Mass Concentration, Source and Health Risk Assessment of Volatile Organic Compounds in Nine Cities of Northeast China
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Program
2.2. Sampling Analysis
2.3. Ozone Formation Potential (OFP)
2.4. Principal Component Analysis (PCA)
2.5. Health Risk Assessment
3. Results and Discussion
3.1. Characteristics of Ambient VOCs Concentrations
3.1.1. Spatial Characteristics of Ambient VOCs
3.1.2. Seasonal Characteristics of Ambient VOCs of Shenyang and Tianjin
3.1.3. Time Variation of VOCs at Shenyang and Fushun
3.2. Evaluation of OFP
3.3. Source Apportionments of VOCs
3.3.1. VOCs Sources Identification of Nine Cities in the Summer
3.3.2. VOCs Sources Identification at Shenyang and Tianjin in Four Seasons
3.4. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
VOCs | volatile organic compounds |
NRC | Northeast Region, China |
OFP | ozone formation potential |
PCA | principal component analysis model |
TVOCs | total VOCs |
R2 | correlation coefficients |
B/T | benzene to toluene ratio |
BTEX | benzene, toluene, ethylbenzene and xylene |
R | lifetime carcinogenic risk |
HQ | non-carcinogenic risk Hazard quotient value |
HI | hazard index |
References
- Zhang, Y.X.; An, J.L.; Wang, J.X.; Shi, Y.Z.; Liu, J.D.; Liang, J.S. Source An;lysis of Volatile Organic Compounds in the Nanjing Industrial Area and Evaluation of Their Contribution to Ozone. Environ. Sci. 2018, 39, 502–510. (In Chinese) [Google Scholar]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Heard, D.E.; Pilling, M.J. Measurement of OH and HO2 in the troposphere. Chem. Rev. 2003, 103, 5163–5198. [Google Scholar] [CrossRef]
- Berntsen, T.K.; Isaksen, I.S.; Myhre, G.; Fuglestvedt, J.S.; Stordal, F.; Larsen, T.A.; Freckleton, R.S.; Shine, K.P. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. J. Geophys. Res. 1997, 102, 28101–28126. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wu, K.; Lu, Y.; Wang, S.; Qiao, Y.; Zhang, X.; Wang, Y.; Wang, H.; Liu, Z.; Liu, Y.; et al. Origin of regional springtime ozone episodes in the Sichuan Basin, China: Role of synoptic forcing and regional transport. Environ. Pollut. 2021, 278, 116845. [Google Scholar] [CrossRef] [PubMed]
- Calvert, J.G. Hydrocarbon involvement in photochemical smog formation in Los Angeles atmosphere. Environ. Sci. Technol. 1976, 10, 256–262. [Google Scholar] [CrossRef]
- Malecha, K.T.; Nizkorodov, S.A. Photodegradation of secondary organic aerosol particles as a source of small, oxygenated volatile organic compounds. Environ. Sci. Technol. 2016, 50, 9990–9997. [Google Scholar] [CrossRef]
- Tsai, W.T. Toxic Volatile Organic Compounds (VOCs) in the Atmos. Environ.: Regulatory Aspects and Monitoring in Japan and Korea. Environments 2016, 3, 23. [Google Scholar] [CrossRef]
- Du, Z.; Mo, J.; Zhang, Y. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Environ. Int. 2014, 73, 33–45. [Google Scholar] [CrossRef]
- Fukusaki, Y.; Kousa, Y.; Umehara, M.; Ishida, M.; Sato, R.; Otagiri, K.; Hoshi, J.; Nudejima, C.; Takahashi, K.; Nakai, S. Source region identification and source apportionment of volatile organic compounds in the Tokyo Bay coastal area, Japan. Atmos. Environ. 2021, 9, 100103. [Google Scholar] [CrossRef]
- Xu, C.X.; Chen, J.H.; Jiang, T.; Han, L.; Wang, B.; Li, Y.J.; Wang, C.H.; Liu, Z.; Qian, J. Characteristics and Sources of Atmospheric Volatile Organic Compounds Pollution in Summer in Chengdu. Environ. Sci.. 2020, 41, 5316–5324. (In Chinese) [Google Scholar]
- LI, Y.F.; Gao, R.; Xue, L.K.; Wu, Z.H.; Yang, X.; Gao, J.; Ren, L.H.; Li, H.; Ren, Y.Q.; Li, G.; et al. Ambient volatile organic compounds at Wudang Mountain in Central China: Characteristics, sources and implications to ozone formation. Atmos. Res. 2020, 250, 105359. [Google Scholar] [CrossRef]
- Bailey, E.M.; Meagher, J.F. Modeling the Effect of Ethanol/Gasoline Blend Usage on Ozone Formation in Urban Areas. J. Air Waste Manag. Assoc. 1986, 36, 808–812. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, Y.; Dai, W.; He, K.; Xu, H.; Cao, J. Profiles and source apportionment of nonmethane volatile organic compounds in winter and summer in Xi’an, China, based on the Hybrid Environmental Receptor Model. Adv. Atmos. Sci. 2021, 38, 116–131. [Google Scholar] [CrossRef]
- Tsai, S.M.; Zhang, J.J.; Smith, K.R.; Ma, Y.; Rasmussen, R.A.; Khalil, M.A. Characterization of non-methane hydrocarbons emitted from various cookstoves used in China. Environ. Sci. Technol. 2003, 37, 2869–2877. [Google Scholar] [CrossRef]
- Han, Y.; Huang, X.; Wang, C.; Zhu, B.; He, L. Characterizing oxygenated volatile organic compounds and their sources in rural atmospheres in China. J. Environ. Sci. 2019, 81, 148–155. [Google Scholar] [CrossRef]
- Li, L.Y.; Chen, Y.; Zeng, L.M.; Shao, M.; Xie, S.D.; Chen, W.T.; Lu, S.H.; Wu, Y.S.; Cao, W. Biomass burning contribution to ambient volatile organic compounds (VOCs) in the Chengdu–Chongqing Region (CCR), China. Atmos. Environ. 2014, 9, 403–410. [Google Scholar] [CrossRef]
- Wang, D.; Nie, L.; Shao, X.; Yu, H. Exposure profile of volatile organic compounds receptor associated with paints consumption. Sci. Total Environ. 2017, 603–604, 57–65. [Google Scholar] [CrossRef]
- Yuan, B.; Shao, M.; Lu, S.H.; Wang, B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Jia, C.H.; Mao, X.X.; Huang, T.; Liang, X.X.; Wang, Y.N.; Shen, Y.J.; Jiang, W.Y.; Wang, H.Q.; Bai, Z.L.; Ma, M.Q.; et al. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China. Atmos. Res. 2016, 169, 225–236. [Google Scholar] [CrossRef]
- Chen, M.H.; Yuan, C.S.; Wang, L.C. Source Identification of VOCs in a Petrochemical Complex by Applying Open-Path Fourier Transform Infrared Spectrometry. Aerosol Air Qual. Res. 2014, 14, 1630–1638. [Google Scholar] [CrossRef] [Green Version]
- Hoyt, D.; Raun, L.H. Measured and estimated benzene and volatile organic carbon (VOC) emissions at a major U.S. refinery/chemical plant: Comparison and prioritization. J. Air Waste Manag. Assoc. 2015, 65, 1020–1031. [Google Scholar] [CrossRef] [PubMed]
- Carletti, S.; Di, N.G. Evaluation of fugitive emissions of hydrocarbons from a refinery during a significant pollution episode. In Proceedings of the International Conference “Environmental Engineering”, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar]
- CSP. Liaoning Statistical Yearbook; China Statistics Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- CSP. Jilin Statistical Yearbook; China Statistics Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- CSP. Heilongjiang Statistical Yearbook; China Statistics Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- CSP. Tianjin Statistical Yearbook; China Statistics Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Wang, N.; Li, N.; Liu, Z.Y.; Evans, E. Investigation of chemical reactivity and active components of ambient VOCs in Jinan, China. Air Qual. Atmos. Health 2016, 9, 785–793. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5355. [Google Scholar] [CrossRef]
- Buhamra, S.S.; Bouhamra, W.S.; Elkilani, A.S. Assessment of Air Quality in Ninety-Nine Residences of Kuwait. Environ. Sci. Technol. Lett. 1998, 19, 357–367. [Google Scholar] [CrossRef]
- Li, L.; Li, H.; Wang, X.Z.; Zhang, X.M.; Wen, C. Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China. Environ. Sci. 2013, 34, 4558–4564. (In Chinese) [Google Scholar]
- Liu, Y.; Shao, M.; Lu, S.H.; Chang, C.C.; Wang, J.L.; Chen, G. Volatile Organic Compound (VOC) measurements in the Pearl River Delta (PRD) region, China. Atmos. Chem. Phys. 2008, 7, 1531–1545. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.J.; Geng, F.H.; Tie, X.X.; Yu, Q.; Peng, L.; Zhou, G.Q. Characteristics of ambient volatile organic compounds (VOCs) measured in Shanghai, China. Sensors 2010, 10, 7843–7862. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.C.; Tsai, J.H. VOC concentration characteristics in Southern Taiwan. Chemosphere 2003, 50, 545–556. [Google Scholar] [CrossRef]
- Saito, S. Characteristics of ambient C2–C11 non-methane hydrocarbons in metropolitan Nagoya, Japan. Atmos. Environ. 2009, 43, 4384–4395. [Google Scholar] [CrossRef]
- Du, H.B.; Wang, N.; Ren, W.H.; Su, Z.Z.; Hu, J.L.; Yu, X.N. Pollution Characteristics and Reactivity of Volatile Organic Compounds in Shenyang. Environ. Sci. 2021, 42, 5656–5662. (In Chinese) [Google Scholar]
- Gao, J.Y.; Xiao, Z.M.; Xu, H.; Li, L.W.; Li, P.; Tang, M.; Yang, N.; Li, Y.; Bi, W.K.; Chen, K. Characterization and Source Apportionment of Atmospheric VOCs in Tianjin in 2019. Environ. Sci. 2021, 42, 55–64. (In Chinese) [Google Scholar]
- Eric, G.; Reinhold, A.R.; Daniel, G. Toxic Air Contaminants in Porto Alegre, Brazil. Environ. Sci. Technol. 1999, 33, 1970–1978. [Google Scholar]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.Y.M.D. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station. Atmos. Environ. 2004, 38, 1247–1257. [Google Scholar] [CrossRef]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Blake, D.R.; Rowland, F.S. Urban leakage of liquefied petroleum gas and its impact on Mexico city air quality. Science 1995, 269, 953–956. [Google Scholar] [CrossRef] [Green Version]
- Sharma, U.K.; Kajii, Y.; Akimoto, H. Characterization of NMHCs in downtown urban center Kathmandu and rural site Nagarkot in Nepal. Atmos. Environ. 2000, 34, 3297–3307. [Google Scholar] [CrossRef]
- Brocco, D.; Fratarcangeli, R.; Lepore, L.; Petricca, M.; Ventrone, I. Determination of aromatic hydrocarbons in urban air of Rome. Atmos. Environ. 1997, 31, 557–566. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Y.; Liu, J.; Mellouki, A. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. J. Environ. Sci. 2012, 24, 124–130. [Google Scholar] [CrossRef]
City | Location | Urban Area | Population | Main Industry | Sampling Size | DescriptionYear | References |
---|---|---|---|---|---|---|---|
Shenyang | 41°11′–43°02′ N, 122°25′–123°48′ E | 3945 km2 | 7.1 million | Equipment manufacturing, metal smelting, medical | 145 | 2008 | [24] |
Fushun | 41°41′–42°38′ N, 123°39′–125°28′ E | 675 km2 | 2.2 million | Coal mining, petrochemical, fine chemicals, aluminum | 45 | 2008 | [24] |
Anshan | 40°27′–41°34′ N, 122°10′–123°13′ E | 624.3 km2 | 3.5 million | Iron and steel, minerals processing | 7 | 2008 | [24] |
Huludao | 39°59′–41°12′ N, 119°12′–121°02′ E | 2303 km2 | 2.8 million | Petrochemical, equipment manufacturing, zinc | 7 | 2008 | [24] |
Changchun | 43°05′–45°15′ N, 124°18′–127°02′ E | 4906 km2 | 3.6 million | Automobile, medical, food, photoelectronic | 7 | 2008 | [25] |
Jilin | 42°31′–44°40′ N, 125°40′–127°56′ E | 3636 km2 | 4.3 million | Petrochemical, metallurgy, automobile, carbon production | 7 | 2008 | [25] |
Harbin | 44°04′–46°40′ N, 125°42′–130°10′ E | 7086 km2 | 9.5 million | Equipment manufacturing, medical, food, petrochemical | 7 | 2008 | [26] |
Daqing | 45°46′–46°55′ N, 124°19′–125°12′ E | 5107 km2 | 2.8 million | Oil extraction, petrochemical | 7 | 2008 | [26] |
Tianjin | 38°33′–40°15′ N, 116°42′–118°04′ E | 11,946 km2 | 11.7 million | Equipment manufacturing, petrochemical | 108 | 2008 | [27] |
City | Concentration | Time | References | |
---|---|---|---|---|
Ave | S.d | |||
SY | 75.20 | 40.09 | April 2008 to July 2009 | this study |
Fushun | 135.43 | 46.01 | July 2009 | |
Changchun | 345.01 | 170.52 | July 2009 | |
Jilin | 221.63 | 34.32 | July 2009 | |
Harbin | 231.14 | 46.69 | July 2009 | |
Daqing | 519.68 | 309.88 | July 2009 | |
Huludao | 195.92 | 103.26 | July 2009 | |
Anshan | 109.68 | 23.27 | July 2009 | |
Tianjin | 104.31 | 46.04 | April 2008 to July 2009 | |
Guangzhou | 176.12 | - | October to November 2004 | [32] |
Xinken | 132.20 | - | October to November 2004 | [32] |
Shanghai | 150.07 | - | July 2006 to February 2010 | [33] |
Taiwan | 547.4 | - | December 1998 to May 1999 | [34] |
Nagoya (Japan) | 79.07 | - | December 2003 to November 2004 | [35] |
Shenyang | 65.33 | - | All of 2019 | [36] |
Tianjin | 48.90 | - | All of 2019 | [37] |
Harbin | OFP | Daqing | OFP | Huludao | OFP |
---|---|---|---|---|---|
Toluene | 53.09 | Toluene | 51.49 | Propene | 44.94 |
Propene | 30.12 | n-Hexane | 36.56 | 1-Butylene | 37.97 |
Ethene | 29.95 | 1-Hexene | 32.28 | Trans-2-butene | 20.94 |
1-Butylene | 25.73 | Propane | 28.46 | Ethene | 15.72 |
Isoprene | 25.11 | n-Pentane | 22.94 | Propane | 15.22 |
Trans-2-butene | 17.17 | 1-Butylene | 19.92 | 1-Pentene | 14.37 |
n-Butane | 16.95 | Isopentane | 18.62 | Cis-2-butene | 12.93 |
n-Hexane | 12.84 | Ethene | 16.47 | Toluene | 12.10 |
Cis-2-butene | 12.43 | Isobutane | 15.32 | 1-Hexene | 9.68 |
p,m-Xylene | 11.87 | Isoprene | 14.31 | Trans-2-pentene | 9.13 |
Accounting for TVOCs | 0.653 | Accounting for TVOCs | 0.601 | Accounting for TVOCs | 0.735 |
TVOCs | 360.00 | TVOCs | 426.90 | TVOCs | 262.60 |
Changchun | OFP | Shenyang | OFP | Jilin | OFP |
Toluene | 98.27 | 1,3-Butadiene | 20.01 | Toluene | 51.42 |
1-Hexene | 68.98 | Toluene | 14.17 | 1-Butylene | 34.20 |
1-Butylene | 50.73 | 1-Hexene | 8.61 | Propene | 31.86 |
Trans-2-butene | 43.70 | Ethene | 7.72 | Ethene | 31.55 |
n-Hexane | 35.28 | p,m-Xylene | 6.08 | n-Butane | 22.57 |
n-Butane | 33.41 | 1-Butylene | 5.98 | Trans-2-butene | 17.72 |
Cis-2-butene | 27.87 | Propene | 4.52 | Isoprene | 16.98 |
Ethene | 20.98 | 1-Pentene | 4.10 | n-Hexane | 13.58 |
Propene | 17.30 | Trans-2-butene | 3.69 | Cis-2-butene | 12.84 |
p,m-Xylene | 14.65 | o-Xylene | 3.67 | p,m-Xylene | 9.52 |
Accounting for TVOCs | 0.765 | Accounting for TVOCs | 0.646 | Accounting for TVOCs | 0.700 |
TVOCs | 537.30 | TVOCs | 121.60 | TVOCs | 346.20 |
Anshan | OFP | Fushun | OFP | Tianjin | OFP |
Toluene | 28.90 | Ethene | 24.05 | Toluene | 21.11 |
Ethene | 22.9 | Propene | 22.08 | Ethene | 8.90 |
Propene | 14.11 | Isoprene | 19.14 | p,m-Xylene | 7.90 |
1,2,3-Trimethylbenzene | 11.52 | 1-Hexene | 18.31 | Propene | 7.35 |
p,m-Xylene | 8.23 | Toluene | 18.26 | 1-Butylene | 5.03 |
n-Hexane | 6.88 | Isopentane | 14.96 | o-xylene | 4.93 |
1-Butylene | 6.86 | 1-Butylene | 12.63 | 1,2,3-Trimethylbenzene | 3.67 |
m-Ethyltoluene | 6.49 | Trans-2-butene | 8.37 | Isopentane | 3.61 |
4-Ethyltoluene | 5.60 | Cis-2-butene | 6.83 | 1,2,4-Trimethylbenzene | 3.52 |
o-Xylene | 5.44 | n-Hexane | 5.92 | Ethylbenzene | 3.35 |
Accounting for TVOCs | 0.666 | Accounting for TVOCs | 0.678 | Accounting for TVOCs | 0.621 |
TVOCs | 175.70 | TVOCs | 222.10 | TVOCs | 111.70 |
City | R | HQ | HI | References | ||||
---|---|---|---|---|---|---|---|---|
Benzene | Toluene | Ethyl-Benzene | p,m-Xylene | o-Xylene | ||||
Shenyang | 3.82 × 10−5 | 1.63 × 10−1 | 2.15 × 10−3 | 2.67 × 10−3 | 1.94 × 10−2 | 1.30 × 10−2 | 2.00 × 10−1 | this study |
Fushun | 6.57 × 10−5 | 2.81 × 10−1 | 5.12 × 10−3 | 3.76 × 10−3 | 2.77 × 10−2 | 2.12 × 10−2 | 3.39 × 10−1 | |
Changchun | 4.18 × 10−5 | 1.78 × 10−1 | 1.48 × 10−3 | 1.99 × 10−3 | 1.58 × 10−2 | 1.00 × 10−2 | 2.08 × 10−1 | |
Jilin | 1.28 × 10−4 | 5.46 × 10−1 | 1.68 × 10−3 | 1.43 × 10−3 | 1.17 × 10−2 | 1.14 × 10−2 | 5.72 × 10−1 | |
Harbin | 6.81 × 10−5 | 2.91 × 10−1 | 1.06 × 10−2 | 9.53 × 10−3 | 4.23 × 10−2 | 2.82 × 10−2 | 3.82 × 10−1 | |
Daqing | 4.26 × 10−5 | 1.82 × 10−1 | 5.55 × 10−3 | 4.19 × 10−3 | 2.74 × 10−2 | 2.08 × 10−2 | 2.40 × 10−1 | |
Huludao | 4.98 × 10−5 | 2.13 × 10−1 | 1.31 × 10−3 | 2.38 × 10−3 | 1.26 × 10−2 | 1.09 × 10−2 | 2.40 × 10−1 | |
Anshan | 5.01 × 10−5 | 2.14 × 10−1 | 3.12 × 10−3 | 2.73 × 10−3 | 2.37 × 10−2 | 1.56 × 10−2 | 2.59 × 10−1 | |
Tianjin | 4.25 × 10−5 | 1.82 × 10−1 | 3.16 × 10−3 | 3.71 × 10−3 | 3.09 × 10−2 | 1.91 × 10−2 | 2.39 × 10−1 | |
Guangzhou | 5.34 × 10−5 | 2.28 × 10−1 | 3.95 × 10−1 | 4.26 × 10−3 | 3.06 × 10−2 | 2.42 × 10−2 | 2.91 × 10−1 | [31] |
Beijing | 4.19 × 10−5 | 1.57 × 10−1 | 2.39 × 10−1 | 3.29 × 10−3 | 8.06 × 10−3 | 3.53 × 10−3 | 1.96 × 10−1 | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Bao, Y.; Ren, L.; Chen, Y.; Bai, Z.; Han, X. Mass Concentration, Source and Health Risk Assessment of Volatile Organic Compounds in Nine Cities of Northeast China. Int. J. Environ. Res. Public Health 2022, 19, 4915. https://doi.org/10.3390/ijerph19084915
Shi J, Bao Y, Ren L, Chen Y, Bai Z, Han X. Mass Concentration, Source and Health Risk Assessment of Volatile Organic Compounds in Nine Cities of Northeast China. International Journal of Environmental Research and Public Health. 2022; 19(8):4915. https://doi.org/10.3390/ijerph19084915
Chicago/Turabian StyleShi, Jianwu, Yuzhai Bao, Liang Ren, Yuanqi Chen, Zhipeng Bai, and Xinyu Han. 2022. "Mass Concentration, Source and Health Risk Assessment of Volatile Organic Compounds in Nine Cities of Northeast China" International Journal of Environmental Research and Public Health 19, no. 8: 4915. https://doi.org/10.3390/ijerph19084915
APA StyleShi, J., Bao, Y., Ren, L., Chen, Y., Bai, Z., & Han, X. (2022). Mass Concentration, Source and Health Risk Assessment of Volatile Organic Compounds in Nine Cities of Northeast China. International Journal of Environmental Research and Public Health, 19(8), 4915. https://doi.org/10.3390/ijerph19084915