The Impact of Physical Activity Restrictions on Health-Related Fitness in Children with Congenital Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population and Recruitment
2.3. Physical Activity Restrictions
2.4. Body Composition
2.5. Physical Activity
2.6. Physical Competence
2.7. Statistical Analyses
3. Results
3.1. Participants
3.2. Impact of a Parent-Reported Restriction from Competitive Sport
3.3. Impact of a Parent-Reported Exertion Restriction
3.4. Impact of a Parent-Reported Restriction from Body Contact
3.5. Impact of Any Type of Parent-Reported Physical Activity Restriction
3.6. Impact of Any Type of Physician-Reported Physical Activity Restriction
4. Discussion
4.1. Physical Activity Restriction and Body Composition
4.2. Physical Activity Restriction and Moderate-to-Vigorous Physical Activity
4.3. Physical Activity Restriction and Movement Skill
4.4. Physical Activity Restriction and Physical Fitness
4.5. Understanding the Impact of Physical Activity Restriction
4.6. Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freedman, D.S.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. The Relation of Overweight to Cardiovascular Risk Factors among Children and Adolescents: The Bogalusa Heart Study. Pediatrics 1999, 103, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Prince, S.A.; Kristjansson, E.A.; Russell, K.; Billette, J.-M.; Sawada, M.C.; Ali, A.; Tremblay, M.S.; Prud’homme, D. Relationships between Neighborhoods, Physical Activity, and Obesity: A Multilevel Analysis of a Large Canadian City. Obesity 2012, 20, 2093–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, V.P.; Stodden, D.F.; Bianchi, M.M.; Maia, J.A.R.; Rodrigues, L.P. Correlation between BMI and motor coordination in children. J. Sci. Med. Sport 2012, 15, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Thivel, D.; Ring-Dimitriou, S.; Weghuber, D.; Frelut, M.-L.; O’Malley, G. Muscle Strength and Fitness in Pediatric Obesity: A Systematic Review from the European Childhood Obesity Group. Obes. Facts 2016, 9, 52–63. [Google Scholar] [CrossRef]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.-P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef]
- Daymont, C.; Neal, A.; Prosnitz, A.; Cohen, M.S. Growth in Children With Congenital Heart Disease. Pediatrics 2013, 131, e236–e242. [Google Scholar] [CrossRef] [Green Version]
- Pinto, N.M.; Marino, B.S.; Wernovsky, G.; de Ferranti, S.D.; Walsh, A.Z.; Laronde, M.; Hyland, K.; Dunn, S.O.; Cohen, M.S.; Dunn, J.; et al. Obesity is a common comorbidity in children with congenital and acquired heart disease. Pediatrics 2007, 120, e1157–e1164. [Google Scholar] [CrossRef]
- Stefan, M.A.; Hopman, W.M.; Smythe, J.F. Effect of activity restriction owing to heart disease on obesity. Arch. Pediatrics Adolesc. Med. 2005, 159, 477–481. [Google Scholar] [CrossRef] [Green Version]
- Christian, S.; Somerville, M.; Giuffre, M.; Atallah, J. Physical activity restriction for children and adolescents diagnosed with an inherited arrhythmia or cardiomyopathy and its impact on body mass index. J. Cardiovasc. Electrophysiol. 2018, 29, 1648–1653. [Google Scholar] [CrossRef]
- Longmuir, P.E.; Tyrrell, P.N.; Corey, M.; Faulkner, G.; Russell, L.; Mccrindle, B.W.; Russell, J.L.; Mccrindle, B.W.; Russell, L.; Mccrindle, B.W.; et al. Home-based rehabilitation enhances daily physical activity and motor skill in children who have undergone the fontan procedure. Pediatric Cardiol. 2013, 34, 1130–1151. [Google Scholar] [CrossRef]
- Wang, C.; Chan, J.S.Y.; Ren, L.; Yan, J.H. Obesity Reduces Cognitive and Motor Functions across the Lifespan. Neural Plast. 2016, 2016, 2473081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takken, T.; Giardini, A.; Reybrouck, T.; Gewillig, M.; Hövels-Gürich, H.H.H.; Longmuir, P.E.; McCrindle, B.W.; Paridon, S.M.; Hager, A. Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: A report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Preve. Eur. J. Prev. Cardiol. 2012, 19, 1034–1065. [Google Scholar] [CrossRef] [PubMed]
- Banks, L.; Rosenthal, S.; Manlhiot, C.; Fan, C.-P.S.; McKillop, A.; Longmuir, P.E.; McCrindle, B.W. Exercise Capacity and Self-Efficacy are Associated with Moderate-to-Vigorous Intensity Physical Activity in Children with Congenital Heart Disease. Pediatric Cardiol. 2017, 38, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Prochaska, J.J.; Taylor, W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000, 32, 963–975. [Google Scholar] [CrossRef]
- Collins, W.A.; Maccoby, E.E.; Steinberg, L.; Hetherington, E.M.; Bornstein, M.H. Contemporary research on parenting. The case for nature and nurture. Am. Psychol. 2000, 55, 218–232. [Google Scholar] [CrossRef]
- Uzark, K.; Jones, K. Parenting stress and children with heart disease. J. Pediatric Health Care 2003, 17, 163–168. [Google Scholar] [CrossRef]
- Cheuk, D.K.; Wong, S.M.; Choi, Y.P.; Chau, A.K.; Cheung, Y.F. Parents’ understanding of their child’s congenital heart disease. Heart 2004, 90, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Longmuir, P.E.; Mccrindle, B.W.; Toronto, F.C. Physical activity restrictions for children after the Fontan operation: Disagreement between parent, cardiologist, and medical record reports. Am. Heart J. 2009, 157, 853–859. [Google Scholar] [CrossRef]
- Brandhagen, D.J.; Feldt, R.H.; Williams, D.E. Long-Term Psychologic Implications of Congenital Heart Disease: A 25-Year Follow-up. Mayo Clin. Proc. 1991, 66, 474–479. [Google Scholar] [CrossRef]
- Longmuir, P.E.; Brothers, J.A.; De Ferranti, S.D.; Hayman, L.L.; Van Hare, G.F.; Matherne, G.P.P.; Davis, C.K.; Joy, E.A.; McCrindle, B.W.; on behalf of the American Heart Association Atherosclerosis, Hypertension and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young. Promotion of physical activity for children and adults with congenital heart disease: A scientific statement from the American Heart Association. Circulation 2013, 127, 2147–2159. [Google Scholar] [CrossRef] [Green Version]
- Roston, T.M.; De Souza, A.M.; Sandor, G.G.S.; Sanatani, S.; Potts, J.E. Physical activity recommendations for patients with electrophysiologic and structural congenital heart disease: A survey of canadian health care providers. Pediatric Cardiol. 2013, 34, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC growth charts for the United States: Methods and development. Vital Health Stat. 2002, 11, 1–190. [Google Scholar]
- De Onis, M. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Colan, S.D. The Why and How of Z Scores. J. Am. Soc. Echocardiogr. 2013, 26, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Puyau, M.R.; Adolph, A.L.; Vohra, F.A.; Zakeri, I.; Butte, N.F. Prediction of activity energy expenditure using accelerometers in children. Med. Sci. Sports Exerc. 2004, 36, 1625–1631. [Google Scholar] [PubMed]
- Fredriksen, P.M.; Ingjer, E.; Thaulow, E. Physical activity in children and adolescents with congenital heart disease. Aspects of measurements with an activity monitor. Cardiol. Young 2000, 10, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Pate, R.R.; Freedson, P.S.; Sallis, J.F.; Taylor, W.C. Using objective physical activity measures with youth: How many days of monitoring are needed? Med. Sci. Sports Exerc. 2000, 32, 426–431. [Google Scholar] [CrossRef]
- Statistics Canada. Canadian Health Measures Survey (CHMS) Data User Guide: Cycle 1; Statistics Canada: Ottawa, ON, Canada, 2010. [Google Scholar]
- Page, F.; Tremblay, M.S.; Shields, M.; Laviolette, M.; Craig, C.L.; Janssen, I.; Gorber, S.C.; Page, F. Fitness of Canadian children and youth: Results from the 2007–2009 Canadian Health Measures Survey. Health Rep. 2010, 21, 7–20. [Google Scholar]
- Ulrich, D.A. Test of Gross Motor Development (TGMD-2); PRO-ED: Austin, TX, USA, 2000. [Google Scholar]
- Issartel, J.; McGrane, B.; Fletcher, R.; O’Brien, W.; Powell, D.; Belton, S. A cross-validation study of the TGMD-2: The case of an adolescent population. J. Sci. Med. Sport 2017, 20, 475–479. [Google Scholar] [CrossRef]
- Tran, D.; D’Ambrosio, P.; Verrall, C.E.; Attard, C.; Briody, J.; D’Souza, M.; Fiatarone Singh, M.; Ayer, J.; D’Udekem, Y.; Twigg, S.; et al. Body Composition in Young Adults Living With a Fontan Circulation: The Myopenic Profile. J. Am. Heart Assoc. 2020, 9, e015639. [Google Scholar] [CrossRef]
- Barbiero, S.M.; D’Azevedo Sica, C.; Schuh, D.S.; Cesa, C.C.; de Oliveira Petkowicz, R.; Pellanda, L.C. Overweight and obesity in children with congenital heart disease: Combination of risks for the future? BMC Pediatrics 2014, 14, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meza, J.M.; Elias, M.D.; Wilder, T.J.; O’Brien, J.E.; Kim, R.W.; Mavroudis, C.; Williams, W.G.; Brothers, J.; Cohen, M.S.; McCrindle, B.W. Exercise restriction is not associated with increasing body mass index over time in patients with anomalous aortic origin of the coronary arteries. Cardiol. Young 2017, 27, 1538–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Byrne, M.L.; McBride, M.G.; Paridon, S.; Goldmuntz, E. Association of Habitual Activity and Body Mass Index in Survivors of Congenital Heart Surgery: A Study of Children and Adolescents With Tetralogy of Fallot, Transposition of the Great Arteries, and Fontan Palliation. World J. Pediatric Congenit. Heart Surg. 2018, 9, 177–184. [Google Scholar] [CrossRef] [PubMed]
- McCrindle, B.W.; Williams, R.V.; Mital, S.; Clark, B.J.; Russell, J.L.; Klein, G.; Eisenmann, J.C. Physical activity levels in children and adolescents are reduced after the Fontan procedure, independent of exercise capacity, and are associated with lower perceived general health. Arch. Dis. Child. 2007, 92, 509–514. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour: At a Glance; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Voss, C.; Duncombe, S.L.; Dean, P.H.; De Souza, A.M.; Harris, K.C. Physical activity and sedentary behavior in children with congenital heart disease. J. Am. Heart Assoc. 2017, 6, e004665. [Google Scholar] [CrossRef] [Green Version]
- Barnes, J.D.; Cameron, C.; Carson, V.; Chaput, J.-P.; Colley, R.C.; Faulkner, G.E.J.; Janssen, I.; Kramers, R.; Saunders, T.J.; Spence, J.C.; et al. Results from Canada’s 2018 Report Card on Physical Activity for Children and Youth. J. Phys. Act. Health 2018, 15, S328–S330. [Google Scholar] [CrossRef]
- Lunt, D.; Briffa, T.; Briffa, N.K.; Ramsay, J. Physical activity levels of adolescents with congenital heart disease. Aust. J. Physiother. 2003, 49, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp, L.; Pääsuke, M. Gender Differences in Fundamental Movement Patterns, Motor Performances, and Strength Measurements of Prepubertal Children. Pediatric Exerc. Sci. 2016, 7, 294–304. [Google Scholar] [CrossRef]
- Calfas, K.J.; Long, B.J.; Sallis, J.F.; Wooten, W.J.; Pratt, M.; Patrick, K. A Controlled Trial of Physician Counseling to Promote the Adoption of Physical Activity. Prev. Med. 1996, 25, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Swanson, J.; Valiente, C.; Lemery-Chalfant, K.; Caitlin O’Brien, T. Predicting Early Adolescents’ Academic Achievement, Social Competence, and Physical Health From Parenting, Ego Resilience, and Engagement Coping. J. Early Adolesc. 2011, 31, 548–576. [Google Scholar] [CrossRef]
- Neely, K.C.; Holt, N.L. Parents’ Perspectives on the Benefits of Sport Participation for Young Children. Sport Psychol. 2014, 28, 255–268. [Google Scholar] [CrossRef]
- Maron, B.J.; Zipes, D.P.; Kovacs, R.J. AHA/ACC Scientific Statement: Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities. Circulation 2015, 132, e256–e261. [Google Scholar] [PubMed] [Green Version]
- Rowlands, A.V.; Ingledew, D.K.; Eston, R.G. The effect of type of physical activity measure on the relationship between body fatness and habitual physical activity in children: A meta-analysis. Ann. Hum. Biol. 2000, 27, 479–497. [Google Scholar] [CrossRef]
- Wittmeier, K.D.M.; Mollard, R.C.; Kriellaars, D.J. Physical Activity Intensity and Risk of Overweight and Adiposity in Children. Obesity 2008, 16, 415–420. [Google Scholar] [CrossRef] [PubMed]
Characteristics | ASD 1 (n = 37) | TOF 1 (n = 48) | TGA 1 (n = 47) | SV 1 (n = 104) | p-Value |
---|---|---|---|---|---|
Demographics | |||||
No. 1 (%) | 37 (15.7) | 48 (20.3) | 47 (19.9) | 104 (44.1) | <0.001 |
Female no. (%) | 21 (56.8) | 23 (47.9) | 14 (29.8) | 43 (41.3) | 0.08 |
Age, mean ± SD, yr | 8.7 ± 2.1 | 8.1 ± 2.0 | 8.0 ± 2.2 | 8.2 ± 2.1 | 0.45 |
Age Group n (%) | 0.39 | ||||
4–6 yrs | 8 (21.6) | 16 (33.3) | 20 (42.6) | 33 (31.7) | |
7–9 yrs | 16 (43.2) | 23 (47.9) | 17 (36.2) | 47 (45.2) | |
10–12 yrs | 13 (35.1) | 9 (18.8) | 10 (21.3) | 24 (23.1) | |
Health-Related Fitness (mean ± SD) | |||||
Locomotor | 11.0 ± 1.8 | 10.0 ± 2.9 | 10.7 ± 2.7 | 9.8 ± 2.7 | 0.09 |
Object control | 11.2 ± 2.3 | 9.8 ± 3.1 | 10.2 ± 2.8 | 9.5 ± 3.2 | 0.08 |
Total movement | 22.2 ± 3.6 | 19.7 ± 5.4 | 20.9 ± 4.8 | 18.2 ± 5.1 | 0.03 |
Handgrip z-score | 0.5 ± 1.1 | 0.05 ± 0.95 | 0.04 ± 1.1 | −0.3 ± 0.9 | 0.001 |
Flexibility z-score | 1.2 ± 2.3 | 1.1 ± 2.1 | 0.4 ± 1.8 | 0.3 ± 2.1 | 0.04 |
BMI 1 z-score (WHO 1) | 0.08 ± 1.29 | 0.16 ± 1.43 | 0.03 ± 1.72 | 0.15 ± 1.10 | 0.93 |
BMI z-score (CDC 1) | −0.15 ± 1.29 | −0.21 ± 1.39 | −0.34 ± 1.61 | −0.20 ± 1.00 | 0.97 |
Physical Activity (mean ± SD) | |||||
Weekday (mins), | 62 ± 38 | 51 ± 21 | 63 ± 24 | 53 ± 21 | 0.03 |
Weekend (mins) | 54 ± 45 | 37 ± 22 | 50 ± 31 | 38 ± 22 | 0.005 2 |
Total weekly (mins) | 424 ± 271 | 327 ± 141 | 416 ± 164 | 341 ± 138 | 0.008 2 |
Outcome | n | Restrict 1 | Girls 1 | ASD 1 | TOF 1 | TGA 1 | Age | Int 1 |
---|---|---|---|---|---|---|---|---|
Physical Competence | ||||||||
Locomotive Std 1 | 201 | −1.92 (0.95) 2 | 0.93 (0.38) 2 | 1.07 (0.6) | 0.06 (0.5) | 0.90 (0.5) | −0.06 (0.09) | 8.13 (1.19) 4 |
Object Std | 197 | −2.40 (1.03) 2 | 1.76 (0.42) 4 | 1.35 (0.63) 2 | 0.05 (0.54) | 0.87 (0.54) | 0.11 (0.10) | 5.65 (1.29) 4 |
TGMD-2 1 Std | 197 | −4.27 (1.7) 3 | 2.66 (0.70) 4 | 2.52 (1.04) 2 | 0.21 (0.90) | 1.86 (0.9) 2 | 0.04 (0.16) | 13.77 (2.14) 4 |
Grip 1 z-scores | 234 | −0.41 (0.28) | −0.10 (0.12) | 0.62 (0.17) 4 | 0.33 (0.2) 2 | 0.32 (0.2) 2 | 0.25 (0.03) 4 | −2.62 (0.34) 4 |
S&R 1 z-scores | 228 | 0.53 (0.25) 2 | 0.52 (0.22) 2 | 0.27 (0.23) | −0.31 (0.04) 4 | 1.18 (0.5) 2 | −0.31 (0.04) 4 | 1.18 (0.50) 2 |
Body Composition | ||||||||
BMI CDC 1 | 208 | 0.20 (0.44) | −0.07 (0.18) | 0.05 (0.26) | −0.02 (0.24) | −0.14 (0.25) | 0.02 (0.04) | −0.15 (0.53) |
BMI WHO 1 | 191 | −0.02 (0.49) | −0.18 (0.20) | −0.07 (0.28) | −0.001 (0.26) | −0.16 (0.28) | 0.03 (0.05) | −0.03 (0.63) |
Physical Activity | ||||||||
Weekday 1 | 228 | −8.23 (8.47) | −8.91 (3.36) 3 | 9.18 (4.81) | −1.71 (4.32) | 8.20 (4.47) | 1.30 (0.79) | 38.1 (10.1) 4 |
Weekend 1 | 220 | −15.05 (9.92) | −6.28 (4.02) | 16.31 (5.80) 3 | −1.31 (5.14) | 9.72 (5.27) | −0.36 (0.93) | 29.7 (11.9) 3 |
Weekly 1 | 219 | −71.8 (58.9) | −55.2 (24.0) 2 | 82.7 (34.4) 2 | −10.2 (30.5) | 62.8 (31.6) 2 | 5.51 (5.57) | 251.7 (71.0) 4 |
Predicted Values | ||||||||
---|---|---|---|---|---|---|---|---|
Outcome | n | Restrict 1 | Girls 1 | ASD 1 | CHD TOF 1 | TGA 1 | Age | Int 1 |
Physical Competence | ||||||||
Locomotive Std 1 | 201 | −0.30 (0.69) | 1.04 (0.39) 3 | 1.12 (0.59) | 0.04 (0.50) | 0.94 (0.51) | −0.06 (0.09) | 9.59 (1.08) 4 |
Object Std | 197 | −0.04 (0.78) | 1.88 (0.42) 4 | 1.47 (0.64) 2 | 0.05 (0.55) | 0.95 (0.55) | 0.11 (0.10) | 7.83 (1.18) 4 |
TGMD-2 1 Std | 197 | −0.17 (1.28) | 2.88 (0.71) 4 | 2.71 (1.07) 3 | 0.20 (0.91) | 2.00 (0.92) 2 | 0.05 (0.17) | 17.55 (1.96) 4 |
Grip 1 z-scores | 234 | −0.19 (0.22) | −0.07 (0.12) | 0.61 (0.17) 4 | 0.32 (0.15) 2 | 0.32 (0.15) 2 | 0.25 (0.03) 4 | −2.45 (0.32) 4 |
S&R 1 z-scores | 228 | −0.23 (0.33) | 3.11 (0.17) 4 | 0.52 (0.25) 2 | 0.51 (0.22) 2 | 0.27 (0.23) | −0.30 (0.04) 4 | 1.33 (0.48) 3 |
Body Composition | ||||||||
BMI CDC 1 | 208 | 0.04 (0.33) | −0.09 (0.18) | 0.04 (0.26) | −0.02 (0.24) | −0.15 (0.25) | 0.02 (0.04) | −0.29 (0.49) |
BMI WHO 1 | 191 | 0.01 (0.35) | −0.18 (0.20) | −0.07 (0.18) | −0.00 (0.26) | −0.16 (0.28) | 0.03 (0.05) | −0.01 (0.57) |
Physical Activity | ||||||||
Weekday 1 | 228 | −2.73 (6.19) | −8.35 (3.35) 3 | 9.24 (4.88) | −1.75 (4.35) | 8.53 (4.48) | 1.37 (0.79) | 42.64 (9.24) 4 |
Weekend 1 | 220 | −4.67 (7.45) | −5.30 (4.02) | 16.51 (5.90) 3 | −1.31 (5.19) | 10.42 (5.29) 2 | −0.22 (0.94) | 38.2 (11.1) 4 |
Weekly 1 | 219 | −31.6 (44.2) | −50.7 (23.9) 2 | 82.3 (35.0) 2 | −10.9 (30.7) | 65.3 (31.6) 2 | 6.25 (5.61) | 282.9 (65.7) 4 |
Predicted Values | ||||||||
---|---|---|---|---|---|---|---|---|
Outcome | n | Restrict 1 | Girls 1 | ASD 1 | CHD TOF 1 | TGA 1 | Age | Int 1 |
Physical Competence | ||||||||
Locomotive Std 1 | 201 | 0.02 (0.48) | 1.02 (0.39) 3 | 1.17 (0.60) | 0.06 (0.51) | 0.97 (0.51) | −0.06 (0.09) | 9.91 (0.87) 4 |
Object Std | 197 | −0.46 (0.53) | 1.84 (0.42) 4 | 1.32 (0.65) 2 | −0.03 (0.55) | 0.85 (0.56) | 0.11 (0.10) | 7.55 (0.95) 4 |
TGMD-2 1 Std | 197 | −0.57 (0.88) | 2.82 (0.71) 4 | 2.55 (1.09) 2 | 0.11 (0.92) | 1.89 (0.93) 2 | 0.05 (0.16) | 17.33 (1.58) 4 |
Grip 1 z-scores | 234 | −0.05 (0.15) | −0.09 (0.12) | 0.63 (0.18) 4 | 0.33 (0.16) 2 | 0.33 (0.16) 2 | 0.25 (0.03) 4 | −2.29 (0.26) 4 |
S&R 1 z-scores | 228 | −0.09 (0.22) | 3.10 (0.17) 4 | 0.53 (0.26) 2 | 0.51 (0.23) 2 | 0.28 (0.23) | −0.30 (0.04) 4 | 1.49 (0.39) 4 |
Body Composition | ||||||||
BMI CDC 1 | 208 | −0.04 (0.22) | −0.09 (0.18) | 0.02 (0.27) | −0.03 (0.24) | −0.17 (0.25) | 0.02 (0.04) | −0.36 (0.41) |
BMI WHO 1 | 191 | −0.05 (0.24) | −0.18 (0.20) | −0.09 (0.29) | −0.01 (0.26) | −0.17 (0.28) | 0.03 (0.05) | −0.04 (0.49) |
Physical Activity | ||||||||
Weekday 1 | 228 | −2.10 (4.23) | −8.21 (3.37) 3 | 8.95 (4.99) | −1.97 (4.41) | 8.41 (4.51) | 1.36 (0.79) | 43.9 (7.5) 4 |
Weekend 1 | 220 | −1.55 (5.02) | −5.65 (4.03) | 16.69 (6.05) 3 | −1.29 (5.27) | 10.59 (5.34) 2 | −0.27 (0.94) | 41.7 (8.96) 4 |
Weekly 1 | 219 | −14.1 (29.7) | −52.8 (24.0) 2 | 82.2 (35.8) 2 | −11.5 (31.2) | 65.7 (31.9) 2 | 5.96 (5.59) | 304.6 (53.2) 4 |
Predicted Values | ||||||||
---|---|---|---|---|---|---|---|---|
Outcome | n | Restrict 1 | Girls 1 | ASD 1 | CHD TOF 1 | TGA 1 | Age | Int 1 |
Physical Competence | ||||||||
Locomotive Std 1 | 201 | −0.19 (0.45) | 1.01 (0.39) 3 | 1.05 (0.64) | −0.01 (0.53) | 0.90 (0.53) | −0.05 (0.09) | 9.76 (0.86) 4 |
Object Std | 197 | −1.16 (0.49) 2 | 1.83 (0.42) 4 | 0.78 (0.69) | −0.37 (0.57) | 0.51 (0.57) | 0.15 (0.10) | 7.06 (0.92) 4 |
TGMD-2 1 Std | 197 | −1.36 (0.81) | 2.80 (0.70) 4 | 1.92 (1.15) | −0.28 (0.95) | 1.49 (0.96) | 0.10 (0.17) | 16.78 (1.55) 4 |
Grip 1 z-scores | 234 | −0.15 (0.14) | −0.10 (0.12) | 0.55 (0.19) 3 | 0.27 (0.16) | 0.28 (0.16) | 0.25 (0.03) 4 | −2.36 (0.26) 4 |
S&R 1 z-scores | 228 | −0.35 (0.20) | 3.07 (0.17) 4 | 0.34 (0.27) | 0.39 (0.24) | 0.16 (0.24) | −0.30 (0.04) 4 | 1.34 (0.37) 4 |
Body Composition | ||||||||
BMI CDC 1 | 208 | −0.02 (0.21) | −0.09 (0.18) | 0.03 (0.29) | −0.03 (0.25) | −0.17 (0.26) | 0.02 (0.04) | −0.34 (0.40) |
BMI WHO 1 | 191 | −0.04 (0.23) | −0.18 (0.20) | −0.10 (0.31) | −0.02 (0.28) | −0.18 (0.29) | 0.03 (0.05) | −0.04 (0.48) |
Physical Activity | ||||||||
Weekday 1 | 228 | 0.12 (4.00) | −8.48 (3.35) 3 | 9.73 (5.37) | −1.48 (4.61) | 8.87 (4.71) | 1.33 (0.80) | 45.4 (7.38) 4 |
Weekend 1 | 220 | −0.47 (4.77) | −5.54 (4.02) | 16.93 (6.51) 3 | −1.15 (5.52) | 10.71 (5.59) | −0.27 (0.95) | 42.5 (8.79) 4 |
Weekly 1 | 219 | −3.93 (28.26) | −51.7 (24.0) 2 | 84.6 (38.6) 2 | −10.1 (32.7) | 67.0 (33.3) 2 | 5.97 (5.65) | 311.7 (52.2) 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanchard, J.; McCrindle, B.W.; Longmuir, P.E. The Impact of Physical Activity Restrictions on Health-Related Fitness in Children with Congenital Heart Disease. Int. J. Environ. Res. Public Health 2022, 19, 4426. https://doi.org/10.3390/ijerph19084426
Blanchard J, McCrindle BW, Longmuir PE. The Impact of Physical Activity Restrictions on Health-Related Fitness in Children with Congenital Heart Disease. International Journal of Environmental Research and Public Health. 2022; 19(8):4426. https://doi.org/10.3390/ijerph19084426
Chicago/Turabian StyleBlanchard, Joel, Brian W. McCrindle, and Patricia E. Longmuir. 2022. "The Impact of Physical Activity Restrictions on Health-Related Fitness in Children with Congenital Heart Disease" International Journal of Environmental Research and Public Health 19, no. 8: 4426. https://doi.org/10.3390/ijerph19084426
APA StyleBlanchard, J., McCrindle, B. W., & Longmuir, P. E. (2022). The Impact of Physical Activity Restrictions on Health-Related Fitness in Children with Congenital Heart Disease. International Journal of Environmental Research and Public Health, 19(8), 4426. https://doi.org/10.3390/ijerph19084426