Residence in an Area with Environmental Exposure to Heavy Metals and Neurobehavioral Performance in Children 9–11 Years Old: An Explorative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exposure Assessment by Urinary Metals Measurement
2.3. Procedures
2.4. Neurobehavioral Battery
2.5. Statistical Analyses
3. Results
3.1. Comparison of Scores on Neurobehavioral Toxicity between the Group of Children with Residence in Areas with Environmental Exposure to Heavy Metals and the Group of Children Living in Areas without Known Presence of Heavy Metals
3.1.1. Psychomotor Tests
3.1.2. Cognitive Tests
3.2. Comparison of Scores on Neurobehavioral Toxicity between Children Living within 1 km of an Area with Industrial Activity versus Children Living More Than 1 km from an Area with Industrial Activity
3.2.1. Psychomotor Tests
3.2.2. Cognitive Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zablotsky, B.; Black, L.I.; Maenner, M.J.; Schieve, L.A.; Danielson, M.L.; Bitsko, R.H.; Blumberg, S.J.; Kogan, M.D.; Boyle, C.A. Prevalence and Trends of Developmental Disabilities among Children in the United States: 2009–2017. Pediatrics 2019, 144, e20190811. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Landrigan, P.J. Developmental neurotoxicity of industrial chemicals: A silent pandemic. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, V.; Gálvez-Ontiveros, Y.; González-Domenech, P.J.; Ángel, B.M.; Rodrigo, L.; Rivas, A. Role of endocrine disrupting chemicals in children’s neurodevelopment. Environ. Res. 2021, 203, 111890. [Google Scholar] [CrossRef]
- Children Are not Little Adults Children’s, Health and the Environment WHO Training Package for the Health Sector, World Health Organization. 2008. Available online: www.who.int/ceh (accessed on 24 August 2021).
- Perlroth, N.H.; Castelo-Branco, C. Current knowledge of environmental exposure in children during the sensitive developmental periods. J. Pediatr. 2017, 93, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lewis, G. Environmental toxicity and poor cognitive outcomes in children and adults. J. Environ. Health 2014, 76, 130–138. [Google Scholar]
- Rodriguez-Barranco, M.; Lacasaña, M.; Aguilar-Garduño, C.; Alguacil, J.; Gil, F.; Alzaga, B.G.; García, A.R. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis. Sci. Total Environ. 2013, 454–455, 562–577. [Google Scholar] [CrossRef]
- Dórea, J.G. Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. Environ. Res. 2021, 192, 110199. [Google Scholar] [CrossRef]
- Liu, Y.; McDermott, S.; Lawson, A.; Aelion, C.M. The relationship between mental retardation and developmental delays in children and the levels of arsenic, mercury and lead in soil samples taken near their mother’s residence during pregnancy. Int. J. Hyg. Environ. Health 2010, 213, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, X.; Shen, L.; Khan, N.U.; Zhang, X.; Chen, L.; Zhao, H.; Luo, P. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies. J. Trace Elem. Med. Biol. 2021, 67, 126782. [Google Scholar] [CrossRef]
- Kiran, B.R.; Sharma, R. Effect of heavy metals: An overview. Mater. Today Proc. 2021, 51, 880–885. [Google Scholar] [CrossRef]
- Gialloreti, L.E.; Mazzone, L.; Benvenuto, A.; Fasano, A.; Alcon, A.G.; Kraneveld, A.; Moavero, R.; Raz, R.; Riccio, M.P.; Siracusano, M.; et al. Risk and Protective Environmental Factors Associated with Autism Spectrum Disorder: Evidence-Based Principles and Recommendations. J. Clin. Med. 2019, 8, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendola, P.; Selevan, S.G.; Gutter, S.; Rice, D. Environmental factors associated with a spectrum of neurodevelopmental deficits. Ment. Retard. Dev. Disabil. Res. Rev. 2002, 8, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, T.; Molander, F.; Taylor, M.J.; Jonsson, U.; Bölte, S. Early environmental risk factors for neurodevelopmental disorders—A systematic review of twin and sibling studies. Dev. Psychopathol. 2020, 33, 1448–1495. [Google Scholar] [CrossRef] [PubMed]
- Costa, M. Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol. Appl. Pharmacol. 2019, 375, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Gazwi, H.S.; Yassien, E.E.; Hassan, H.M. Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol. Environ. Saf. 2020, 192, 110297. [Google Scholar] [CrossRef]
- Bernhoft, R.A. Mercury Toxicity and Treatment: A Review of the Literature. J. Environ. Public Health 2012, 2012, 460508. [Google Scholar] [CrossRef]
- Tsai, M.T.; Huang, S.Y.; Cheng, S.Y. Lead poisoning can be easily misdiagnosed as acute porphyria and nonspecific abdominal pain Case reports in emergency medicine 2017. Case Rep. Emerg Med. 2017, 2017, 9050713. [Google Scholar] [CrossRef] [Green Version]
- Clancy, H.A.; Sun, H.; Passantino, L.; Kluz, T.; Munoz, A.; Zavadil, J.; Costa, M. Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics 2012, 4, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, M.; Bellinger, D.C.; Gregas, M.; Abanilla, K.; Bacic, J.; Needleman, H.L. Low-level environmental lead exposure in childhood and adult intellectual function: A follow-up study. Environ. Health 2011, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Llanes, M. Valorisation of Inorganic Waste for Obtaining Construction Materials. Ph.D. Thesis, University of Huelva, Huelva, Spain, 2007. Available online: http://hdl.handle.net/10272/16090 (accessed on 14 January 2022).
- Pérez-López, R.; Macias, F.; Canovas, C.R.; Sarmiento, A.M.; Moreno, S.P. Pollutant flows from a phosphogypsum disposal area to an estuarine environment: An insight from geochemical signatures. Sci. Total Environ. 2016, 553, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, J.; Pérez-Moreno, S.; Gutiérrez-Álvarez, I.; Gázquez, M.; Bolívar, J. Behaviour of heavy metals and natural radionuclides in the mixing of phosphogypsum leachates with seawater. Environ. Pollut. 2021, 268, 115843. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, C.R.; Basallote, M.D.; Macías, F. Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ría of Huelva (SW Spain). Environ. Pollut. 2020, 267, 115506. [Google Scholar] [CrossRef] [PubMed]
- Papaslioti, E.-M.; Pérez-López, R.; Parviainen, A.; Sarmiento, A.M.; Nieto, J.M.; Marchesi, C.; Delgado-Huertas, A.; Garrido, C.J. Effects of seawater mixing on the mobility of trace elements in acid phosphogypsum leachates. Mar. Pollut. Bull. 2018, 127, 695–703. [Google Scholar] [CrossRef]
- Rosado, D.; Usero, J.; Morillo, J. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary. Chemosphere 2016, 153, 10–17. [Google Scholar] [CrossRef]
- Torre, B.; Borrero-Santiago, A.R.; Fabbri, E.; Guerra, R. Trace metal levels and toxicity in the Huelva Estuary (Spain): A case study with comparisons to historical levels from the past decades. Environ. Chem. Ecotoxicol. 2019, 1, 12–18. [Google Scholar] [CrossRef]
- Millán-Martínez, M.; Sánchez-Rodas, D.; de la Campa, A.S.; Alastuey, A.; Querol, X.; de la Rosa, J.D. Source contribution and origin of PM10 and arsenic in a complex industrial region (Huelva, SW Spain). Environ. Pollut. 2021, 274, 116268. [Google Scholar] [CrossRef]
- Parviainen, A.; Casares-Porcel, M.; Marchesi, C.; Garrido, C.J. Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain). Environ. Pollut. 2019, 253, 918–929. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C. Risk-based assessment of multimetallic soil pollution in the industrialized peri-urban area of Huelva, Spain. Environ. Geochem. Health 2011, 34, 123–139. [Google Scholar] [CrossRef]
- Guillén, M.T.; Delgado, J.; Gómez-Arias, A.; Nieto-Liñán, J.M.; Castillo, J. Bioaccessibility and human exposure to metals in urban soils (Huelva, SW Spain): Evaluation by in vitro gastric extraction. Environ. Geochem. Health 2021. [Google Scholar] [CrossRef]
- Hierro, A.; Olías, M.; Ketterer, M.E.; Vaca, F.; Borrego, J.; Canovas, C.R.; Bolivar, J.P. Geochemical behavior of metals and metalloids in an estuary affected by acid mine drainage (AMD). Environ. Sci. Pollut. Res. 2014, 21, 2611–2627. [Google Scholar] [CrossRef] [PubMed]
- Domingo-Relloso, A.; Grau-Perez, M.; Galan-Chilet, I.; Garrido-Martinez, M.J.; Tormos, C.; Navas-Acien, A.; Gomez-Ariza, J.L.; Monzo-Beltran, L.; Sáez, G.; Garcia-Barrera, T.; et al. Urinary metals and metal mixtures and oxidative stress biomarkers in an adult population from Spain: The Hortega Study. Environ. Int. 2019, 123, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Molina-Villalba, I.; Lacasaña, M.; Rodríguez-Barranco, M.; Hernández, A.F.; Gonzalez-Alzaga, B.; Aguilar-Garduño, C.; Gil, F. Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere 2015, 124, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Calderon, J.; Ortiz-Pérez, D.; Yáñez, L.; Barriga, F.D. Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicol. Environ. Saf. 2003, 56, 93–103. [Google Scholar] [CrossRef]
- Dorne, J.-L.C.M.; Kass, G.E.N.; Bordajandi, L.R.; Amzal, B.; Bertelsen, U.; Castoldi, A.F.; Heppner, C.; Eskola, M.; Fabiansson, S.; Ferrari, P.; et al. Human risk assessment of heavy metals: Principles and applications. Met. Ions Life Sci. 2011, 8, 21473375. [Google Scholar]
- Butler-Dawson, J.; Galvin, K.; Thorne, P.S.; Rohlman, D.S. Organophosphorus pesticide exposure and neurobehavioral performance in Latino children living in an orchard community. NeuroToxicology 2016, 53, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.M.; Weigel, M.M.; Yonts, S.; Rohlman, D.; Armijos, R. Residential exposure to urban traffic is associated with the poorer neurobehavioral health of Ecuadorian schoolchildren. NeuroToxicology 2019, 73, 31–39. [Google Scholar] [CrossRef]
- Kicinski, M.; Nawrot, T.S. Chapter 5—Neurobehavioral Effects of Air Pollution in Children. In Environmental Factors in Neurodevelopmental and Neurodegenerative Disorders; Aschner, M., Costa, L.G., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 89–105. ISBN 9780128002285. [Google Scholar] [CrossRef]
- Sears, L.; Sears, C.G.; Myers, J.V.; Brock, G.N.; Zierold, K.M. Associations of the Behavioral Assessment and Research System (BARS) neurobehavioral outcomes with attention problems in children living near coal ash storage sites. NeuroToxicology 2020, 81, 11–17. [Google Scholar] [CrossRef]
- Sears, C.G.; Sears, L.; Zierold, K.M. Sex differences in the association between exposure to indoor particulate matter and cognitive control among children (age 6–14 years) living near coal-fired power plants. Neurotoxicol. Teratol. 2020, 78, 106855. [Google Scholar] [CrossRef]
- Dórea, J.G. Neurodevelopment and exposure to neurotoxic metal(loid)s in environments polluted by mining, metal scrapping and smelters, and e-waste recycling in low and middle-income countries. Environ. Res. 2021, 197, 111124. [Google Scholar] [CrossRef]
- Kicinski, M.; Vrijens, J.; Vermier, G.; Hond, E.D.; Schoeters, G.; Nelen, V.; Bruckers, L.; Sioen, I.; Baeyens, W.; Van Larebeke, N.; et al. Neurobehavioral function and low-level metal exposure in adolescents. Int. J. Hyg. Environ. Health 2015, 218, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.M.; Hatch, L.C.; Akhter, S.; Eunus, M.; Zhou, Z.; Parvez, F.; Rohlman, D. Reliability of a computer-based neurobehavioral assessment test battery for Bangladeshi adolescent children. NeuroToxicology 2021, 85, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Rohlman, D.S.; Gimenes, L.S.; Eckerman, D.A.; Kang, S.-K.; Farahat, F.; Anger, W.K. Development of the Behavioral Assessment and Research System (BARS) to Detect and Characterize Neurotoxicity in Humans. NeuroToxicology 2003, 24, 523–531. [Google Scholar] [CrossRef]
- Rohlman, D.S.; Gimenes, L.S.; Ebbert, C.; Anger, W.K.; Bailey, S.; McCauley, L. Smiling faces and other rewards: Using the Behavioral Assessment and Research System (BARS) with unique populations. NeuroToxicology 2000, 21, 973–978. [Google Scholar] [PubMed]
- Rohlman, D.S.; Anger, W.; Tamulinas, A.; Phillips, J.; Bailey, S.; McCauley, L. Development of a Neurobehavioral Battery for Children Exposed to Neurotoxic Chemicals. NeuroToxicology 2001, 22, 657–665. [Google Scholar] [CrossRef]
- Rohlman, D.S.; Arcury, T.A.; Quandt, S.A.; Lasarev, M.R.; Rothlein, J.; Travers, R.; Tamulinas, A.; Scherer, J.; Early, J.; Marín, A.; et al. Neurobehavioral Performance in Preschool Children from Agricultural and Non-Agricultural Communities in Oregon and North Carolina. NeuroToxicology 2005, 26, 589–598. [Google Scholar] [CrossRef]
- Lozano, M.; Murcia, M.; Soler-Blasco, R.; González, L.; Iriarte, G.; Rebagliato, M.; Lopez-Espinosa, M.-J.; Esplugues, A.; Ballester, F.; Llop, S. Exposure to mercury among 9-year-old children and neurobehavioural function. Environ. Int. 2021, 146, 106173. [Google Scholar] [CrossRef]
- Rosado, J.L.; Ronquillo, D.; Kordas, K.; Rojas, O.; Alatorre, J.; Lopez, P.; Garcia-Vargas, G.; del Carmen Caamaño, M.; Cebrián, M.E.; Stoltzfus, R.J. Arsenic Exposure and Cognitive Performance in Mexican Schoolchildren. Environ. Health Perspect. 2007, 115, 1371–1375. [Google Scholar] [CrossRef] [Green Version]
- Gerr, F.; Letz, R.; Ryan, P.B.; Green, R.C. Neurological effects of environmental exposure to arsenic in dust and soil among humans. NeuroToxicology 2000, 21, 475–487. [Google Scholar]
- Ostrowski, S.R.; Wilbur, S.; Chou, C.-H.S.J.; Pohl, H.R.; Stevens, Y.-W.; Allred, P.M.; Roney, N.; Fay, M.; Tylenda, C.A. Agency for Toxic Substances and Disease Registry’s 1997 priority list of hazardous substances. Latent effects—Carcinogenesis, neurotoxicology, and developmental deficits in humans and animals. Toxicol. Ind. Health 1999, 15, 602–644. [Google Scholar] [CrossRef]
- Franzblau, A.; Lilis, R. Acute Arsenic Intoxication from Environmental Arsenic Exposure. Arch. Environ. Health Int. J. 1989, 44, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Vibol, S.; Hashim, J.H.; Sarmani, S. Neurobehavioral effects of arsenic exposure among secondary school children in the Kandal Province, Cambodia. Environ. Res. 2015, 137, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Barranco, M.; Gil, F.; Hernández, A.F.; Alguacil, J.; Lorca, A.; Mendoza, R.; Gómez, I.; Molina-Villalba, I.; Alzaga, B.G.; Aguilar-Garduño, C.; et al. Postnatal arsenic exposure and attention impairment in school children. Cortex 2016, 74, 370–382. [Google Scholar] [CrossRef]
- Rodriguez-Barranco, M.; Lacasaña, M.; Gil, F.; Lorca, A.; Alguacil, J.; Rohlman, D.; Alzaga, B.G.; Molina-Villalba, I.; Mendoza, R.; Aguilar-Garduño, C. Cadmium exposure and neuropsychological development in school children in southwestern Spain. Environ. Res. 2014, 134, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Caparros-Gonzalez, R.A.; Giménez-Asensio, M.J.; Alzaga, B.G.; Aguilar-Garduño, C.; Lorca-Marín, J.A.; Alguacil, J.; Gómez-Becerra, I.; Gómez-Ariza, J.L.; García-Barrera, T.; Hernandez, A.F.; et al. Childhood chromium exposure and neuropsychological development in children living in two polluted areas in southern Spain. Environ. Pollut. 2019, 252, 1550–1560. [Google Scholar] [CrossRef] [PubMed]
- Sears, L.; Myers, J.V.; Sears, C.G.; Brock, G.N.; Zhang, C.; Zierold, K.M. Manganese body burden in children is associated with reduced visual motor and attention skills. Neurotoxicol. Teratol. 2021, 88, 107021. [Google Scholar] [CrossRef]
- Chiodo, L.M.; Covington, C.; Sokol, R.J.; Hannigan, J.H.; Jannise, J.; Ager, J.; Greenwald, M.; Delaney-Black, V. Blood lead levels and specific attention effects in young children. Neurotoxicol. Teratol. 2007, 29, 538–546. [Google Scholar] [CrossRef]
- Joo, H.; Choi, J.; Burm, E.; Park, H.; Hong, Y.-C.; Kim, Y.; Ha, E.-H.; Kim, Y.; Kim, B.-N.; Ha, M. Gender difference in the effects of lead exposure at different time windows on neurobehavioral development in 5-year-old children. Sci. Total Environ. 2018, 615, 1086–1092. [Google Scholar] [CrossRef]
- Wakefield, J. The lead effect? Environ. Health Perspect. 2002, 110, A574–A580. [Google Scholar] [CrossRef]
- Lidsky, T.I.; Schneider, J.S. Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain 2003, 126, 5–19. [Google Scholar] [CrossRef]
- Rice, D.; Barone, S., Jr. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 2000, 108 (Suppl. 3), 511–533. [Google Scholar] [CrossRef] [PubMed]
- Rodier, P.M. Developing brain as a target of toxicity. Environ. Health Perspect. 1995, 103, 73–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Querol, X.; Alastuey, A.; Viana, M.; Rodriguez, S.; Artinano, B.; Salvador, P.; Santos, S.G.D.; Patier, R.F.; Ruiz, C.; de la Rosa, J.D.; et al. Speciation and origin of PM10 and PM2.5 in Spain. J. Aerosol Sci. 2004, 35, 1151–1172. [Google Scholar] [CrossRef]
- Oliveira, V.; Gómez-Ariza, J.L.; Sánchez-Rodas, D. Extraction procedures for chemical speciation of arsenic in atmospheric total suspended particles. Anal. Bioanal. Chem. 2005, 382, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Noble, K.G.; McCandliss, B.D.; Farah, M.J. Socioeconomic gradients predict individual differences in neurocognitive abilities. Dev. Sci. 2007, 10, 464–480. [Google Scholar] [CrossRef]
- O’Neill, M.S.; Jerrett, M.; Kawachi, I.; Levy, J.I.; Cohen, A.J.; Gouveia, N.; Wilkinson, P.; Fletcher, T.; Cifuentes, L.; Schwartz, J.; et al. Health, wealth, and air pollution: Advancing theory and methods. Environ. Health Perspect. 2003, 111, 1861–1870. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. The Fourth National Report on Human Exposure to Environmental Chemicals. Atlanta, GA, USA, 2009. Available online: https://www.cdc.gov/exposurereport/pdf/fourthreport.pdf (accessed on 18 March 2022).
- Anger, W.; Sizemore, O.; Grossmann, S.; Glasser, J.; Letz, R.; Bowler, R. Human Neurobehavioral Research Methods: Impact of Subject Variables. Environ. Res. 1997, 73, 18–41. [Google Scholar] [CrossRef]
Areas with Metal Pollution | Areas without Known Metal Pollution | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | % | Mean | SD | n | % | Mean | SD | p * | |
Sex | |||||||||
Boys | 30 | 50.0 | 15 | 50.0 | 1.00 | ||||
Girls | 30 | 50.0 | 15 | 50.0 | |||||
Age | 10.2 | 0.62 | 10.1 | 0.63 | 0.51 | ||||
Antropometric variables | |||||||||
Weight (kg) | 41.4 | 10.5 | 38.8 | 10.1 | 0.28 | ||||
Height (m) | 1.43 | 0.07 | 1.41 | 0.08 | 0.12 | ||||
Place of residence | |||||||||
Huelva | 41 | 68.4 | - | - | |||||
Aracena highlands (Huelva) | 8 | 13.3 | - | - | |||||
Moguer (Huelva) | 11 | 18.3 | - | - | |||||
Castilleja (Seville) | - | - | 15 | 50.0 | |||||
Jabalquinto (Jaen) | - | - | 15 | 50.0 | |||||
Socioeconomic status | |||||||||
High (I, II) | 18 | 30.0 | 2 | 6.70 | 0.04 | ||||
Medium (III, IVa) | 33 | 55.0 | 22 | 73.3 | |||||
Low (IVb, V) | 9 | 15.0 | 6 | 20.0 |
Residence < 1 km | Residence > 1 km | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | % | Mean | SD | n | % | Mean | SD | p * | |
Sex | |||||||||
Boys | 4 | 26.7 | 41 | 54.7 | 0.048 | ||||
Girls | 11 | 73.3 | 34 | 45.3 | |||||
Total | 15 | 100 | 75 | 100 | |||||
Age | 10.1 | 0.76 | 10.2 | 0.60 | 0.866 | ||||
Antropometric variables | |||||||||
Weight (Kg) | 39.4 | 9.06 | 40.7 | 10.7 | 0.645 | ||||
Height (m) | 1.42 | 0.07 | 1.43 | 0.08 | 0.816 | ||||
Place of residence | |||||||||
Huelva | 12 | 80.0 | 29 | 38.7 | 0.047 | ||||
Aracena highlands (Huelva) | - | - | 8 | 10.7 | |||||
Moguer (Huelva) | 1 | 6.7 | 10 | 13.3 | |||||
Castilleja (Seville) | - | - | 15 | 20.0 | |||||
Jabalquinto (Jaen) | 2 | 13.3 | 13 | 17.3 | |||||
Socioeconomic status | |||||||||
High (I, II) | 7 | 46.7 | 13 | 17.3 | 0.018 | ||||
Medium (III, IVa) | 8 | 53.3 | 47 | 62.7 | |||||
Low (IVb, V) | 0 | 0.00 | 15 | 20.0 |
Residence Distance to Industrial Areas | Areas with Metal Pollution | Areas w/o Known Metal Pollution | ||||
---|---|---|---|---|---|---|
<1 km n = 8 | >1 km n = 57 | n = 49 | n = 20 | |||
Urine Mtal Levels (mg/g) | Median | Median | p * | Median | Median | p * |
Total arsenic | 22.7 | 26.8 | 0.62 | 23.8 | 62.3 | 0.05 |
Total arsenic/creatinine | 42.7 | 42.7 | 0.70 | 41.4 | 73.5 | 0.10 |
Inorganic arsenic | 1.96 | 1.86 | 0.80 | 1.86 | 2.19 | 0.35 |
Inorganic arsenic/creatinine | 4.82 | 3.11 | 0.21 | 4.00 | 3.66 | 0.82 |
Total cadmium | 0.11 | 0.14 | 0.54 | 0.14 | 0.18 | 0.29 |
Total cadmium/creatinine | 0.25 | 0.22 | 0.69 | 0.23 | 0.25 | 0.60 |
Total mercury | 9.93 | 4.22 | 0.13 | 6.54 | 2.64 | 0.08 |
Total mercury/creatinine | 29.4 | 6.99 | 0.11 | 10.6 | 4.38 | 0.04 |
Total lead | 0.61 | 1.81 | 0.02 | 1.43 | 1.86 | 0.28 |
Total lead/creatinine | 0.56 | 3.03 | 0.03 | 2.06 | 3.24 | 0.57 |
Neurobehavioral Test | Outcome Measure | Function |
---|---|---|
Finger tapping | Number of taps | Response speed, coordination |
Symbol-digit | Latency | Coding, complex functioning |
Simple reaction time | Latency | Response speed |
Digit span | Correct score | Attention, memory |
Serial digit learning | Score | Learning |
Continuous performance test | Percent hits, percent false alarms, percent omissions, d-prime | Sustained attention |
Areas with Metal Pollution (n = 60) | Areas without Known Metal Pollution (n = 30) | ||||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | β * | p | ||
Finger tapping | |||||||
Number of taps | |||||||
Tapping with preferred hand | 74.2 | 11.3 | 74.1 | 11.3 | −0.68 | 0.77 | Better |
Tapping with non-preferred hand | 61.5 | 11.2 | 63.6 | 10.2 | 2.30 | 0.29 | Better |
Tapping with alternating hands | 35.2 | 11.4 | 38.3 | 11.7 | 2.62 | 0.30 | Better |
Simple reaction time | |||||||
Latency (ms) | 408 | 51.0 | 427 | 61.8 | 20.3 | 0.12 | Worse |
Total errors | 1.50 | 1.88 | 1.97 | 3.02 | 0.40 | 0.53 | Worse |
Areas with Metal Pollution (n = 60) | Areas without Known Metal Pollution (n = 30) | ||||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | β * | p | ||
Serial digit learning | |||||||
Score | 9.55 | 7.55 | 10.7 | 7.04 | 0.72 | 0.67 | Better |
Digit span | |||||||
Score | |||||||
Forward | 4.67 | 0.96 | 4.61 | 0.85 | −0.05 | 0.82 | Better |
Reverse | 3.90 | 1.00 | 3.78 | 0.84 | −0.17 | 0.47 | Better |
Continuous performance | |||||||
Percent of hits | 0.79 | 0.18 | 0.78 | 0.16 | −0.02 | 0.68 | Better |
Percent of correct rejections | 0.92 | 0.06 | 0.91 | 0.07 | −0.02 | 0.34 | Better |
Hit latency (ms) | 382 | 88.5 | 348 | 89.0 | −30.9 | 0.12 | Worse |
False alarm latency (ms) | 436 | 108 | 446 | 121 | 11.6 | 0.68 | Worse |
d-Prime | 2.56 | 0.99 | 2.47 | 0.95 | −0.14 | 0.52 | Better |
Residence < 1 km (n = 15) | Residence > 1 km (n = 75) | ||||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | β * | p | ||
Finger tapping | |||||||
Number of taps | |||||||
Tapping with preferred hand | 68.2 | 11.7 | 75.6 | 10.8 | −6.45 | 0.03 | Better |
Tapping with non-preferred hand | 57.3 | 9.12 | 64.2 | 10.5 | −4.76 | 0.09 | Better |
Tapping with alternating hands | 33.8 | 7.80 | 38.1 | 12.3 | −3.12 | 0.35 | Better |
Simple reaction time | |||||||
Latency (ms) | 436 | 70.5 | 418 | 56.9 | 10.1 | 0.55 | Worse |
Total errors | 1.87 | 2.90 | 1.85 | 2.71 | −0.18 | 0.83 | Worse |
Residence < 1 km (n = 15) | Residence > 1 km (n = 75) | ||||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | β * | p | ||
Serial digit learning | |||||||
Score | 11.6 | 7.08 | 9.92 | 7.26 | 1.17 | 0.59 | Better |
Digit span | |||||||
Score | |||||||
Forward | 4.60 | 0.63 | 4.58 | 1.08 | 0.08 | 0.80 | Better |
Reverse | 3.27 | 1.49 | 3.21 | 1.66 | 0.12 | 0.80 | Better |
Continuous performance test | |||||||
Percent of hits | 0.81 | 0.11 | 0.77 | 0.17 | 0.01 | 0.79 | Better |
Percent of correct rejections | 0.91 | 0.06 | 0.92 | 0.07 | −0.01 | 0.51 | Better |
Hit latency (ms) | 419 | 96.4 | 348 | 85.8 | 60.2 | 0.02 | Worse |
False alarm latency (ms) | 486 | 136 | 436 | 112 | 51.8 | 0.17 | Worse |
d-Prime | 2.50 | 0.90 | 2.45 | 0.94 | −0.05 | 0.86 | Better |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capelo, R.; Rohlman, D.S.; Jara, R.; García, T.; Viñas, J.; Lorca, J.A.; Contreras Llanes, M.; Alguacil, J. Residence in an Area with Environmental Exposure to Heavy Metals and Neurobehavioral Performance in Children 9–11 Years Old: An Explorative Study. Int. J. Environ. Res. Public Health 2022, 19, 4732. https://doi.org/10.3390/ijerph19084732
Capelo R, Rohlman DS, Jara R, García T, Viñas J, Lorca JA, Contreras Llanes M, Alguacil J. Residence in an Area with Environmental Exposure to Heavy Metals and Neurobehavioral Performance in Children 9–11 Years Old: An Explorative Study. International Journal of Environmental Research and Public Health. 2022; 19(8):4732. https://doi.org/10.3390/ijerph19084732
Chicago/Turabian StyleCapelo, Rocío, Diane S. Rohlman, Rocío Jara, Tamara García, Jesús Viñas, José A. Lorca, Manuel Contreras Llanes, and Juan Alguacil. 2022. "Residence in an Area with Environmental Exposure to Heavy Metals and Neurobehavioral Performance in Children 9–11 Years Old: An Explorative Study" International Journal of Environmental Research and Public Health 19, no. 8: 4732. https://doi.org/10.3390/ijerph19084732
APA StyleCapelo, R., Rohlman, D. S., Jara, R., García, T., Viñas, J., Lorca, J. A., Contreras Llanes, M., & Alguacil, J. (2022). Residence in an Area with Environmental Exposure to Heavy Metals and Neurobehavioral Performance in Children 9–11 Years Old: An Explorative Study. International Journal of Environmental Research and Public Health, 19(8), 4732. https://doi.org/10.3390/ijerph19084732