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This is the supplement for “A method for constructing informative priors for Bayesian 
modeling of occupational hygiene data” by Harrison Quick, Tran Huynh, and Gurumurthy 
Ramachandran. Section 1 offers a detailed description of the prior distributions presented in the 
main manuscript. Section 2 discusses the motivations for and implications of bounds on GM 
and GSD compared to bounds on X0.95. In Section 3, we conduct a simulation study to 
evaluate the performance of the informative priors we discuss. Section 4 provides R code 
which can be used to replicate the illustrative examples from the manuscript.

1. Prior Distributions
In this section, we offer a brief discussion on the subject of noninformative priors and present 
a more detailed derivation of the informative priors given in (3) and (4). We will also 
demonstrate how these priors could arise as the posterior distribution based on historical 
data, yi0, i = 1, . . . , n0, and noninformative priors as an additional motivation for choosing 
these specific prior distributions. Finally, this section concludes with derivations of the full 
conditional distributions for µ and σ2, which are then used in the MCMC algorithm found in 
Section 4.

1.1. Noninformative Priors

Before diving too deeply into the origins of the informative priors presented in the paper, it 
is important to more clearly articulate what it means to be a noninformative prior. From 
the expression for Bayes’ Theorem in (1) of the main manuscript, we know

p (θ |Y) ∝ p (Y |θ)× p (θ). (S1)

Note the use of blue-shaded text to denote information contributed by the data and orange-
shaded text to denote information contributed by the prior. Using the example from the
paper, let’s assume Y = (Y1, . . . , Yn)′ and Yi ∼ Norm (µ, σ2), where µ denotes the log of the
geometric mean (GM) and σ denotes the log of the geometric standard deviation (GSD). For
the sake of illustration, suppose σ is known and θ = µ is the only unknown parameter in our
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model. Updating (S1), we find that the posterior distribution for µ is

p (µ |Y) ∝
n∏
i=1

1√
2πσ2

exp

(
−(Yi − µ)2

2σ2

)
× p (µ), (S2)

where p (µ) denotes the prior distribution of µ. Finally, note that since µ is the mean of a 
normal distribution, thus any value µ ∈ (−∞, ∞) is theoretically valid. We will now explore 
a few of the claims from the Background section of the paper.

1.1.1. Uniform Priors for µ

Suppose, as proposed in (2), we assume µ is uniformly distributed over the range µ ∈ (aµ, bµ); 
i.e.,

p (µ) =
1

bµ − aµ
× I {µ ∈ (aµ, bµ)}

∝ I {µ ∈ (aµ, bµ)} . (S3)

This leads to a posterior distribution of the form

p (µ |Y) ∝
n∏
i=1

1√
2πσ2

exp

(
−(Yi − µ)2

2σ2

)
× I {µ ∈ (aµ, bµ)}. (S4)

In particular, note that the contribution of the prior for µ is limited to the constraint that 
µ ∈ (aµ, bµ). That is, if the range (aµ, bµ) is sufficiently extreme, the posterior distribution 
for µ will (in essence) contain no information from the prior distribution. On the other hand, 
now suppose µ = ln GM ∈ (aµ, bµ) corresponds to an interval of low exposure levels, while our 
sample of data suggests more intermediate exposure levels for µ. With this prior restriction, 
however, the posterior distribution in (S4) will reside entirely in the low exposure range. 
Thus, despite the use of a uniform prior distribution for µ, the use of restrictive bounds can lead 
to µ ∼ Unif (aµ, bµ) being a quite informative prior distribution.

1.1.2. Uniform Priors for GM = eµ

Now suppose we assume GM = eµ is uniformly distributed over the range µ ∈ (aµ, bµ); i.e., we 
use the same set of bounds, but instead of (S3), we assume

pGM (GM) =
1

ebµ − eaµ
× I

{
GM ∈

(
eaµ , ebµ

)}
∝ I

{
GM ∈

(
eaµ , ebµ

)}
. (S5)

Since the likelihood in (S2) is a function of µ, however, it may be helpful to use a variable 
transformation to obtain the prior distribution for µ. Note that this requires deriving the 
expression for the Jacobian of the transformation GM = eµ, which is equal to

J (µ) =
∣∣∣dGM

dµ

∣∣∣ = eµ.
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From this, we find that the prior distribution, as a function of µ, is of the form:

p (µ) = pGM (GM = eµ)× J (µ)

=
1

ebµ − eaµ
× I

{
eµ ∈

(
eaµ , ebµ

)}
× eµ

∝ eµ × I {µ ∈ (aµ, bµ)} . (S6)

This leads to a posterior distribution for µ of the form:

p (µ |Y) ∝
n∏
i=1

1√
2πσ2

exp

(
−(Yi − µ)2

2σ2

)
× eµ × I {µ ∈ (aµ, bµ)}. (S7)

As you can see, the contribution of the prior in the posterior( )distribution in (S7) is more
aµ bµ

than the simple constraint on the bounds, thus GM ∼ Unif e , e could bias our results 
and thus should not be considered a noninformative prior.

1.1.3. Noninformative Priors for σ2

Unlike the mean parameter, µ, in a normal likelihood, there is not a single standard noninfor-
mative prior for the parameter σ2. Rather than discuss this subject in detail, however, we 
will consider uniform priors on σ with relaxed bounds to be noninformative and refer more 
curious practitioners to the work of Gelman (2006). In particular, Gelman (2006) favors a
uniform prior on σ (which yields p (σ2) ∝ σ−1) over the seemingly less informative uniform 
prior on σ2 (which yields p (σ2) ∝ 1).

1.2. An Informative Prior for µ
1.2.1. Based on Frequentist Properties

In the classical frequentist setting, it can be shown that ȳ  ∼ Norm(µ, σ2/n0), where µ and σ2 

are considered fixed, unknown parameters. This can then be restructured into

ȳ0 − µ
σ/
√
n0

∼ Norm(0, 1).

Given that we know ȳ0, s
2
y0, and n0 from our historical data, we can replace σ2 with its

estimate, s2y0, and obtain

µ ∼ Norm(ȳ0, s
2
y0/n0). (S8)

1.2.2. Comparison to Historical Data Posterior 

A common noninformative prior for µ is

p(µ) ∝ 1,
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that is, a flat prior. Using this prior will then lead to

p(µ | ·) ∝
n0∏
i=1

N(yi0 |µ, σ2)

∝ exp

[
−
∑

(yi0 − µ)2

2σ2

]
∝ exp

[
−(ȳ0 − µ)2

2σ2/n0

]
which yields a full-conditional distribution of

µ | σ2, Y0 ∼ N(ȳ0, σ2/n0).

Replacing σ2 with its estimator, sy20, as before, we find that this distribution is equivalent to the 
intuitive prior in (S8).

1.3. An Informative Prior for σ2

1.3.1. Based on Frequentist Properties

To construct our informative prior for σ2, we begin with the expression

(n0 − 1)sy
2
0/σ

2 ∼ χ2
n0−1.

Note that χ2
n0−1 ≡ Gam(n0−1 , 2), where the second parameter in the gamma distribution is

2

the scale parameter. Then, using the properties of the gamma distribution, we find

(n0 − 1)s2y0/σ
2 ∼ Gam

(
n0 − 1

2
, 2

)
=⇒ 1

σ2
∼ Gam

(
n0 − 1

2
,

2

(n0 − 1)s2y0

)
=⇒ σ2 ∼ IG

(
n0 − 1

2
,
(n0 − 1)s2y

2

)
, (S9)

where if X ∼ Gam(a, b), then 1/X ∼ IG(a, 1/b).

1.3.2. Comparison to Historical Data Posterior

Following Gelman (2006), we choose to use the noninformative prior σ ∼ Unif(0, A), where 
we assume A → ∞ (or that A is some arbitrarily large number). Transforming this prior to 
the σ2 scale, we obtain p(σ2) ∝ 1/σ. Using this prior, we find

p(σ2 | ·) ∝
n0∏
i=1

Norm(yi0 |µ, σ2)1/σ

∝ (σ2)−n0/2 exp

[
−
∑

(yi0 − µ)2

2σ2

]
(σ2)−1/2

∝ (σ2)−(n0−1)/2−1 exp

[
−
∑

(yi0 − µ)2

2σ2

]
,
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which gives the full-conditional distribution of

σ2 |µ,Y0 ∼ IG

(
n0 − 1

2
,

∑
(yi0 − µ)2

2

)
. ∑

(yi0 − ȳ0)2, weReplacing µ with its estimator, ȳ0, as before and noting that (n − 1)sy
2
0 = 

find that this distribution is equivalent to the prior in (S9).

1.4. Full-Conditional Distributions

We now show the derivations for the full-conditional distributions for µ and σ2 based on the 
truncated normal and truncated inverse gamma prior distributions. These will be used in the 
R code in Section 4.

1.4.1. Full-Conditional for µ

p
(
µ |Y, σ2, ȳ0, s

2
y0

)
∝p
(
Y |µ, σ2

)
× p

(
µ | ȳ0, s2y0

)
∝ exp

[
−(ȳ − µ)2

2σ2/n

]
× exp

[
−(ȳ0 − µ)2

2s20/n0

]
× I {µ ∈ [aµ, bµ]}

∝ exp

[
−(µ− E [µ | ·])2

2V [µ | ·]

]
× I {µ ∈ [aµ, bµ]}

where E [µ | ·] = V [µ | ·]
(
nȳ/σ2 + n0ȳ0/s

2
y0

)
and V [µ | ·] =

(
n/σ2 + n0/s

2
y0

)−1
. This indicates

that

µ |Y, σ2, ȳ0, s
2
y0 ∼ Trun-Norm (E [µ | ·] , V [µ | ·]) [aµ, bµ] . (S10)

1.4.2. Full-Conditional for σ2

p
(
σ2 |Y, µ, ȳ0, s2y0

)
∝p
(
Y |µ, σ2

)
× p

(
σ2 | ȳ0, s2y0

)
∝
(
σ2
)−n+n0−1

2
−1

exp

[
−
n (ȳ − µ)2 + (n0 − 1) s2y0

2σ2

]
× I

{
σ2 ∈ [aσ, bσ]

}
.

This indicates that

σ2 |Y, µ, ȳ0, s2y0 ∼ Trun-IG

(
n+ n0 − 1

2
,
n (ȳ − µ)2 + (n0 − 1) s2y0

2

)
[aσ, bσ] (S11)

2. Comparison of Bounds
This section consists of a comparison of bounds based on GM and GSD and bounds based on 
X0.95. In our paper, we argue our belief that bounds on the parameters should be placed based 
on decision-making criteria, rather than as a means of incorporating prior information into the 
model. Here, we hope to expand on that idea. Before we make a quantitative comparison, 
however, we look to compare and contrast the potential motivation for each specification of 
bounds.
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2.1. Motivation for Bounds

2.1.1. Bounds based on GM and GSD

When directly specifying bounds on GM and GSD in an occupational hygiene setting, whether 
using the prior distributions proposed by Hewett et al. (2006), those used by Huynh et al.
(2016), or otherwise, a common theme can be observed. The bounds proposed for GM tend 
to be quite broad, covering a wide range of possible values. This is important because if 
knowledge is lacking about the true value of GM, then we need a prior which is flexible 
enough to accommodate this. Fortunately, µ = log GM is typically well estimated from a 
model, as evidenced by how common the parameter is given a noninformative prior in nearly 
all Bayesian models — e.g., many of the examples in software packages like OpenBUGS 
(Lunn et al., 2009). That is (loosely speaking), prior precision is not necessarily required to 
obtain relatively precise posterior estimates of GM (e.g., note that the upper bounds for GM 
in Table 2 do not differ substantially, despite the differences in prior information).

Thus, it is the upper bound for GSD that is of the utmost importance. Here, the bound 
is often based on “rule-of-thumb” criteria, such as the suggestion that GSD > 4 corresponds 
to a “poorly defined” exposure group (EG; e.g., see Chapter 4 of Mulhausen et al., 2006; 
Chapter 16 of Ramachandran, 2005). The implication here is that it’s unclear how to proceed 
if the data suggests GSD ≈ 4 or GSD > 4 — i.e., if it is not feasible to collect more data 
to better estimate GSD, do we increase this bound (thereby dropping the assumption of a 
well-defined EG), or simply classify these EGs as poorly defined?

2.1.2. Bounds based on X0.95

The prior distributions proposed in this paper are inspired by the setting where our decision-
making criteria is to estimate the most appropriate AIHA exposure category, categories which 
are based on the ratio of the 95th percentile, X0.95 = exp [µ + 1.645σ], and the predefined 
occupational exposure limit (OEL). In this scheme, the highest exposure category is defined 
as X0.95 > OEL, with lower values of X0.95 corresponding to lower exposure categories. Here, 
we opted to bound X0.95 < 2×OEL, operating under the assumption that (a) if X0.95 � OEL, 
we will be able to identify the correct exposure category and (b) if X0.95 is close to or greater 
than the OEL, we can increase our bound on X0.95 to assess our posterior distribution’s 
sensitivity to the bound. That is, the bound on X0.95 is purely intended to improve the 
precision of our estimates via restricting the parameter space, not a reflection of our prior 
beliefs (in the conventional sense of the word; e.g., see Gelman, 2015). Thus, if the posterior 
distribution is overly constrained by the X0.95 < 2 × OEL restriction, we can relax this bound 
without considering the implications of relaxing the bound on GSD.

2.2. Illustrative Example, Revisited

Given these potential motivations, we revisit the illustrative example from the main paper, 
using Past Sample A to provide estimates of GM and GSD. The top row of Figure S1 
displays scatterplots of the samples from the prior and posterior distributions of our truncated 
normal and truncated inverse gamma distributions where bounds have been imposed directly 
on GM and GSD compared to bounds on X0.95. Here, transparent circles denote samples
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AIHA Category
Median (95% CI) Probabilities

Prior GM = 1 GSD = 2.71 X0.95 = 5.18 # 2 # 3 # 4
Standard
GM/GSD 0.91 (0.46, 1.97) 2.23 (1.60, 3.73) 3.42 (1.38, 12.81) 0.52 0.34 0.14
X0.95 0.90 (0.45, 1.80) 2.25 (1.60, 4.32) 3.49 (1.39, 11.91) 0.51 0.33 0.15

Relaxed
GM/GSD 0.93 (0.46, 2.13) 2.31 (1.61, 6.12) 3.73 (1.40, 26.37) 0.47 0.31 0.22
X0.95 0.92 (0.46, 2.02) 2.30 (1.61, 5.48) 3.67 (1.40, 21.12) 0.48 0.31 0.21

from the prior distribution, opaque circles denote samples from the posterior distribution, 
and the shades of red denote the various AIHA exposure categories. Despite the data being 
generated from a distribution with GM = 1, GSD = 2.71, and X0.95 = 5.18 (AIHA Category 3), 
both posterior distributions are clearly affected by the restricted parameter spaces. The top 
two rows of Table S1 display the posterior probabilities associated with each of these prior 
specifications.

We now consider relaxing the prior restrictions to GSD < 10 and X0.95 < 5 × OEL. The 
bottom row of Figure S1 displays the new scatterplots, and the bottom two rows of Table S1 
display the new posterior probabilities. First and foremost, it appears as though the 
informative prior structure (i.e., the normal and inverse gamma distributions) ensures that 
the results remain comparable, irrespective of the bounds imposed. That is, while both 
approaches are effective for restricting the parameter space and obtaining more precise 
estimates than with an unbounded prior, placing the restriction on X0.95 allows us to evaluate 
the posterior probability that GSD exceeds 4 — i.e., P (GSD > 4 | Y) — without the need to 
change our prior assumption that the data is from a well-formed exposure group. It should be 
noted that this similarity should be expected provided the bounds are sufficiently far from 
the posterior medians, though this may not be the case when (say) the data suggest larger 
values of GSD are required. Secondly, note that the distributions in Figures S1c,d are still 
being restricted, despite using the more relaxed bounds.

While not shown here, the results obtained using bounded uniform priors would be 
substantially different, with increased variability for both GM and GSD, as would be inferred by 
Tables 2 and 3 in the main manuscript and Tables S2–S4 in this supplement. That said, the goal 
of this example was to illustrate the effect of the bounds, not the informativeness of the prior 
distributions.

3. Simulation Study
In order to reinforce the findings of the illustrative example, we have designed a simulation 
study which compares the performance of these priors to the bounded uniform priors conven-
tionally used in the literature. More specifically, we again wish to analyze a dataset comprised of 
n = 3 observations generated from a lognormal distribution with GM = 1 and GSD = 2.71;
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(a) GSD < 4 (b) X0.95 < 2×OEL

(c) GSD < 10 (d) X0.95 < 5×OEL

Figure S1. Comparison of posterior distributions based on bounds placed on GM and GSD and 
bounds placed on X0.95 for two sets of bounds. Distributions in the top row correspond to the 
bounds featured in the illustrative example in the main manuscript; i.e., GM ∈ and GSD ∈ 
(1.05, 4) and X0.95 < 2 × OEL. Distributions in the bottom row correspond to more relaxed 
prior bounds, specifically GSD ∈ (1.05, 10) and X0.95 < 5 × OEL. Transparent circles denote 
the range of samples from the prior distribution, while opaque circles denote the samples 
from the posterior distribution.
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Data set GM = 1 GSD = 2.71 X0.95 = 5.18

X0.95 ≤ 2×OEL
A 0.48 1.21 3.40
B 0.57 0.87 4.05
C 0.51 1.98 3.13

Uniform (X0.95) — 0.60 2.65 3.47
Uniform (GM,GSD) — 0.84 0.69 6.28

µ = 0 σ = 1 logX0.95 = 1.645

X0.95 ≤ 2×OEL
A 0.53 0.32 0.56
B 0.48 0.27 0.57
C 0.79 0.45 0.58

Uniform (X0.95) — 0.80 0.52 0.64
Uniform (GM,GSD) — 0.66 0.27 0.80

i.e., logNorm(0, 1). To construct our informative prior distributions, we use estimates of GM 
and GSD based on past data generated from one of three distributions — logNorm(0, 1)

(denoted dataset “A”), logNorm(1, 1) (“B”), or logNorm(−1, 1) (“C”). Given these estimates, 
we will construct the truncated normal and truncated inverse gamma priors described in 
equations (5) and (6), constrained such that X0.95 is less than two times the OEL. In addition to 
these prior distributions, we will consider two sets of uniform priors: one where bounds for GM 
and GSD are based on X0.95 (i.e., the noninformative version of our informative priors) and one 
where GM ∈ (OEL/200, 5 × OEL) and GSD ∈ (1.05, 4). Based on the AIHA expo-sure 
categories given in Table C.2 and given that the true X0.95 = exp [0 + 1.645 × 1] = 5.18, we 
investigate two potentially concerning scenarios: OEL = exp [0 + 1.96 ∗ 1] = 7.09 (i.e., AIHA 
Category 3) and OEL = exp [0 + 1.24 × 1] = 3.45 (i.e., AIHA Category 4). Each combination 
of prior specification and exposure scenario is investigated using 100 simulated data sets.

Table S2 presents the root mean square error (rMSE) for GM, GSD, and X0.95 using our 
various prior specifications. More specifically, we compute

rMSE (θ) =

√∑100
`=1 (θ(`) − θ)2

100
,

where θ(`) denotes the posterior median of the parameter, θ, from the `-th simulated data
set. Due to the bounded and skewed nature of many of these parameters (e.g., all non-zero
with long right tails), we also computed the rMSE for the log-transformed parameters — this
will help alleviate the disproportionate penalization of overestimation. From these results,
it appears the informative priors proposed here consistently outperform the uniform priors,
both on the scale of interest and the log-transformed scale. The primary exception to this is
the uniform prior specification in which GSD is restricted to be less than 4, where this upper
bound forces the posterior distribution to remain close to the true value.

Next, we turn our attention to the decision making aspect of the illustrative example in
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the main manuscript — here again, we assume the OEL = 7.09, resulting in a Category 3 
AIHA exposure scenario. In Table S3, which displays the median (95% CI) of the posterior 
probability for each exposure category, we find that the priors that yield the highest probability 
in Category 3 are our three sets of informative priors, each of which has a greater than 36%
chance of identifying the correct exposure category. With the exception of when our past 
data underestimate the GM (i.e., past data set C), more than 70% of our posterior mass for 
these informative priors falls within Categories 3 and 4, indicating that these priors can be 
considered to be rather conservative from a regulatory perspective, while the uniform prior 
specifications tend to yield results that are more favorable toward lower exposure categories.

Finally, Table S4 displays the results for the Category 4 scenario. As in the Category 3 
scenario, the uniform prior specifications tend to yield posterior distributions which favor 
smaller values for X0.95, resulting in lower Category 4 probabilities. Perhaps more troubling, 
however, is the variability observed in these probabilities — while all of our simulated data 
sets resulted in a majority of the posterior mass in either Categories 3 or 4 for the informative 
prior specifications, the uniform prior specifications occasionally led to nearly 70% of the 
posterior mass in Category 2 and just 10% of the posterior mass in Category 4. In other 
words, there can be substantial variability in decision making when based on only n = 3 
observations, but this issue can be mitigated by the infusion of prior information.

4. R Code
The following code can be used to recreate the results from the informative priors in the 
illustrative example.

#remove all existing variables from R’s memory
rm(list=ls())

#set a random number seed in order to achieve reproducibility
set.seed(630)

#set the sample size of the current data (N),
#the past data (N0),
#and the prior sample size (n0)
N=3; N0=5; n0=3

########################

#Past Data
########################

mu0=0; sig0=1 #Past Data A
#mu0=1; sig0=1 #Past Data B
y0=rnorm(N0,mu0,sig0)

ybar0=mean(y0)

sy20=var(y0)

########################
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#New Data

########################

mu1=0; sig1=1

x=rnorm(N,mu1,sig1)

oel=exp(mu1+1.96*sig1)

thres=2 #upper bound for X95

########################

#Prior Specifications

########################

#n0=N;

m0=ybar0; v0=sy20

#mu ~ N(theta,tau2)

theta=m0; tau2=v0/n0

#theta=0; tau2=Inf #This yields a noninformative prior

#bounds for mu

#While a lower bound of -Inf would be perfectly valid,

#we use the lower bound suggested by Hewett et al. (2006).

#Fortunately, this value is sufficiently small so as to

#have ~no impact on our results, whatsoever.

#As for the upper bound, that will change iteratively below

mub=c(log(.005*oel),NA)

##################

#sig2 ~ IG(a,b)

#Note that R uses an alternate parameterization of the IG

a=(n0-1)/2; b=2/(v0*(n0-1)) #second parameter is inverted

#a=-1/2; b=Inf #This corresponds to a flat prior on sig=log(GSD)

# #(see Gelman 2006)

#As with mu, we use the lower bound from BDA

#and let the upper bound vary iteratively

sigb=c(log(1.05),NA)^2

#####################

#The MCMC algorithm

#####################

niter=20000 #20,000 iterations

mu=sig=sig2=rep(NA,niter)

#initialize our parameters

mu[1]=0

sig[1]=sig2[1]=1
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for(i in 2:niter){

#specify upper bound for mu based on most recent value of sigma

mub[2]=log(thres*oel)-1.645*sig[i-1]

#update mu

mumu = (mean(x)/(sig2[i-1]/N) + theta/tau2) / (N/sig2[i-1] + 1/tau2)

musig= 1/(N/sig2[i-1] + 1/tau2)

#since we’re using a truncated normal,

#we use the inverse CDF method to sample mu

#if mub[1] < mu < mub[2],

#then pnorm(mub[1]) < pnorm(mu) < pnorm(mub[2])

#where pnorm(.) denotes the appropriate CDF

u=runif(1,pnorm(mub[1],mumu,sqrt(musig)),

pnorm(mub[2],mumu,sqrt(musig)))

mu[i]=qnorm(u,mumu,sqrt(musig))

#specify upper bound for sigma^2 based on new value of mu

sigb[2]=( (log(thres*oel)-mu[i])/1.645 )^2

#update sig2

#again using the inverse CDF method

u=runif(1,pgamma(1/sigb[2],N/2+a, (1/b+sum( (x-mu[i])^2 )/2)),

pgamma(1/sigb[1],N/2+a, (1/b+sum( (x-mu[i])^2 )/2)))

sig2[i]=1/qgamma(u,N/2+a, (1/b+sum( (x-mu[i])^2 )/2) )

sig[i]=sqrt(sig2[i])

}

#compute x95 using the samples of mu, sig

x95=mu+1.645*sig

#####################

#Compute exposure category probabilities

#####################

#compute boundaries of the exposure categories

A=c(log(0.01*oel),log(0.10*oel),log(0.50*oel),log(oel))

catl=array(rep(x95,times=4)>rep(A,each=niter),dim=c(niter,4))

cat.post=apply(catl,1,sum)

table(cat.post)/niter

#cat.post

# 1 2 3 4

#0.00010 0.51185 0.33440 0.15365
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