Evolution of Responses to COVID-19 and Epidemiological Characteristics in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Definitions
2.3. Statistical Analysis
3. Results
3.1. Progression of the Epidemic
3.1.1. Period 1 (P1): 19 January–29 April 2020
3.1.2. Period 2 (P2): 30 April–14 July 2020
3.1.3. Period 3 (P3): 15 July–12 October 2020
3.1.4. Period 4 (P4): 13 October 2020–25 February 2021
3.1.5. Period 5 (P5): 26 February–11 July 2021
3.1.6. Period 6 (P6): 12 July–16 September 2021
3.2. Asymptomatic and Unlinked Cases
3.3. Infection Relationship
3.4. Serial Interval
3.5. Diagnostic Delays and Degrees
3.6. Age Group and Infection
3.7. Regions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Country & Technical Guidance—Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance-publications?publicationtypes=d198f134-5eed-400d-922e-1ac06462e676 (accessed on 17 January 2022).
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021, 599, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Our World in Data. Policy Responses to the Coronavirus Pandemic. Available online: https://ourworldindata.org/policy-responses-covid (accessed on 17 January 2022).
- Burki, T.K. Omicron variant and booster COVID-19 vaccines. Lancet Respir. Med. 2022, 10, e17. [Google Scholar] [CrossRef]
- Our World in Data. Coronavirus (COVID-19) Vaccinations. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 17 January 2022).
- Cameroni, E.; Bowen, J.E.; Rosen, L.E.; Saliba, C.; Zepeda, S.K.; Culap, K.; Pinto, D.; VanBlargan, L.A.; De Marco, A.; di Iulio, J.; et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 2022, 602, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Abulali, A.; Lee, S. Assessing the Effectiveness of Isolation and Contact-Tracing Interventions for Early Transmission Dynamics of COVID-19 in South Korea. IEEE Access 2021, 9, 41456–41467. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 9 February 2022).
- Our World in Data. Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus (accessed on 17 January 2022).
- Korea Disease Control and Prevention Agency. KDCA1. Available online: https://www.kdca.go.kr/board/board.es?mid=a20501010000&bid=0015&list_no=718203&cg_code=&act=view&nPage=6 (accessed on 21 January 2022).
- Angel, Y.; Spitzer, A.; Henig, O.; Saiag, E.; Sprecher, E.; Padova, H.; Ben-Ami, R. Association between vaccination with BNT162b2 and incidence of symptomatic and asymptomatic SARS-CoV-2 infections among health care workers. JAMA 2021, 325, 2457–2465. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.C.; Jia, K.; Lee, S.S.; Hung, C.T.; Wong, N.S.; Lai, F.T.T.; Chau, N.; Yam, C.H.K.; Chow, T.Y.; Wei, Y.; et al. Characterization of unlinked cases of COVID-19 and implications for contact tracing measures: Retrospective analysis of surveillance data. JMIR Public Health Surveill. 2021, 7, e30968. [Google Scholar] [CrossRef]
- Islam, N.; Sharp, S.J.; Chowell, G.; Shabnam, S.; Kawachi, I.; Lacey, B.; Massaro, J.M.; D’Agostino Sr, R.B.; White, M. Physical distancing interventions and incidence of coronavirus disease 2019: Natural experiment in 149 countries. BMJ 2020, 370, m2743. [Google Scholar] [CrossRef]
- Kwok, K.O.; Wei, W.I.; Huang, Y.; Kam, K.M.; Chang, E.Y.Y.; Riley, S.; Chan, H.H.H.; Hui, D.S.C.; Wong, S.Y.S.; Yeoh, E.K. Evolving epidemiological characteristics of COVID-19 in Hong Kong from January to August 2020: Retrospective study. J. Med. Internet Res. 2021, 23, e26645. [Google Scholar] [CrossRef]
- Gabutti, G.; d’Anchera, E.; De Motoli, F.; Savio, M.; Stefanati, A. The epidemiological characteristics of the COVID-19 pandemic in Europe: Focus on Italy. Int. J. Environ. Res. Public Health 2021, 18, 2942. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A.; Axfors, C.; Contopoulos-Ioannidis, D.G. Second versus first wave of COVID-19 deaths: Shifts in age distribution and in nursing home fatalities. Environ. Res. 2021, 195, 110856. [Google Scholar] [CrossRef]
- Rashki, A.; Dehkordi, A.H.; Nemati, R.; Tavousi, P. What does COVID-19 testing results really say? The real statistics concealed behind the accessible data. J. Med. Virol. 2021, 93, 5977–5987. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, H.J.; Wolff, B.; Leeb, R.; Ko, J.Y.; Odom, E.; Willey, J.; Friedman, A.; Bitsko, R.H. COVID-19 mitigation behaviors by age group—United States, April–June 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1584–1590. [Google Scholar] [CrossRef]
- Ryu, S.; Ali, S.T.; Noh, E.; Kim, D.; Lau, E.H.Y.; Cowling, B.J. Transmission dynamics and control of two epidemic waves of SARS-CoV-2 in South Korea. BMC Infect. Dis. 2021, 21, 485. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.; Chang, D.; You, M.; Ghim, G.-H. A social network analysis of the spread of COVID-19 in South Korea and policy implications. Sci. Rep. 2021, 11, 8581. [Google Scholar] [CrossRef] [PubMed]
- Seong, H.; Hyun, H.J.; Yun, J.G.; Noh, J.Y.; Cheong, H.J.; Kim, W.J.; Song, J.Y. Comparison of the second and third waves of the COVID-19 pandemic in South Korea: Importance of early public health intervention. Int. J. Infect. Dis. 2021, 104, 742–745. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Park, M.-J.; Park, S.J.; Hong, D.; Lee, S.; Lee, K.-S.; Moon, S.; Cho, J.; Jang, Y.; Lee, D.; et al. Types of COVID-19 clusters and their relationship with social distancing in the Seoul metropolitan area, South Korea. Int. J. Infect. Dis. 2021, 106, 363–369. [Google Scholar] [CrossRef]
- Lee, H.; Han, C.; Jung, J.; Lee, S. Analysis of Superspreading Potential from Transmission Clusters of COVID-19 in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 12893. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. KDCA. Available online: https://www.kdca.go.kr (accessed on 30 January 2022).
- Korea Disease Control and Prevention Agency. KDCA2. Available online: https://www.kdca.go.kr/board/board.es?mid=a20501010000&bid=0015&list_no=717130&cg_code=&act=view&nPage=34 (accessed on 1 October 2021).
- Ministry of the Interior and Safety. MOIS. Available online: https://jumin.mois.go.kr/ageStatMonth.do (accessed on 30 September 2021).
- Korean Statistical Information Service. KOSIS. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B040A3 (accessed on 3 January 2022).
- Fine, P.E.M. The interval between successive cases of an infectious disease. Am. J. Epidemiol. 2003, 158, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Xu, X.; Wu, Y.; Wang, L.; Cowling, B.J.; Meyers, L.A. Serial interval of COVID-19 among publicly reported confirmed cases. Emerg. Infect. Dis. 2020, 26, 1341–1343. [Google Scholar] [CrossRef]
- Cori, A.; Ferguson, N.M.; Fraser, C.; Cauchemez, S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 2013, 178, 1505–1512. [Google Scholar] [CrossRef] [Green Version]
- GitHub—lo-hfk/epyestim. Available online: https://github.com/lo-hfk/epyestim (accessed on 19 March 2022).
- Gostic, K.M.; McGough, L.; Baskerville, E.B.; Abbott, S.; Joshi, K.; Tedijanto, C.; Kahn, R.; Niehus, R.; Hay, J.A.; De Salazar, P.M.; et al. Practical considerations for measuring the effective reproductive number, Rt. PLoS Comput. Biol. 2020, 16, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Fang, C.-T.; Huang, Y.-L. Effect of non-lockdown social distancing and testing-contact tracing during a COVID-19 outbreak in Daegu, South Korea, February to April 2020: A modeling study. Int. J. Infect. Dis. 2021, 110, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef]
- Genomic Epidemiology of SARS-CoV-2 with Global Subsampling. Available online: https://nextstrain.org/ncov/gisaid/global?f_country=South%20Korea (accessed on 19 March 2022).
- Kim, S.; Kim, M.; Lee, S.; Lee, Y.J. Discovering spatiotemporal patterns of COVID-19 pandemic in South Korea. Sci. Rep. 2021, 11, 24470. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Cao, C.; Zhang, X.; Lin, H.; Yao, Z.; Zhong, S.; Huang, Z.; Duerler, R. Fine-scale space-time cluster detection of COVID-19 in mainland China using retrospective analysis. Int. J. Environ. Res. Public Health 2021, 18, 3583. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, A.; Klepac, P.; Conlan, A.J.K.; Kissler, S.M.; Tang, M.L.; Fry, H.; Gog, J.R.; Edmunds, W.J. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 1151–1160. [Google Scholar] [CrossRef]
- Aleta, A.; Martin-Corral, D.; Piontti, A.P.; Ajelli, M.; Litvinova, M.; Chinazzi, M.; Dean, N.E.; Halloran, M.E.; Longini, I.M., Jr.; Merler, S.; et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat. Hum. Behav. 2020, 4, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.K.; Rivett, L.; Seaman, S.; Samworth, R.J.; Warne, B.; Workman, C.; Ferris, M.; Wright, J.; Quinnell, N.; Shaw, A.; et al. Single-dose BNT162b2 vaccine protects against asymptomatic SARS-CoV-2 infection. eLife 2021, 10, e68808. [Google Scholar] [CrossRef]
- Nakajo, K.; Nishiura, H. Transmissibility of asymptomatic COVID-19: Data from Japanese clusters. Int. J. Infect. Dis. 2021, 105, 236–238. [Google Scholar] [CrossRef]
- Tande, A.J.; Pollock, B.D.; Shah, N.D.; Farrugia, G.; Virk, A.; Swift, M.; Breeher, L.; Binnicker, M.; Berbari, E.F. Impact of the Coronavirus disease 2019 (COVID-19) vaccine on asymptomatic infection among patients undergoing preprocedural COVID-19 molecular screening. Clin. Infect. Dis. 2022, 74, 59–65. [Google Scholar] [CrossRef]
- Adam, D.C.; Wu, P.; Wong, J.Y.; Lau, E.H.Y.; Tsang, T.K.; Cauchemez, S.; Leung, G.M.; Cowling, B.J. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 2020, 26, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H.; Linton, N.M.; Akhmetzhanov, A.R. Serial interval of novel coronavirus (COVID-19) infections. Int. J. Infect. Dis. 2020, 93, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Cortis, D. On determining the age distribution of COVID-19 pandemic. Front. Public Health 2020, 8, 202. [Google Scholar] [CrossRef]
- Chun, J.Y.; Jeong, H.; Beutels, P.; Ohmagari, N.; Kim, Y.; Tsuzuki, S. COVID-19 Vaccine Prioritisation in Japan and South Korea. medRxiv 2021. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.S.; Kim, J.E.; Choi, H.; Lee, C.H. Vaccination prioritization strategies for COVID-19 in Korea: A mathematical modeling approach. Int. J. Environ. Res. Public Health 2021, 18, 4240. [Google Scholar] [CrossRef]
- Zheng, C.; Shao, W.; Chen, X.; Zhang, B.; Wang, G.; Zhang, W. Real-world effectiveness of COVID-19 vaccines: A literature review and meta-analysis. Int. J. Infect. Dis. 2022, 114, 252–260. [Google Scholar] [CrossRef]
- Boehmer, T.K.; DeVies, J.; Caruso, E.; van Santen, K.L.; Tang, S.; Black, C.L.; Hartnett, K.P.; Kite-Powell, A.; Dietz, S.; Lozier, M.; et al. Changing age distribution of the COVID-19 pandemic—United States, May–August 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1404–1409. [Google Scholar] [CrossRef]
- MacLean, O.A.; Orton, R.J.; Singer, J.B.; Robertson, D.L. No evidence for distinct types in the evolution of SARS-CoV-2. Virus Evol. 2020, 6, veaa034. [Google Scholar] [CrossRef]
- Earnest, R.; Uddin, R.; Matluk, N.; Renzette, N.; Siddle, K.J.; Loreth, C.; Adams, G.; Tomkins-Tinch, C.H.; Petrone, M.E.; Rothman, J.E.; et al. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. Serv. Rep. Med. 2022, 2022, 100583. [Google Scholar] [CrossRef]
- Kim, D.; Ali, S.T.; Kim, S.; Jo, J.; Lim, J.; Lee, S.; Ryu, S. Estimation of serial interval and reproduction number to quantify the transmissibility of SARS-CoV-2 omicron variant in South Korea. Viruses 2022, 14, 533. [Google Scholar] [CrossRef]
- Amoutzias, G.D.; Nikolaidis, M.; Tryfonopoulou, E.; Chlichlia, K.; Markoulatos, P.; Oliver, S.G. The remarkable evolutionary plasticity of Coronaviruses by mutation and recombination: Insights for the COVID-19 pandemic and the future evolutionary paths of SARS-CoV-2. Viruses 2022, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare. South Korea. Available online: http://ncov.mohw.go.kr (accessed on 18 February 2022).
Period | Unlinked | Asymptomatic | ||
---|---|---|---|---|
r | p | r | p | |
1 | 0.779 | 0.002 | −0.571 | 0.041 |
2 | 0.200 | 0.555 | 0.336 | 0.312 |
3 | 0.758 | 0.003 | 0.236 | 0.437 |
4 | 0.507 | 0.027 | 0.498 | 0.030 |
5 | 0.559 | 0.010 | −0.211 | 0.373 |
6 | −0.550 | 0.125 | 0.567 | 0.112 |
Type | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|
Family | 1.0 | 17.2 | 5.0 | 8.5 | 8.4 | 6.4 |
Work | 0.9 | 15.0 | 4.7 | 9.2 | 7.8 | 5.2 |
Social | 5.2 | 15.9 | 10.7 | 27.7 | 18.7 | 11.1 |
Others | 2.7 | 13.3 | 3.6 | 20.7 | 11.0 | 9.3 |
Unknown | 90.1 | 38.6 | 76.0 | 33.9 | 54.0 | 67.9 |
Period | Delay | Degree | ||
---|---|---|---|---|
Median | Mean | Median | Mean | |
1 | 6 | 6.58 | 0 | 0.40 |
2 | 4 | 4.77 | 1 | 1.26 |
3 | 4 | 4.88 | 1 | 0.93 |
4 | 4 | 5.00 | 1 | 1.38 |
5 | 3 | 4.28 | 0 | 0.84 |
6 | 3 | 3.51 | 0 | 0.41 |
Period | Spearman | Pearson | ||
---|---|---|---|---|
Coefficient | p Value | Coefficient | p Value | |
1 | −0.1513 | 0.6217 | −0.1261 | 0.6815 |
2 | −0.3909 | 0.2345 | −0.6092 | 0.0466 |
3 | 0.1703 | 0.5780 | 0.1747 | 0.5681 |
4 | −0.4195 | 0.0655 | −0.4301 | 0.0584 |
5 | 0.7489 | 0.0001 | 0.7858 | 0.0000 |
6 | −0.6606 | 0.0376 | −0.7237 | 0.0180 |
P1 (9830) | P2 (1955) | P3 (9834) | P4 (60,400) | P5 (76,021) | P6 (106,805) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unlinked | Linked | Unlinked | Linked | Unlinked | Linked | Unlinked | Linked | Unlinked | Linked | Unlinked | Linked | |
8289 | 1541 | 861 | 1094 | 5928 | 3906 | 22,937 | 37,463 | 44,784 | 31,237 | 80,600 | 25,903 | |
<20 | 466 | 182 | 51 | 103 | 432 | 448 | 1825 | 5361 | 4951 | 5256 | 12,092 | 6095 |
5.6% | 11.8% | 5.9% | 9.4% | 7.3% | 11.5% | 8.0% | 14.3% | 11.1% | 16.8% | 15.0% | 23.5% | |
20–29 | 2230 | 219 | 147 | 166 | 613 | 451 | 2983 | 4504 | 8253 | 4408 | 18,926 | 5142 |
26.9% | 14.2% | 17.1% | 15.2% | 10.3% | 11.5% | 13.0% | 12.0% | 18.4% | 14.1% | 23.5% | 19.9% | |
30–39 | 770 | 190 | 133 | 112 | 607 | 413 | 3122 | 4585 | 7214 | 4316 | 14,207 | 3979 |
9.3% | 12.3% | 15.4% | 10.2% | 10.2% | 10.6% | 13.6% | 12.2% | 16.1% | 13.8% | 17.6% | 15.4% | |
40–49 | 1091 | 258 | 100 | 108 | 740 | 489 | 3399 | 5411 | 7910 | 4997 | 13,622 | 4104 |
13.2% | 16.7% | 11.6% | 9.9% | 12.5% | 12.5% | 14.8% | 14.4% | 17.7% | 16.0% | 16.9% | 15.8% | |
50–59 | 1605 | 310 | 141 | 221 | 1245 | 736 | 4398 | 7086 | 8016 | 5700 | 12,755 | 3522 |
19.4% | 20.1% | 16.4% | 20.2% | 21.0% | 18.8% | 19.2% | 18.9% | 17.9% | 18.2% | 15.8% | 13.6% | |
60–69 | 1120 | 191 | 163 | 216 | 1337 | 792 | 3999 | 5704 | 5536 | 4123 | 6363 | 1982 |
13.5% | 12.4% | 18.9% | 19.7% | 22.6% | 20.3% | 17.4% | 15.2% | 12.4% | 13.2% | 7.9% | 7.7% | |
70–79 | 593 | 114 | 85 | 109 | 694 | 399 | 2044 | 2651 | 2088 | 1631 | 1882 | 700 |
7.2% | 7.4% | 9.9% | 10.0% | 11.7% | 10.2% | 8.9% | 7.1% | 4.7% | 5.2% | 2.3% | 2.7% | |
>79 | 414 | 77 | 41 | 59 | 260 | 178 | 1167 | 2161 | 816 | 806 | 753 | 379 |
5.0% | 5.0% | 4.8% | 5.4% | 4.4% | 4.6% | 5.1% | 5.8% | 1.8% | 2.6% | 0.9% | 1.5% | |
Male | 3191 | 711 | 447 | 517 | 2699 | 1842 | 11,567 | 18,209 | 23,399 | 15,351 | 43,333 | 13,783 |
38.5% | 46.1% | 51.9% | 47.3% | 45.5% | 47.2% | 50.4% | 48.6% | 52.2% | 49.1% | 53.8% | 53.2% | |
Female | 5098 | 830 | 414 | 577 | 3229 | 2064 | 11,370 | 19,254 | 21,385 | 15,886 | 37,267 | 12,120 |
61.5% | 53.9% | 48.1% | 52.7% | 54.5% | 52.8% | 49.6% | 51.4% | 47.8% | 50.9% | 46.2% | 46.8% | |
Asymptomatic | 3268 | 447 | 271 | 416 | 2082 | 1645 | 7684 | 17,094 | 15,314 | 13,736 | 27,452 | 13,487 |
39.4% | 29.0% | 31.5% | 38.0% | 35.1% | 42.1% | 33.5% | 45.6% | 34.2% | 44.0% | 34.1% | 52.1% | |
Delay (mean) | 6.72 | 5.93 | 5.06 | 4.05 | 4.91 | 4.82 | 5.3 | 4.78 | 4.28 | 4.27 | 3.57 | 3.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.; Han, C.; Kim, T.; Lee, S. Evolution of Responses to COVID-19 and Epidemiological Characteristics in South Korea. Int. J. Environ. Res. Public Health 2022, 19, 4056. https://doi.org/10.3390/ijerph19074056
Jeon J, Han C, Kim T, Lee S. Evolution of Responses to COVID-19 and Epidemiological Characteristics in South Korea. International Journal of Environmental Research and Public Health. 2022; 19(7):4056. https://doi.org/10.3390/ijerph19074056
Chicago/Turabian StyleJeon, Junhwi, Changyong Han, Tobhin Kim, and Sunmi Lee. 2022. "Evolution of Responses to COVID-19 and Epidemiological Characteristics in South Korea" International Journal of Environmental Research and Public Health 19, no. 7: 4056. https://doi.org/10.3390/ijerph19074056
APA StyleJeon, J., Han, C., Kim, T., & Lee, S. (2022). Evolution of Responses to COVID-19 and Epidemiological Characteristics in South Korea. International Journal of Environmental Research and Public Health, 19(7), 4056. https://doi.org/10.3390/ijerph19074056