Adoption of Health Mobile Apps during the COVID-19 Lockdown: A Health Belief Model Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Measurement of Model Assessment
3.2. Path Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chirico, F.; Nucera, G.; Magnavita, N. COVID-19: Protecting Healthcare Workers Is a Priority. Infect. Control Hosp. Epidemiol. 2020, 41, 1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, A.D.; Okeagu, C.N.; Pham, A.D.; Silva, R.A.; Hurley, J.J.; Arron, B.L.; Sarfraz, N.; Lee, H.N.; Ghali, G.E.; Gamble, J.W. Economic Impact of COVID-19 Pandemic on Healthcare Facilities and Systems: International Perspectives. Best Pract. Res. Clin. Anaesthesiol. 2021, 35, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Algaissi, A.A.; Alharbi, N.K.; Hassanain, M.; Hashem, A.M. Preparedness and Response to COVID-19 in Saudi Arabia: Building on MERS Experience. J. Infect. Public Health 2020, 13, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Alsofayan, Y.; Alahmari, A.; Alowais, J.; Algwizani, A.; Alserehi, H.; Assiri, A.; Jokhdar, H. COVID-19 in Saudi Arabia: The National Health Response. East. Mediterr. Health J. 2021, 27, 1114–1124. [Google Scholar] [CrossRef] [PubMed]
- Alrashed, S.; Min-Allah, N.; Saxena, A.; Ali, I.; Mehmood, R. Impact of Lockdowns on the Spread of COVID-19 in Saudi Arabia. Inform. Med. Unlocked 2020, 20, 100420. [Google Scholar] [CrossRef] [PubMed]
- Al-Kinani, M. Herd Immunity Is Priority Not COVID-19 Elimination: Saudi Official. Available online: https://arab.news/6an6d (accessed on 23 March 2022).
- Al-Thaqafi, T. Saudi ‘Virus Busters’ on Fast Track to Global Success. Available online: https://www.arabnews.com/node/1771296/amp (accessed on 23 March 2022).
- Alharbi, N.S.; Alsubki, N.; Altamimi, S.R.; Alonazi, W.; Fahlevi, M. COVID-19 Mobile Apps in Saudi Arabia: Systematic Identification, Evaluation, and Features Assessment. Front. Public Health 2022, 10, 803677. [Google Scholar] [CrossRef]
- Alwashmi, M.F. The Use of Digital Health in the Detection and Management of COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 2906. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance, 13 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Fahlevi, M. Mobile Applications for Health Management in Indonesia. In Proceedings of the 2020 International Conference on Information Management and Technology (ICIMTech), Bandung, Indonesia, 13–14 August 2020. [Google Scholar]
- The World Bank Mobile Cellular Subscriptions (per 100 People)|Data. Available online: https://data.worldbank.org/indicator/IT.CEL.SETS.P2 (accessed on 23 March 2022).
- Hassounah, M.; Raheel, H.; Alhefzi, M. Digital Response during the COVID-19 Pandemic in Saudi Arabia. J. Med. Internet Res. 2020, 22, e19338. [Google Scholar] [CrossRef]
- Fahlevi, M.; Alharbi, N.S. The Used of Technology to Improve Health Social Security Agency Services in Indonesia. In Proceedings of the 2021 3rd International Conference on Cybernetics and Intelligent System (ICORIS), Makasar, Indonesia, 25–26 October 2021. [Google Scholar]
- Fahlevi, M.; Alharbi, N. Adoption of E-Payment System to Support Health Social Security Agency. Int. J. Data Netw. Sci. 2021, 5, 737–744. [Google Scholar] [CrossRef]
- Verhoeven, F.; van Gemert-Pijnen, L.; Dijkstra, K.; Nijland, N.; Seydel, E.; Steehouder, M. The Contribution of Teleconsultation and Videoconferencing to Diabetes Care: A Systematic Literature Review. J. Med. Internet Res. 2007, 9, e943. [Google Scholar] [CrossRef]
- Iyengar, K.; Jain, V.K.; Vaishya, R. Pitfalls in Telemedicine Consultations in the Era of COVID 19 and How to Avoid Them. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.I. User Acceptance of Health Information Technology (HIT) in Developing Countries: A Conceptual Model. Procedia Technol. 2014, 16, 1287–1296. [Google Scholar]
- Gordon, W.J.; Landman, A.; Zhang, H.; Bates, D.W. Beyond Validation: Getting Health Apps into Clinical Practice. npj Digit. Med. 2020, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.-K.; Liebovitz, D.M. Consumer Mobile Health Apps: Current State, Barriers, and Future Directions. PM&R 2017, 9, S106–S115. [Google Scholar] [CrossRef]
- Nadal, C.; Sas, C.; Doherty, G. Technology Acceptance in Mobile Health: Scoping Review of Definitions, Models, and Measurement. J. Med. Internet Res. 2020, 22, e17256. [Google Scholar] [CrossRef] [PubMed]
- Fagherazzi, G.; Goetzinger, C.; Rashid, M.A.; Aguayo, G.A.; Huiart, L. Digital Health Strategies to Fight COVID-19 Worldwide: Challenges, Recommendations, and a Call for Papers. J. Med. Internet Res. 2020, 22, e19284. [Google Scholar] [CrossRef]
- Walrave, M.; Waeterloos, C.; Ponnet, K. Adoption of a Contact Tracing App for Containing COVID-19: A Health Belief Model Approach. JMIR Public Health Surveill. 2020, 6, e20572. [Google Scholar] [CrossRef]
- Champion, V.L. Instrument Development for Health Belief Model Constructs. Adv. Nurs. Sci. 1984, 6, 73–85. [Google Scholar] [CrossRef]
- Hair, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis: A Global Perspective. In Multivariate Data Analysis: A Global Perspective; Pearson: London, UK, 2010. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage: Newbury Park, CA, USA, 2017; ISBN 978-1-4833-7744-5. [Google Scholar]
- Ringle, C.M.; Sarstedt, M.; Mitchell, R.; Gudergan, S.P. Partial Least Squares Structural Equation Modeling in HRM Research. Int. J. Hum. Resour. Manag. 2020, 31, 1617–1643. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Partial Least Squares Structural Equation Modeling. Handb. Mark. Res. 2017, 26, 1–40. [Google Scholar]
- Lind, D.A.; Marchal, W.G.; Wathen, S.A. Statistical Techniques in Business & Economics, 17th ed.; McGraw Hill Education: New York, NY, USA, 2018; p. 897. ISBN 978-1-259-66636-0. [Google Scholar]
- Vo, V.; Auroy, L.; Sarradon-Eck, A. Patients’ Perceptions of MHealth Apps: Meta-Ethnographic Review of Qualitative Studies. JMIR Mhealth Uhealth 2019, 7, e13817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurgalieva, L.; O’Callaghan, D.; Doherty, G. Security and Privacy of MHealth Applications: A Scoping Review. IEEE Access 2020, 8, 104247–104268. [Google Scholar] [CrossRef]
- Larson, R.S. A Path to Better-Quality MHealth Apps. JMIR Mhealth Uhealth 2018, 6, e10414. [Google Scholar] [CrossRef] [PubMed]
- Aronsson, G.; Theorell, T.; Grape, T.; Hammarström, A.; Hogstedt, C.; Marteinsdottir, I.; Skoog, I.; Träskman-Bendz, L.; Hall, C. A Systematic Review Including Meta-Analysis of Work Environment and Burnout Symptoms. BMC Public Health 2017, 17, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable & Item | AVE | Outer Loading | Cronbach’s Alpha | Composite Reliability |
---|---|---|---|---|
Behavioral Intention | 0.728 | 0.813 | 0.889 | |
| 0.795 | |||
| 0.887 | |||
| 0.875 | |||
Perceived Benefits | 0.711 | 0.913 | 0.935 | |
| 0.552 | |||
| 0.897 | |||
| 0.901 | |||
| 0.865 | |||
| 0.880 | |||
| 0.907 | |||
Perceived Barriers | 0.847 | 0.819 | 0.917 | |
| 0.925 | |||
| 0.915 | |||
Cues to Action | 0.712 | 0.898 | 0.925 | |
| 0.801 | |||
| 0.897 | |||
| 0.863 | |||
| 0.864 | |||
| 0.789 | |||
Self-Efficacy | 0.852 | 0.913 | 0.945 | |
| 0.938 | |||
| 0.906 | |||
| 0.925 |
Constructs | BI | CTA | PBA | PBE | SE |
---|---|---|---|---|---|
BI | 0.853 | ||||
CTA | 0.687 | 0.844 | |||
PBA | 0.719 | 0.809 | 0.920 | ||
PBE | 0.786 | 0.824 | 0.841 | 0.843 | |
SE | 0.729 | 0.820 | 0.748 | 0.761 | 0.923 |
Hypothesis | Variable | t-Values | p-Values | Supported |
---|---|---|---|---|
H1 | PBE → BI | 4.017 | 0.000 | Yes |
H2 | PBA → BI | 1.283 | 0.200 | No |
H3 | CTA → BI | 1.180 | 0.239 | No |
H4 | SE → BI | 3.917 | 0.000 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, N.S.; AlGhanmi, A.S.; Fahlevi, M. Adoption of Health Mobile Apps during the COVID-19 Lockdown: A Health Belief Model Approach. Int. J. Environ. Res. Public Health 2022, 19, 4179. https://doi.org/10.3390/ijerph19074179
Alharbi NS, AlGhanmi AS, Fahlevi M. Adoption of Health Mobile Apps during the COVID-19 Lockdown: A Health Belief Model Approach. International Journal of Environmental Research and Public Health. 2022; 19(7):4179. https://doi.org/10.3390/ijerph19074179
Chicago/Turabian StyleAlharbi, Nouf Sahal, Amany Shlyan AlGhanmi, and Mochammad Fahlevi. 2022. "Adoption of Health Mobile Apps during the COVID-19 Lockdown: A Health Belief Model Approach" International Journal of Environmental Research and Public Health 19, no. 7: 4179. https://doi.org/10.3390/ijerph19074179
APA StyleAlharbi, N. S., AlGhanmi, A. S., & Fahlevi, M. (2022). Adoption of Health Mobile Apps during the COVID-19 Lockdown: A Health Belief Model Approach. International Journal of Environmental Research and Public Health, 19(7), 4179. https://doi.org/10.3390/ijerph19074179