Correlations between Crawl Kinematics and Speed with Morphologic, Functional, and Anaerobic Parameters in Competitive Swimmers
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Estimation of the Hand and Forearm Surface Area
2.3. Determining the Ranges of Motion of Selected Anatomical Points in the Imitation of Swimming Movement
2.4. Anaerobic Power of Arms
2.5. Countermovement Jump Test (CMJ)
2.6. The 100 m Front Crawl Race
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gagnon, C.M.; Steiper, M.E.; Pontzer, H. Elite swimmers do not exhibit a body mass index trade-off across a wide range of event distances. Proc. R. Soc. B Biol. Sci. 2018, 285, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Hawes, M.R.; Sovak, D. Morphological prototypes, assessment and change in elite athletes. J. Sports Sci. 1994, 12, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Pyne, D.B.; Anderson, M.E.; Hopkins, W.G. Monitoring changes in lean mass of elite male and female swimmers. Int. J. Sports Physiol. Perform. 2006, 1, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Strzała, M.; Stanula, A.; Krężałek, P.; Ostrowski, A.; Kaca, M.; Głąb, G. Influence of morphology and strength on front crawl swimming speed in junior and youth age-group swimmers. J. Strength Cond. Res. 2019, 33, 2836–2845. [Google Scholar] [CrossRef] [PubMed]
- Mise, T.; Mitomi, Y.; Mouri, S.; Takayama, H.; Inoue, Y.; Inoue, M.; Akuzawa, H.; Kaneoka, K. Hypomobility in Males and Hypermobility in Females are Risk Factors for Shoulder Pain Among Young Swimmers. J. Sport Rehabil. 2021, 31, 17–23. [Google Scholar] [CrossRef]
- Matthews, M.J.; Green, D.; Matthews, H.; Swanwick, E. The effects of swimming fatigue on shoulder strength, range of motion, joint control, and performance in swimmers. Phys. Ther. Sport 2017, 23, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, Y.; Hangai, M.; Koizumi, K.; Ueno, K.; Hirai, N.; Akuzawa, H.; Kaneoka, K. Injuries and physical characteristics affecting swimmer participation in the Olympics: A prospective survey. Phys. Ther. Sport 2020, 44, 128–135. [Google Scholar] [CrossRef]
- Walker, H.; Pizzari, T.; Wajswelner, H.; Blanch, P.; Schwab, L.; Bennell, K.; Gabbe, B. The reliability of shoulder range of motion measures in competitive swimmers. Phys. Ther. Sport 2016, 21, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Grimston, S.K.; Hay, J.G. Relationships among anthropometric and stroking characteristics of college swimmers. Med. Sci. Sports Exerc. 1986, 18, 60–68. [Google Scholar] [CrossRef]
- Vitor, F.D.M.; Böhme, M.T.S. Performance of young male swimmers in the 100-meters front crawl. Pediatr. Exerc. Sci. 2010, 22, 278–287. [Google Scholar] [CrossRef]
- Morais, J.E.; Jesus, S.; Lopes, V.; Garrido, N.; Silva, A.; Marinho, D.; Barbosa, T.M. Linking selected kinematic, anthropometric and hydrodynamic variables to young swimmer performance. Pediatr. Exerc. Sci. 2012, 24, 649–664. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.C.; Marinho, D.A.; Neiva, H.P.; Costa, M.J. Propulsive forces in human competitive swimming: A systematic review on direct assessment methods: Propulsive forces in competitive swimming. Sport. Biomech. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, K.C.; Housh, T.J.; Smith, C.M.; Hill, E.C.; Jenkins, N.D.M.; Johnson, G.O.; Housh, D.J.; Schmidt, R.J.; Cramer, J.T. Relative contributions of strength, anthropometric, and body composition characteristics to estimated propulsive force in young male swimmers. J. Strength Cond. Res. 2015, 29, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Nasirzade, A.; Sadeghi, H.; Sobhkhiz, A.; Mohammadian, K.; Nikouei, A.; Baghaiyan, M.; Fattahi, A. Multivariate analysis of 200-m front crawl swimming performance in young male swimmers. Acta Bioeng. Biomech. 2015, 17, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Scurati, R.; Gatta, G.; Michielon, G.; Cortesi, M. Techniques and considerations for monitoring swimmers’ passive drag. J. Sports Sci. 2018, 37, 1168–1180. [Google Scholar] [CrossRef]
- Yoshida, N.; Ota, H.; Higuchi, S.; Sekiguchi, Y.; Kakihana, T.; Sato, H.; Kimura, T.; Izumi, S.I.; Kohzuki, M. Gliding performance is affected by cranial movement of abdominal organs. Sci. Rep. 2020, 10, 21430. [Google Scholar] [CrossRef]
- Zamparo, P.; Cortesi, M.; Gatta, G. The energy cost of swimming and its determinants. Eur. J. Appl. Physiol. 2020, 120, 41–66. [Google Scholar] [CrossRef]
- Dickson, T.A.J.; Taunton, D.; Banks, J.; Hudson, D.; Turnock, S. Quantifying the wave resistance of a swimmer. BioRxiv 2020. [Google Scholar] [CrossRef]
- Hawley, J.A.; Williams, M.M. Relationship between upper body anaerobic power and freestyle swimming performance. Int. J. Sports Med. 1991, 12, 1–5. [Google Scholar] [CrossRef]
- West, D.J.; Owen, N.J.; Cunningham, D.J.; Cook, C.J.; Kilduff, L.P. Strength and power predictors of swimming starts in international sprint swimmers. J. Strength Cond. Res. 2011, 25, 950–955. [Google Scholar] [CrossRef]
- Mitchell, L.J.G.; Rattray, B.; Saunders, P.U.; Pyne, D.B. The relationship between talent identification testing parameters and performance in elite junior swimmers. J. Sci. Med. Sport 2018, 21, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Zacca, R.; Toubekis, A.; Freitas, L.; Silva, A.F.; Azevedo, R.; Vilas-Boas, J.P.; Pyne, D.B.; Castro, F.A.D.S.; Fernandes, R.J. Effects of detraining in age-group swimmers performance, energetics and kinematics. J. Sports Sci. 2019, 37, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Strzała, M.; Tyka, A. Physical endurance, somatic indices and swimming technique parameters as determinants of front crawl swimming speed at short distances in young swimmers. Med. Sport. 2009, 13, 99–107. [Google Scholar] [CrossRef]
- Inbar, O.; Bar-Or, O.; Skinner, J.S. Characteristics of the Wingate Anaerobic Test. In The Wingate Anaerobic Test; Human Kinetics: Champaign, IL, USA, 1996. [Google Scholar]
- Strzała, M.; Stanula, A.; Krȩzałek, P.; Rejdych, W.; Karpiński, J.; Maciejczyk, M.; Radecki-Pawlik, A. Specific and Holistic Predictors of Sprint Front Crawl Swimming Performance. J. Hum. Kinet. 2021, 78, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Olbrecht, J. The Science of Winning: Planning, Periodizing and Optimizing Swim Training; F&G Partners: Schwyz, Switzerland, 2015. [Google Scholar]
- Keskinen, K.L.; Tilli, L.J.; Komi, P.V. Maximum velocity swimming: Interrelationships of stroking characteristics, force production and anthropometric variables. Scand. J. Sport. Sci. 1989, 11, 87–92. [Google Scholar]
- Moreira, M.F.; Morais, J.E.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M.; Costa, M.J. Growth influences biomechanical profile of talented swimmers during the summer break. Sport. Biomech. 2014, 13, 62–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjendlie, P.L.; Stallman, R. Morphology and swimming performance. In World Book of Swimming: From Science to Performance; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 203–221. ISBN 9781616682026. [Google Scholar]
- Toussaint, H.M.; Janssen, T.; Kluft, M. Effect of propelling surface size on the mechanics and energetics of front crawl swimming. J. Biomech. 1991, 24, 205–211. [Google Scholar] [CrossRef]
- Gourgoulis, V.; Aggeloussis, N.; Vezos, N.; Kasimatis, P.; Antoniou, P.; Mavromatis, G. Estimation of hand forces and propelling efficiency during front crawl swimming with hand paddles. J. Biomech. 2008, 41, 208–215. [Google Scholar] [CrossRef]
- Marinho, D.A.; Barbosa, T.M.; Reis, V.M.; Kjendlie, P.L.; Alves, F.B.; Vilas-Boas, J.P.; Machado, L.; Silva, A.J.; Rouboa, A.I. Swimming propulsion forces are enhanced by a small finger spread. J. Appl. Biomech. 2010, 26, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Samson, M.; Monnet, T.; Bernard, A.; Lacouture, P.; David, L. Analysis of a swimmer’s hand and forearm in impulsive start from rest using computational fluid dynamics in unsteady flow conditions. J. Biomech. 2018, 67, 157–165. [Google Scholar] [CrossRef]
- Takagi, H.; Nakashima, M.; Ozaki, T.; Matsuuchi, K. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: Application to the crawl stroke. J. Biomech. 2014, 47, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Keiner, M.; Yaghobi, D.; Sander, A.; Wirth, K.; Hartmann, H. The influence of maximal strength performance of upper and lower extremities and trunk muscles on different sprint swim performances in adolescent swimmers. Sci. Sport. 2015, 30, e147–e154. [Google Scholar] [CrossRef]
- Rohrs, D.M.; Stager, J.M. Evaluation of anaerobic power and capacity in competitive swimmers. J. Swim. Res. 1991, 7, 12–16. [Google Scholar]
- Stager, J.M.; Coyle, M.A. Energy Systems. In Handbook of Sports Medicine and Science: Swimming; Blackwell Science Ltd.: Oxford, UK, 2005; pp. 1–19. [Google Scholar]
- Kjendlie, P.L.; Stallman, R.K.; Stray-Gundersen, J. Adults have lower stroke rate during submaximal front crawl swimming than children. Eur. J. Appl. Physiol. 2004, 91, 649–655. [Google Scholar] [CrossRef]
- Dunman, N.; Morris, J.; Nevill, M.; Peyrebrune, M. Characteristics for success in elite junior and senior swimmers. Biomech. Med. Swim. 2006, 6, 126–128. [Google Scholar]
- Maglischo, E.W. Swimming Fastest; Human Kinetics: Champaign, IL, USA, 2003; 791p. [Google Scholar]
- Beach, M.L.; Whitney, S.L.; Dickoff-Hoffman, S.A. Relationship of shoulder flexibility, strength, and endurance to shoulder pain in competitive swimmers. J. Orthop. Sports Phys. Ther. 1992, 16, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Nugent, F.J.; Comyns, T.M.; Warrington, G.D. Strength and conditioning considerations for youth swimmers. Strength Cond. J. 2018, 40, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.E.L.; Ackland, T.R. Kinanthropometry in Aquatic Sport; Human Kinetics: Champaign, IL, USA, 1994. [Google Scholar]
Parameter | SR (cycle · min–1) 46.84 ± 3.98 | SL (m) 2.14 ± 0.19 | 3.53 ± 0.38 |
---|---|---|---|
Vsurface (m · s–1) | 0.14 | 0.30 | 0.64 *** |
Parameter | BM (kg) 77.72 ± 9.60 | BMI (kg · m–2) 23.09 ± 1.75 | TBL (cm) 253.80 ± 9.77 | Ah (cm2) 159.89 ± 15.49 | Ahf (cm2) 425.13 ± 40.57 |
---|---|---|---|---|---|
SR | –0.22 | –0.30 | –0.10 | –0.18 | –0.22 |
SL | 0.32 | 0.35 (p = 0.07) | 0.22 | 0.23 | 0.27 |
SI | 0.37 * | 0.35 (p = 0.07) | 0.31 | 0.25 | 0.29 |
Parameter | ROMA (m) 0.12 ± 0.001 | ROME (m) 0.73 ± 0.001 | ROMD (m) 1.38 ± 0.01 |
---|---|---|---|
SR | –0.03 | –0.09 | –0.03 |
SL | 0.07 | 0.15 | 0.17 |
SI | 0.08 | 0.18 | 0.29 |
Parameter | Pcra ave (W) 452.78 ± 82.06 | Pcraave rel (W · kg–1) 5.71 ± 0.60 | Pcramax (W) 507.96 ± 99.01 | Pcramax rel (W · kg–1) 6.38 ± 0.73 |
---|---|---|---|---|
SR | –0.32 | –0.28 | –0.31 | –0.28 |
SL | 0.39 * | 0.30 | 0.40 * | 0.33 |
SI | 0.41 * | 0.26 | 0.43 * | 0.32 |
Parameter | h (m) 0.38 ± 0.04 | WCMJ (J) 287.44 ± 51.72 |
---|---|---|
SR | –0.31 | –0.34 |
SL | 0.34 | 0.43 * |
SI | 0.32 | 0.47 * |
Parameter | BM | TBL | Pcramax | WCMJ | ROMD |
---|---|---|---|---|---|
Vsurface | 0.28 | 0.30 | 0.27 | 0.29 | 0.28 |
Vtotal100 | 0.39 * | 0.43 * | 0.37 * | 0.40 * | 0.39 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzała, M.; Stanula, A.; Krężałek, P.; Sokołowski, K.; Wądrzyk, Ł.; Maciejczyk, M.; Karpiński, J.; Rejdych, W.; Wilk, R.; Sadowski, W. Correlations between Crawl Kinematics and Speed with Morphologic, Functional, and Anaerobic Parameters in Competitive Swimmers. Int. J. Environ. Res. Public Health 2022, 19, 4595. https://doi.org/10.3390/ijerph19084595
Strzała M, Stanula A, Krężałek P, Sokołowski K, Wądrzyk Ł, Maciejczyk M, Karpiński J, Rejdych W, Wilk R, Sadowski W. Correlations between Crawl Kinematics and Speed with Morphologic, Functional, and Anaerobic Parameters in Competitive Swimmers. International Journal of Environmental Research and Public Health. 2022; 19(8):4595. https://doi.org/10.3390/ijerph19084595
Chicago/Turabian StyleStrzała, Marek, Arkadiusz Stanula, Piotr Krężałek, Kamil Sokołowski, Łukasz Wądrzyk, Marcin Maciejczyk, Jakub Karpiński, Wojciech Rejdych, Robert Wilk, and Wojciech Sadowski. 2022. "Correlations between Crawl Kinematics and Speed with Morphologic, Functional, and Anaerobic Parameters in Competitive Swimmers" International Journal of Environmental Research and Public Health 19, no. 8: 4595. https://doi.org/10.3390/ijerph19084595
APA StyleStrzała, M., Stanula, A., Krężałek, P., Sokołowski, K., Wądrzyk, Ł., Maciejczyk, M., Karpiński, J., Rejdych, W., Wilk, R., & Sadowski, W. (2022). Correlations between Crawl Kinematics and Speed with Morphologic, Functional, and Anaerobic Parameters in Competitive Swimmers. International Journal of Environmental Research and Public Health, 19(8), 4595. https://doi.org/10.3390/ijerph19084595