Opioid Prescription Method for Breathlessness Due to Non-Cancer Chronic Respiratory Diseases: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Study Selection
2.3. Data Extraction and Analysis
2.4. Risk of Bias Assessment
3. Results
3.1. Characteristics of Selected Studies
3.2. RCT Studies of Opioids to Reduce Breathlessness Due to COPD
3.3. RCT Studies of Opioids to Improve Exercise Tolerance
3.4. RCT Studies of Opioids to Improve QOL in COPD
3.5. The Response Rate of Opioids in RCT Studies
3.6. Non-Randomized or Observational Studies of Opioids for Chronic Respiratory Diseases
3.7. Retrospective Study of Opioids for Chronic Respiratory Diseases
3.8. The Required Dosage of Opioids to Observe Benefits
3.9. Adverse Events of Opioid Treatment
3.10. Risk of Bias of Included Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2020, 8, 585–596. [Google Scholar] [CrossRef]
- Gore, J.M.; Brophy, C.J.; Greenstone, M.A. How well do we care for patients with end stage chronic obstructive pulmonary disease (COPD)? A comparison of palliative care and quality of life in COPD and lung cancer. Thorax 2000, 55, 1000–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkington, H.; White, P.; Addington-Hall, J.; Higgs, R.; Pettinari, C. The last year of life of COPD: A qualitative study of symptoms and services. Respir. Med. 2004, 98, 439–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajala, K.; Lehto, J.T.; Saarinen, M.; Sutinen, E.; Saarto, T.; Myllärniemi, M. End-of-life care of patients with idiopathic pulmonary fibrosis. BMC Palliat. Care 2016, 15, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajwah, S.; Higginson, I.J.; Ross, J.R.; Wells, A.U.; Birring, S.S.; Patel, A.; Riley, J. Specialist palliative care is more than drugs: A retro-spective study of ILD patients. Lung 2012, 190, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.A.; Singh, S.J.; Collier, R.; Williams, J.E.; Morgan, M.D. Pulmonary rehabilitation is successful for COPD irrespective of MRC dyspnoea grade. Respir. Med. 2009, 103, 1070–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coventry, P.A.; Hind, D. Comprehensive pulmonary rehabilitation for anxiety and depression in adults with chronic obstruc-tive pulmonary disease: Systematic review and meta-analysis. J. Psychosom. Res. 2007, 63, 551–565. [Google Scholar] [CrossRef]
- Johnson, M.J.; Currow, D.C. Opioids for breathlessness: A narrative review. BMJ Support. Palliat. Care 2020, 10, 287–295. [Google Scholar] [CrossRef]
- Pisani, L.; Hill, N.S.; Pacilli, A.M.G.; Polastri, M.; Nava, S. Management of Dyspnea in the Terminally Ill. Chest 2018, 154, 925–934. [Google Scholar] [CrossRef]
- Ekström, M.; Nilsson, F.; Abernethy, A.A.; Currow, D.C. Effects of Opioids on Breathlessness and Exercise Capacity in Chronic Obstructive Pulmonary Disease: A Systematic Review. Ann. Am. Thorac. Soc. 2015, 12, 1079–1092. [Google Scholar] [CrossRef]
- Verberkt, C.A.; van den Beuken-van Everdingen, M.H.J.; Schols, J.M.G.A.; Hameleers, N.; Wouters, E.F.M.; Janssen, D.J.A. Effect of Sustained-Release Morphine for Refractory Breathlessness in Chronic Obstructive Pulmonary Disease on Health Status: A Randomized Clinical Trial. JAMA Intern. Med. 2020, 180, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Currow, D.; Louw, S.; McCloud, P.; Fazekas, B.; Plummer, J.; McDonald, C.F.; Agar, M.; Clark, K.; McCaffrey, N.; Ekström, M.P.; et al. Regular, sustained-release morphine for chronic breathlessness: A multicentre, double-blind, randomised, placebo-controlled trial. Thorax 2020, 75, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reedy, F.; Pearson, M.; Greenley, S.; Clark, J.; Currow, D.C.; Bajwah, S.; Fallon, M.; Johnson, M.J. Professionals’, patients’ and families’ views on the use of opioids for chronic breathlessness: A systematic review using the framework method and pillar process. Palliat. Med. 2021, 35, 1421–1433. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Park, J.E.; Lee, Y.J.; Seo, H.J.; Sheen, S.S.; Hahn, S.; Jang, B.H.; Son, H.J. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J. Clin. Epidemiol. 2013, 66, 408–414. [Google Scholar] [CrossRef]
- Kohberg, C.; Andersen, C.U.; Bendstrup, E. Opioids: An unexplored option for treatment of dyspnea in IPF. Eur. Clin. Respir. J. 2016, 3, 30629. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, A.A.; Johnson, M.A.; Geddes, D.M. Breathlessness, alcohol, and opiates. N. Engl. J. Med. 1982, 306, 1363–1364. [Google Scholar]
- Light, R.W.; Stansbury, D.W.; Webster, J.S. Effect of 30 mg of Morphine Alone or With Promethazine or Prochlorperazine on the Exercise Capacity of Patients With COPD. Chest 1996, 109, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Ekström, M.; Johnson, M.J.; Huang, C.; Currow, D.C. Minimal clinically important differences in average, best, worst and current intensity and unpleasantness of chronic breathlessness. Eur. Respir. J. 2020, 56, 1902202. [Google Scholar] [CrossRef]
- Ferreira, D.H.; Louw, S.; McCloud, P.; Fazekas, B.; McDonald, C.F.; Agar, M.R.; Clark, K.; McCaffrey, N.; Ekström, M.; Currow, D.C.; et al. Controlled-Release Oxycodone vs. Placebo in the Treatment of Chronic Breathlessness—A Multisite Randomized Placebo Controlled Trial. J. Pain Symptom Manag. 2020, 59, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.T.; Currow, D.C.; Abernethy, A.P.; Johnson, M.J.; Toson, B.; Eckert, D.J. Effects of low-dose morphine on perceived sleep quality in patients with refractory breathlessness: A hypothesis generating study. Respirology 2016, 21, 386–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currow, D.C.; Plummer, J.; Frith, P.; Abernethy, A.P. Can we predict which patients with refractory dyspnea will respond to opioids? J. Palliat. Med. 2007, 10, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Currow, D.C.; Quinn, S.; Greene, A.; Bull, J.; Johnson, M.J.; Abernethy, A.P. The Longitudinal Pattern of Response When Morphine Is Used To Treat Chronic Refractory Dyspnea. J. Palliat. Med. 2013, 16, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Abernethy, A.P.; Currow, D.C.; Frith, P.; Fazekas, B.S.; McHugh, A.; Bui, C. Randomised, double blind, placebo-controlled crossover trial of sustained release morphine for the management of refractory dyspnea. BMJ 2003, 327, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Currow, D.C.; McDonald, C.; Oaten, S.; Kenny, B.; Allcroft, P.; Frith, P.; Briffa, M.; Johnson, M.J.; Abernethy, A.P. Once-Daily Opioids for Chronic Dyspnea: A Dose Increment and Pharmacovigilance Study. J. Pain Symptom Manag. 2011, 42, 388–399. [Google Scholar] [CrossRef]
- Smith, J.; Owen, E.; Earis, J.; Woodcock, A. Effect of codeine on objective measurement of cough in chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2006, 117, 831–835. [Google Scholar] [CrossRef]
- Ferreira, D.H.; Ekström, M.; Sajkov, D.; Vandersman, Z.; Eckert, D.J.; Currow, D.C. Extended-Release Morphine for Chronic Breathlessness in Pulmonary Arterial Hypertension—A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. J. Pain Symptom Manag. 2018, 56, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Kronborg-White, S.; Andersen, C.U.; Kohberg, C.; Hilberg, O.; Bendstrup, E. Palliation of chronic breathlessness with morphine in patients with fibrotic interstitial lung disease—A randomised placebo-controlled trial. Respir. Res. 2020, 21, 195. [Google Scholar] [CrossRef]
- Poole, P.J.; Veale, A.G.; Black, P.N. The Effect of Sustained-Release Morphine on Breathlessness and Quality of Life in Severe Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1998, 157, 1877–1880. [Google Scholar] [CrossRef]
- Eiser, N.; Denman, W.T.; West, C.; Luce, P. Oral diamorphine: Lack of effect on dyspnoea and exercise tolerance in the “pink puffer” syndrome. Eur. Respir. J. 1991, 4, 926–931. [Google Scholar] [PubMed]
- Munck, L.K.; Christensen, C.B.; Pedersen, L.; Larsen, U.; Branebjerg, P.E.; Kampmann, J.P. Codeine in Analgesic Doses Does not Depress Respiration in Patients with Severe Chronic Obstructive Lung Disease. Pharmacol. Toxicol. 1990, 66, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Rice, K.L.; Kronenberg, R.S.; Hedemark, L.L.; Niewoehner, D.E. Effects of chronic administration of codeine and promethazine on breathlessness and exercise tolerance in patients with chronic airflow obstruction. Br. J. Dis. Chest 1987, 81, 287–292. [Google Scholar] [CrossRef]
- Abdallah, S.J.; Wilkinson-Maitland, C.; Saad, N.; Li, P.Z.; Smith, B.M.; Bourbeau, J.; Jensen, D. Effect of morphine on breathlessness and exercise endurance in advanced COPD: A randomised crossover trial. Eur. Respir. J. 2017, 50, 1701235. [Google Scholar] [CrossRef] [Green Version]
- Light, R.W.; Muro, J.R.; Sato, R.I.; Stansbury, D.W.; Fischer, C.E.; Brown, S.E. Effects of oral morphine on breathlessness and exercise tolerance in patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1989, 139, 126–133. [Google Scholar] [CrossRef]
- Johnson, M.A.; Woodcock, A.A.; Geddes, D.M. Dihydrocodeine for breathlessness in “pink puffers”. Br. Med. J. 1983, 286, 675–677. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, A.A.; Gross, E.R.; Gellert, A.; Shah, S.; Johnson, M.; Geddes, D.M. Effects of Dihydrocodeine, Alcohol, and Caffeine on Breathlessness and Exercise Tolerance in Patients with Chronic Obstructive Lung Disease and Normal Blood Gases. N. Engl. J. Med. 1981, 305, 1611–1616. [Google Scholar] [CrossRef]
- Rocker, G.M.; Simpson, A.C.; Young, J.; Horton, R.; Sinuff, T.; Demmons, J.; Donahue, M.; Hernandez, P.; Marciniuk, D. Opioid therapy for refractory dyspnea in patients with advanced chronic obstructive pulmonary disease: Patients’ experiences and outcomes. CMAJ Open 2013, 1, E27–E36. [Google Scholar] [CrossRef] [Green Version]
- Allcroft, P.; Margitanovic, V.; Greene, A.; Agar, M.R.; Clark, K.; Abernethy, A.P.; Currow, D.C. The Role of Benzodiazepines in Breathlessness: A Single Site, Open Label Pilot of Sustained Release Morphine Together with Clonazepam. J. Palliat. Med. 2013, 16, 741–744. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.; Raut, S.; Woollard, J.; Vassallo, M. Low dose diamorphine reduces breathlessness without causing a fall in oxygen saturation in elderly patients with end-stage idiopathic pulmonary fibrosis. Palliat. Med 2005, 19, 128–130. [Google Scholar] [CrossRef]
- Smallwood, N.; Thompson, M.; Warrender-Sparkes, M.; Eastman, P.; Le, B.; Irving, L.; Philip, J. Integrated respiratory and palliative care may improve outcomes in advanced lung disease. ERJ Open Res. 2018, 4, 00102–02017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicent, L.; Nunez Olarte, J.M.; Puente-Maestu, L.; Oliva, A.; López, J.C.; Postigo, A.; Martín, I.; Luna, R.; Fernández-Avilés, F.; Martínez-Sellés, M. Degree of dyspnoea at admission and discharge in patients with heart failure and respiratory diseases. BMC Palliat. Care 2017, 16, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeyasu, M.; Miyamoto, A.; Kato, D.; Takahashi, Y.; Ogawa, K.; Murase, K.; Mochizuki, S.; Hanada, S.; Uruga, H.; Takaya, H.; et al. Continuous Intravenous Morphine Infusion for Severe Dyspnea in Terminally Ill Interstitial Pneumonia Patients. Intern. Med. 2016, 55, 725–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, Y.; Maeda, I.; Tachibana, K.; Nakao, K.; Sasaki, Y.; Sugimoto, C.; Arai, T.; Tokoro, A.; Akira, M.; Inoue, Y. Low-Dose Morphine for Dyspnea in Terminally Ill Patients with Idiopathic Interstitial Pneumonias. J. Palliat. Med. 2017, 20, 879–883. [Google Scholar] [CrossRef]
- Tsukuura, H.; Nishimura, K.; Taniguchi, H.; Kondoh, Y.; Kimura, T.; Kataoka, K.; Watanabe, N.; Hasegawa, Y. Opioid Use in End-of-Life Care in Patients with Interstitial Pneumonia Associated with Respiratory Worsening. J. Pain Palliat. Care Pharmacother. 2013, 27, 214–219. [Google Scholar] [CrossRef]
- Colman, R.; Singer, L.; Barua, R.; Downar, J. Outcomes of lung transplant candidates referred for co-management by palliative care: A retrospective case series. Palliat. Med. 2015, 29, 429–435. [Google Scholar] [CrossRef]
- Johnson, M.J.; Bland, J.M.; Oxberry, S.G.; Abernethy, A.P.; Currow, D.C. Opioids for chronic refractory breathlessness: Patient predic-tors of beneficial response. Eur. Respir. J. 2013, 42, 758–766. [Google Scholar] [CrossRef]
- Verberkt, C.A.; van den Beuken-van Everdingen, M.H.; Schols, J.M.G.A.; Datla, S.; Dirksen, C.D.; Johnson, M.J.; Van Kuijk, S.M.J.; Wouters, E.F.M.; Janssen, D.J.A. Respiratory adverse effects of opioids for breathlessness: A systematic review and meta-analysis. Eur. Respir. J. 2017, 50, 1701153. [Google Scholar] [CrossRef]
- Hui, D.; Bruera, E. Use of short-acting opioids in the management of breathlessness: An evidence-based review. Curr. Opin. Support. Palliat. Care 2020, 14, 167–176. [Google Scholar] [CrossRef]
- Currow, D.C.; Kochovska, S.; Ferreira, D.; Johnson, M. Morphine for the symptomatic reduction of chronic breathlessness: The case for controlled release. Curr. Opin. Support. Palliat. Care 2020, 14, 177–181. [Google Scholar] [CrossRef]
Parallel Studies | |||||||
Study | Diseases | N | Completion Rate (%) | Criteria of Dyspnea | Drug | Dose | Period |
Verberkt C.A., (2020) [11] | COPD | 54 vs. 57 | 81 vs. 89 | mMRC ≥ 2 | SR morphine | Titration from 10 mg BID | 4 wks |
COPD | 23 vs. 26 | mMRC ≥ 3 | SR morphine | Titration from 10 mg BID | 4 wks | ||
Currow D., (2020) [12] | COPD et al. | 145 vs. 139 | 77 vs. 86 | mMRC ≥ 2 | SR morphine * | 20 mg | 1 wk |
COPD et al. | 88 vs. 79 | mMRC ≥ 3 | SR morphine * | 20 mg | 1 wk | ||
Kronborg-White S., (2020) [29] | fILD | 18 vs. 18 | 94.4 vs. 94.4 | MRC ≥ 3 | IR Morphine | 5 mg QID | 1 wk |
Ferreira D.H., (2019) [21] | COPD et al. | 74 vs. 81 | 73% vs. 85% | mMRC ≥ 3 | Oxycodone * 5 mg q8h | 1 wk | |
Crossover Studies | |||||||
Study | Diseases | N | Completion Rate (%) | Criteria of Dyspnea | Drug | Dose | Period |
Abernethy A.P., (2003) [25] | COPD et al. | 48 | 88.9 vs. 88.6 | Dyspnea at rest | SR morphine | 20 mg | 4 days |
Poole P.J., (1998) [30] | COPD | 16 | 87.5 vs. 100 | No | SR morphine | Titration from 10 mg | 6 wks |
Eiser N., (1991) [31] | COPD | 18 | 77.8 | No Diamorphine | 5.0 mg q6h, 2.5 mg q6h | 2 wks | |
Munck L.K., (1990) [32] | COPD | 19 | 84.2 vs. 100 | No | Codeine | 60 mg TID | 1 wk |
Rice K.L., (1987) [33] | COPD | 11 | 70.0 vs. 88.9 | No | Codeine | 30 mg QID | 1 mo |
Woodcock A.A., (1982) [18] | COPD | 16 | 68.8 vs. 100 | MRC > grade 3 | Dihydro-codeine | 60 mg TID or 30 mg TID | 2 wks |
Parallel Studies | ||
Study | Scores of Breathlessness | Exercise Tolerance |
Verberkt C.A., (2020) [11] mMRC ≥ 2 | Mean NRS, −0.60 (95%CI, −1.55 to 0.35) | Distance in 6MWT,−5.07 m |
Worst NRS, −0.56 (95%CI, −1.41 to 0.28) | (95% CI, −61.38 to 51.20) | |
Improvement of ≥1 NRS, 48% vs. 35% | ||
Verberkt C.A., (2020) [11] mMRC ≥ 3 | Mean NRS, −1.31 (95%CI, −2.80 to 0.17) | Distance in 6MWT, 1.49 m |
Worst NRS, −1.33 (95%CI, −2.50 to −0.16) | (95% CI, −87.47 to 90.46) | |
Currow D., (2020) [12] mMRC ≥ 2 | VAS now, −0.15 (95%CI, −4.59 to 4.29) Average VAS, −2.13 (95%CI, −6.64 to 2.38) Worst VAS, −5.23 (95%CI, −10.77 to 0.31) Dyspnoea (EORTC-QLQ-C15), −1.08 (95%CI, −7.14 to 4.98) | |
Currow D., (2020) [12] mMRC ≥ 3 | Worst VAS, −7.81 (95%CI, −14.65 to −0.97) No significant differences in other endpoints | |
Kronborg-White S., (2020) [29] | Reduction in VAS, −11 ± 14 vs. −3.5 ± 20 | Change of distance in 6MWT 10 ± 37 vs. 5 ± 25 Change of Borg scale 0.4 ± 2.5 vs.-0.03 ± 2.1 |
Ferreira D.H., (2019) [21] | VAS now, 5.33 (95%CI, −1.22 to 11.88) Average VAS, 2.93 (95%CI, −3.08 to 8.95) Worst VAS, −2.51 (95%CI, −10.33 to 5.31) >15% decrease in breathlessness now, 45.6% vs. 50.7% Dyspnoea (EORTC-QLQ-C15), −0.46 (95%CI, −8.60 to 7.67) | |
Crossover Studies | ||
Study | Scores of Breathlessness | Exercise Tolerance |
Abernethy A.P., (2003) [25] | VAS in morning −6.6 (95%CI, −1.6 to −11.6) VAS in evening −9.5 (95% CI −3.0 to −16.1) | |
Poole P.J., (1998) [30] | Daytime breathlessness score score (0–5) 2.22 vs. 2.26 Nighttime breathlessness score score (0–4) 0.81 vs. 0.85 (Higher scores mean worse) | Distance in 6MWT (m), −35.1 ± 70.7 vs. + 21.6 ± 62.1, p = 0.04 No difference in 6MWT breathlessness scores |
Eiser N., (1991) [31] | Daily VAS, No difference (5mg vs. 2.5 mg vs. placebo) | Distance in 6MWT 226 ± 34 vs. 221 ± 35 vs. 216 ± 40 |
VAS dyspnea score for 6MWT, 70 ± 8 vs. 70 ± 7 vs. 65 ± 7 Time on the treadmill (s), 156 ± 47 vs. 104 ± 19 vs. 165 ± 68 VAS dyspnea score for treadmill, 58 ± 10 vs. 66 ± 6 vs. 65 ± 10 (5 mg vs. 2.5 mg vs. placebo) | ||
Munck L.K., (1990) [32] | No difference in dyspnea at rest using NRS 1–4 without detailed data (Codeine + paracetamol vs. paracetamol) | |
Rice K.L., (1987) [33] | Daily VAS, 57 ± 16 vs. 60 ± 11 Oxygen cost, 53 ± 19 vs. 58 ± 13 (codeine vs. promethazine) | 12 min walk distance, 529 ± 315 vs. 564 ± 296 (codeine vs. promethazine) |
Woodcock A.A., (1982) [18] | oxygen cost diagram (higher is better) 42.6 ± 12.0 vs. 47.6 ± 7.1 vs. 42.5 ± 8.6 (60 mg vs. 30 mg vs. placebo) p < 0.01 between 30 mg and placebo | 6 min walk distance 396 ± 111 vs. 378 ± 114 vs. 368 ± 93 (60 mg vs. 30 mg vs. placebo) |
Parallel Studies | ||||
Study (N) | Criteria of Dyspnea | Drug | Dose | Exercise Tolerance |
Kronborg-White S., (2020) [29] N = 18 vs. 18 | MRC ≥ 3 | IR Morphine | 5 mg | Change of distance in 6MWT, 12 ± 34 vs. 1 ± 34 Change of Borg scale after 6MWT, 0 [0,0] vs. 0 [0,1], p < 0.05 |
Crossover Studies | ||||
Study (N) | Criteria of Dyspnea | Drug | Dose | Exercise Tolerance et al. |
Abdallah S.J., (2017) [34] N = 23 | mMRC ≥ 3 | IR morphine | 0.1 mg/kg BW to a max. 10 mg | Cycle exercise time (min), 8.6 ± 6.5 vs. 6.2 ± 4.4, p < 0.05 Breathlessness Intensity during isotime, 3.0 ± 1.6 vs. 4.2 ± 2.6 (Borg scale), p < 0.05 Breathlessness Unpleasantness during isotime 3.1 ± 1.7 vs. 4.5 ± 2.6 (Borg scale), p < 0.01 |
Light R.W., (1996) [19] N = 7 | Exercise limited by breathlessness | Morphine | 30 mg | Change after the treatment (No statistical comparison) Cycle ergometer workload (W), 0.7 ± 6.1 vs. 1.4 ± 6.9 Borg score at equivalent workload, −0.14 ± 0.09 vs. 0.14 ± 0.69 |
N = 9 | Exercise limited by breathlessness | Morphine | 30 mg | Change after the treatment Cycle ergometer workload (W), 11.1 ± 6.5 vs. 5.7 ± 7.9 (Morphine + promethazine vs. promethazine) |
Eiser N., (1991) [31] N = 8 | No | Diamorp-hine | 7.5 mg | Distance in 6MWT, 272 ± 49 vs. 263 ± 51 VAS dyspnea score for 6MWT, 62 ± 7 vs. 61 ± 7 |
Light R.W., (1989) [35] N = 13 | Exercise limited by breathlessness | Morphine | 0.8 mg/kg BW, once | Borg score at rest 0.29 ± 0.58 vs. 0.13 ± 0.2 Cycle ergometer workload (W) 93.1 ± 34.3 vs. 78.5 ± 32.2, p < 0.001 Exercise duration (min), 7.54 ± 2.09 vs. 6.50 ± 2.05, p < 0.001 Borg score at equivalent workloads, 7.08 ± 2.35 vs. 8.59 ± 2.31, p < 0.001 |
Johnson M.A., (1983) [36] N = 19 | MRC ≥ grade 3 | Dihydro-codeine | 15 mg before Exercise TID at the max. for 1 wk | Daily VAS 46 ± 21 vs. 56 ± 23, p = 0.001, Distance in the treadmill (m), 249 ± 139 vs. 213 ± 127, p < 0.01 VAS of breathlessness at the equal distance, 67 ± 23 vs. 76 ± 19, p < 0.001 |
Woodcock A.A., (1981) [37] N = 12 | MRC ≥ grade 3 | Dihydro-codeine | 1 mg/kg | Distance in treadmill (m) 347 ± 107 vs. 308 ± 90, p < 0.05 VAS of breathlessness at the equal distance, 55.4 ± 19.1 vs. 63.3 ± 20, p < 0.05 |
Non-Randomized Studies | |||||||
Study | Diseases | N | Completion Rate (%) | Criteria of Dyspnea | Drug | Dose | Period |
Rocker G.M., (2013) [38] | COPD | 44 | 73 | MRC 4 or 5 | IR morphine | Titration from 0.5 mg BID | 4–6 mos |
Currow D.C., (2011) [26] | COPD et al. | 83 | 63 | mMRC ≥ 3 | Morphine | Titration from 10 mg to 30 mg at the max. | Weekly titration period |
Allcroft P., (2013) [39] | COPD | 11 | 90.9 | mMRC ≥ 2 | SR morphine and clonazepam | 10 mg | 4 days |
Allen S., (2005) [40] | IPF | 11 | 100 | Dyspnea at rest | Diamorphi-ne | 2.5 mg for BW ≤ 60 kg, 5 mg for BW > 60 kg, SCI | 15 min and 30 min |
Observational Studies | |||||||
Study | Diseases | N | Criteria of Dyspnea | Drug | Period | ||
Smallwood N., (2018) [41] | COPD et al. | 74 | No | Not determined | |||
Vicent L., (2017) [42] | Respiratory diseases or heart failure | 258 | No | Not determined | During hospitalization |
Non-Randomized Studies | ||
Study | Percentage of Improvement | Scores of Breathlessness Quality of life |
Rocker G.M., (2013) [38] | 61%, helpful in the enrolled participants | NRS of dyspnea, −2.0 [−3.0 to 1.0], p = 0.02 CRQ, 0.6 [0.1 to 1.3], p < 0.001 CRQ Dyspnea, 0.6 [0 to 1.4], p = 0.004 McGill Quality of Life Questionnaire 1.0 [0 to 2.0] in the completed patients |
Currow D.C., (2011) [26] | 63%, ≥10% benefit on VAS of breathlessness 51%, ≥15% benefit on VAS of breathlessness in the enrolled patients | VAS, −13.5 ± 18.5 in mMRC = 3 (n = 20) VAS, −5.2 ± 19.9 in mMRC = 4 (n = 63) VAS, −17.1 ± 11.6 in responders (n = 52) |
Allcroft P., (2013) [39] | 50%, >15% reduction on VAS of breathlessness | Median VAS right now (morning) 49.5 (range 6–87) vs. 68.5 (range 31–86) Median VAS right now (evening) 45.4 (range 2–84) vs. 63.5 (range 9–75) |
Allen S., (2005) [40] | 15 min, average VAS 36.0 ± 11.0 vs. 83.0 ± 13.0 p < 0.0001 30 min, average VAS 36.0 ± 12.0 vs. 83.0 ± 13.0 | |
Observational Studies | ||
Study | Outcome | |
Smallwood N., (2018) [41] | 41.9% self-reported as being very compliant with morphine treatment | |
Vicent L., (2017) [42] | The unique independent predictor of a larger decrease in dyspnea was opioid treatment (p = 0.028) |
Study (N) | Criteria of Dyspnea | Drug | Dose | Period | Percentage of Improvement Scores of Breathlessness |
Takeyasu M., (2016) [43] (N = 22) | Before deathdue to AE-IP | Morphine | Median initial 0.4 mg/h CIV (range 0.2–0.8) Maximum 0.8 mg/h CIV (range 0.2–2.9) | Within 24 h | 40.9%, good; 36.4%, moderate; 18.2%, poor. |
Matsuda Y., (2017) [44] (N = 25) | NRS ≥ 3 | Morphine | Median initial, 0.25 mg/h At 2 h, 0.25 mg/h At 4 h, 0.5 mg/h CSI | 2 h and 4 h | NRS at 2 h 5.52 ± 2.43 vs. 7.08 ± 2.33, p = 0.11 NRS at 4 h (N = 21), 5.32 ± 2.58 vs. 7.08 ± 2.33, p = 0.04 |
Bajwah S, (2012) [5] (N = 22) | Before death | Not determined | Documentation of effectiveness 95%, effective; 5% no documentation | ||
Tsukuura H., (2013) [45] (N = 6) | Prognosis of <1 month | Morphine et al. | CIV et al. | modified Borg scale 3.9 ± 3.1 vs. 4.7± 2.1, p = 0.683 | |
Colman R., (2015) [46] (N = 55) | Lung transplant candidates | Titration from morphine 2.5–5 mg oral, or hydromorphone 0.5–1 mg oral | ESAS (N = 38), 39%, improvement in dyspnea Treadmill test (N = 14), Intensity 1.96 METs vs. 1.89 METs Exertion 19.28 kcal vs. 16.97 kcal, p = 0.06 |
Study | Drug | Criteria of Dyspnea | Period | QoL or Other Comprehensive Assessment |
---|---|---|---|---|
Verberkt C.A. (2020) [11] | mMRC ≥ 2 | SR morphine | 4 wks | CAT −2.18 points (95%CI, −4.14 to −0.22) |
mMRC ≥ 3 | SR morphine | 4 wks | CAT −1.17 points (95%CI, −4.17 to 1.84) | |
Currow D., (2020) [12] | mMRC ≥ 2 | SR morphine * | 1 wk | QOL EORTC-QLQ-C15, 0.35 (95%CI, −4.41 to 5.11) Q1, 48.5% vs. 49.3%, Q2, 43.0% vs. 47.3% Daily doses of rescue morphine, −0.56 (95% CI −0.92 to −0.18) |
Kronborg-White S., (2020) [29] | MRC ≥ 3 | IR Morphine | 1 wk | Change of KBILD score 2.9 ± 6.6 vs. 1.6 ± 6.4 |
Ferreira D.H., (2019) [21] | mMRC ≥ 3 | Oxycodone * | 1 wk | QOL EORTC-QLQ-C15, −4.48 (95%CI, −11.69 to 2.73) Q1, 44.9% vs. 51.3%, Q2, 27.3% vs. 50.6%, p = 0.006 Daily doses of rescue morphine, −0.61 (95%CI, −1.02 to −0.20) |
Abdallah S.J., (2017) [34] | mMRC ≥ 3 | IR morphine | 1 day | Preference for morphine over placebo for exercise 75%, Preference for placebo over morphine for exercise 15% |
Abernethy A.P., (2003) [25] | Dyspnea at rest | SR morphine | 4 days | No difference in overall wellbeing Sleep disturbed by breathlessness, 13.2% vs. 31.6%, p = 0.039 |
Poole P.J., (1998) [30] | No | SR morphine | 6 wks | CRQ Total 2.08 ± 16.9 vs. 2.94 ± 12.9, p = 0.95 CRQ Dyspnea 2.50 ± 5.3 vs. 0.44 ± 3.2, p = 0.15 CRQ Mastery −0.36 ± 4.5 vs. 2.51 ± 3.7, p = 0.02 CRQ Fatigue −0.71 ± 4.1 vs. 0.71 ± 2.4, p = 0.34 CRQ Emotional −0.07 ± 6.7 vs. −0.86 ± 7.6, p = 0.73 |
Eiser N., (1991) [31] | No Diamorphine | 2 wks | No significant difference in VAS of wellbeing | |
Johnson M.A., (1983) [36] | MRC ≥ grade 3 | Dihydro-codeine | 1 wk | Pedometer distance (km) for 1 week, 10.9 ± 8.0 vs. 9.3 ± 7.6, p < 0.05 No difference in alternate day treatment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, Y.; Saif-Ur-Rahman, K.M.; Nomura, M.; Ohta, H.; Hirakawa, Y.; Yamanaka, T.; Hirahara, S.; Miura, H. Opioid Prescription Method for Breathlessness Due to Non-Cancer Chronic Respiratory Diseases: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 4907. https://doi.org/10.3390/ijerph19084907
Yamaguchi Y, Saif-Ur-Rahman KM, Nomura M, Ohta H, Hirakawa Y, Yamanaka T, Hirahara S, Miura H. Opioid Prescription Method for Breathlessness Due to Non-Cancer Chronic Respiratory Diseases: A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(8):4907. https://doi.org/10.3390/ijerph19084907
Chicago/Turabian StyleYamaguchi, Yasuhiro, K.M. Saif-Ur-Rahman, Motoko Nomura, Hiromitsu Ohta, Yoshihisa Hirakawa, Takashi Yamanaka, Satoshi Hirahara, and Hisayuki Miura. 2022. "Opioid Prescription Method for Breathlessness Due to Non-Cancer Chronic Respiratory Diseases: A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 8: 4907. https://doi.org/10.3390/ijerph19084907
APA StyleYamaguchi, Y., Saif-Ur-Rahman, K. M., Nomura, M., Ohta, H., Hirakawa, Y., Yamanaka, T., Hirahara, S., & Miura, H. (2022). Opioid Prescription Method for Breathlessness Due to Non-Cancer Chronic Respiratory Diseases: A Systematic Review. International Journal of Environmental Research and Public Health, 19(8), 4907. https://doi.org/10.3390/ijerph19084907