to the undirected graph model.

Similarly, the DCRNN models show less errors for regional prediction of ozone than
the GRU, LSTM, bidirectional LSTM, and Seq2Seq models, as shown in Figure 4d,e. This
result indicates that the DCRNN model can be well applied to regional prediction over
a wide range of air pollutants, whether particulate matter or gaseous pollutants. The
main difference between PM2.5 and ozone forecasts lies in that the performances of the
directed graph model and the undirected graph model depend more on the dataset itself for
ozone than PM2.5. Specifically, the directed graph models 3, 4, and 5 present smaller errors
for the ozone forecasts on the winter and spring data group than the undirected graph
model. However, the directed graph model does not perform significantly better than the
undirected graph model on the summer and autumn data group. Overall, Figure 4f shows
that directed graph model 5 exhibits the best agreement with the measured values among
the DCRNN models with different graph construction methods.

In summary, the DCRNN model using directed graphs outperforms that using undi-
rected graphs in the PM2.5 forecasts based on the winter and spring data group. There exist
slight differences for the PM2.5 forecasts on the summer and autumn data group, as well as
the ozone forecasts on the two data groups. However, the DCRNN model using directed
graph 5 (Gauss Vector Weight), widely used in recent studies [12], generally brings the
lowest prediction errors in both PM2.5 and ozone forecasts on all data groups. Therefore,
we select the DCRNN model using directed graph 5 as the optimal directed graph model
to conduct subsequent model comparison.

3.2. Multi Time-Step Prediction

Tables 3 and 4 show the performances of the DCRNN model in different time-step
predictions separately for PM2.5 and ozone. The prediction errors calculated from the
directed graph and undirected graph models both demonstrate an increasing trend with a
rise of the prediction time steps. The DCRNN model exhibits the smallest errors between
the predicted and measured PM2.5 and ozone data at the 1st hour and shows the largest
prediction errors at the 24th hour.

Table 3. The performance of the DCRNN model in forecasting PM2.5 concentrations at different
time steps.

Data Group Time-Step
Undirected Graph Directed Graph

MAE
(µg/m3)

RMSE
(µg/m3) r MAE

(µg/m3)
RMSE

(µg/m3) r

Winter
and Spring

1 h 5.17 8.00 0.98 6.75 10.16 0.97
2 h 6.40 10.16 0.97 7.80 11.85 0.96
4 h 8.26 13.20 0.95 9.48 14.53 0.94
8 h 11.03 17.40 0.92 11.80 18.02 0.91

12 h 13.33 21.21 0.88 13.57 20.58 0.88
24 h 18.05 30.11 0.78 17.20 25.74 0.80

Summer
and Autumn

1 h 3.51 5.54 0.96 4.22 6.37 0.95
2 h 4.23 6.77 0.94 4.86 7.47 0.92
4 h 5.22 8.26 0.91 5.80 8.92 0.89
8 h 6.43 10.17 0.87 6.92 10.74 0.85

12 h 7.29 11.25 0.84 7.64 11.66 0.82
24 h 8.77 12.92 0.73 8.85 13.11 0.73

Figure 5 provides a more intuitive visualization of the differences in model perfor-
mances at different time steps. The DCRNN models using the undirected and directed
graphs both show significant differences for the PM2.5 forecasts at different time steps. As
shown in Figure 5a,b, the directed graph model on the winter and spring data group has
smaller errors at long time steps above 12 h, while the undirected graph model has smaller
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errors at short time steps below 12 h. However, only when the time step is increased to 24 h,
the directed graph model on the summer and autumn data group has similar performances
to the undirected graph model.

Figure 5d,e illustrate that the ozone forecasts at different time steps present a similar
pattern to the PM2.5 predictions. The directed graph model on the winter and spring data
group performs better at long time steps beyond 12 h, while the undirected graph model
performs better at short time steps below 12 h. In addition, the undirected graph model
on the summer and autumn data group performs better at most time steps except for the
24 h time step. The above results suggest that the performance difference of the DCRNN
models using undirected and directed graphs at different time steps could not be solely
limited to the PM2.5 and ozone forecasts.

Table 4. The performance of the DCRNN model in forecasting ozone concentrations at different
time steps.

Data Group Time-Step
Undirected Graph Directed Graph

MAE
(µg/m3)

RMSE
(µg/m3) r MAE

(µg/m3)
RMSE

(µg/m3) r

Winter
and Spring

1 h 6.25 9.35 0.95 7.20 10.65 0.93
2 h 7.64 11.41 0.92 8.41 12.34 0.90
4 h 9.47 13.77 0.88 10.04 14.42 0.86
8 h 11.33 15.93 0.83 11.64 16.28 0.82

12 h 12.51 17.35 0.80 12.67 17.42 0.80
24 h 18.30 25.11 0.75 17.92 24.53 0.77

Summer
and Autumn

1 h 7.29 11.03 0.95 8.68 12.74 0.93
2 h 8.79 13.12 0.92 10.01 14.53 0.90
4 h 10.61 15.42 0.88 11.66 16.61 0.86
8 h 12.38 17.78 0.82 13.25 18.79 0.80

12 h 14.71 21.02 0.82 15.31 21.58 0.81
24 h 22.95 32.44 0.78 23.00 32.24 0.80

Overall, for short-term forecasts for the 1st to 8th hour, the DCRNN model using the
undirected graph exhibits significantly smaller prediction errors than that using directed
graphs. However, the discrepancy in prediction errors between the undirected graph and
directed graph models gradually decreases with an increase in the prediction time steps.
In contrast, for long-term forecasts in the next 12–24 h, the directed graph model has less
prediction errors than the undirected graph model for the regional prediction of PM2.5 and
ozone on the winter and spring data group. However, the directed graph model does not
outperform the undirected graph model in the PM2.5 and ozone forecasts on the summer
and autumn data group until the time step was increased beyond 24 h.

3.3. Spatial Distributions of PM2.5 and Ozone Forecasts based on the DCRNN Model

To further evaluate the spatial differences in the model performance, we divide the
whole dataset into three groups according to the administrative provinces which the moni-
toring stations belong to, i.e., Shanghai, Zhejiang, and Jiangsu provinces. Tables 5 and 6
respectively show the comparison of PM2.5 and ozone concentration prediction of the
DCRNN model in the three provinces, and the above results are computed based on 24 h
time steps. Figure 6 shows the visualization of the comparison of the above results. Figure 7
presents the results of the spatial distributions of MAE within the study area, using krig-
ing interpolation to calculate the average MAE between predictions and observations in
different geographical locations.
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Table 5. The performance of the DCRNN model in forecasting PM2.5 concentrations in different
geographical areas.

Data Group Province
Undirected Graph Directed Graph

MAE
(µg/m3)

RMSE
(µg/m3) r MAE

(µg/m3)
RMSE

(µg/m3) r

Winter
and Spring

Shanghai 16.79 28.63 0.76 15.44 23.10 0.77
Jiangsu 20.62 33.07 0.79 19.70 29.51 0.75

Zhejiang 15.78 27.22 0.75 15.06 21.97 0.79

Summer
and Autumn

Shanghai 8.58 13.43 0.78 9.01 13.17 0.79
Jiangsu 9.91 14.13 0.72 9.94 14.33 0.71

Zhejiang 7.68 11.67 0.72 7.80 11.83 0.71
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Table 6. The performance of the DCRNN model in forecasting ozone concentrations in different
geographical areas.

Data Group Province
Undirected Graph Directed Graph

MAE
(µg/m3)

RMSE
(µg/m3) r MAE

(µg/m3)
RMSE

(µg/m3) r

Winter
and Spring

Shanghai 19.33 25.81 0.69 19.00 25.09 0.72
Jiangsu 18.36 25.10 0.75 17.25 23.51 0.79

Zhejiang 18.11 25.03 0.76 18.41 25.38 0.76

Summer
and Autumn

Shanghai 22.16 32.00 0.77 24.25 33.88 0.75
Jiangsu 23.82 33.46 0.78 23.66 32.93 0.80

Zhejiang 22.23 31.50 0.79 22.20 31.34 0.79
Int. J. Environ. Res. Public Health 2022, 19, x  13 of 16 
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In terms of PM2.5 prediction, as shown in Table 5 and Figure 6, the DCRNN models
based on directed and undirected graphs show a similar trend, with the lowest prediction
error in Zhejiang Province, followed by Shanghai, and the largest prediction error in
Jiangsu Province. In Figure 7a,b,e,f, the PM2.5 prediction errors of the undirected and
directed graphs show the similar spatial distributions in the same seasons, but the northern
province notably presents more prediction errors than the south. The larger prediction
error in the northern province, i.e., Jiangsu province, could be related to two factors: (1) The
relatively sparse distribution of air quality monitoring stations in the northern part of
Jiangsu province increases the difficulty of providing refined data support for accurate air
quality prediction. (2) Northern regions are usually accompanied by heavier particulate
matter pollution and more variable PM2.5 concentrations, thus leading to larger PM2.5
forecast errors especially on heavily polluted days.
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Figure 7. Spatial distributions of the mean MAE of 24 h air quality predictions based on the
DCRNN model in the Yangtze River Delta region: (a) undirected graph, PM2.5 in winter and spring;
(b) undirected graph, PM2.5 in summer and autumn; (c) undirected graph, ozone in winter and
spring; (d) undirected graph, ozone in summer and autumn; (e) directed graph, PM2.5 in winter and
spring; (f) directed graph, PM2.5 in summer and autumn; (g) directed graph, ozone in winter and
spring; (h) directed graph, ozone in summer and autumn.

In terms of ozone prediction, as shown in Table 6 and Figure 6, the ozone prediction
errors of the directed graph model are smaller than that of the undirected graph model in
Jiangsu province, which indicates that the ozone concentration variation in Jiangsu province
could be closely related to wind factors and transport. In Shanghai, an opposite trend of
ozone prediction error happens. The undirected graph model performs significantly better
than the directed graph model for summer ozone concentration prediction. The results
suggest that summer ozone pollution in Shanghai could be more related to local source
emissions. In Figure 7c,d,g,h, the spatial difference of ozone prediction errors varies less
than PM2.5 at the regional level, with smaller differences (MAE and RMSE) in Zhejiang,
Shanghai, and Jiangsu provinces. Meanwhile, compared with the PM2.5 prediction results,
the directed and undirected graph models both show stronger spatial variability in the
ozone prediction errors.

4. Conclusions

In this study, we employ different construction methods of directed and undirected
graphs to establish a novel diffusion convolutional recurrent neural network (DCRNN)
model for the regional prediction of PM2.5 and ozone concentrations. The model can fully
consider the spatial relationships between nodes within air quality monitoring network
by integrating the combined effects of station-level geographic distance and dominant
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wind direction in the study area. Then, hourly PM2.5 and ozone data collected from 123 air
quality monitoring stations in the Yangtze River Delta region are used to train, validate, and
test the proposed DCRNN model. Several meaningful findings are summarized as follows:

(1) The DCRNN model outperforms the baseline models (e.g., GRU and LSTM) in PM2.5
and ozone forecasts.

(2) The DCRNN model using directed graphs with an integration of wind factors outper-
forms the undirected graph model in the long-term prediction of PM2.5 and ozone.

(3) The undirected graph model could achieve better performance in the short-term
forecasts, particularly for the next 1st hour prediction.

(4) The prediction errors of the DCRNN model using undirected and directed graphs both
suggest an upward trend with an increase in the prediction time steps, particularly for
the undirected graph model.

(5) The monitoring stations that are sparsely distributed or located in heavily polluted
areas could both cause lower prediction accuracy.

In terms of applications, the proposed model could assist environmental researchers
in further improving the technologies of air quality prediction and serve as tools for envi-
ronmental policymakers to implement related pollution control policies. The comparison
results between the directed and undirected graph-based models for specific regions (e.g.,
provinces) and the inferences about the effects of wind factors on pollution in different
regions could provide decision support for accurate pollution control.

One limitation of this study is that the DCRNN model restricts the dynamic character-
ization of the wind direction factor and just uses the weighted-average vector representing
wind direction. In future studies, we could consider more advanced spatiotemporal pre-
diction methods based on dynamic graph structures to model the dynamic effects of wind
direction and further strengthen air quality prediction.
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