Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review and Contribution
2. Research Design
2.1. Hypothesis
2.2. Model
2.3. Variables
3. Spatio-Temporal Evolution of Digital Economy and Environmental Pollution
3.1. Temporal Evolution
3.2. Spatial Evolution
3.2.1. Global Spatial Evolution
3.2.2. Regional Spatial Evolution
4. Spatial Interaction Spillover Effects of the Digital Economy and the Environmental Pollution
4.1. Parameter Estimation Results
4.2. Results Analysis
4.2.1. General Interaction Effect between Digital Economy and Environmental Pollution
4.2.2. Spatial Spillover Effect between Digital Economy and Environmental Pollution
4.2.3. Spatial Interaction Effect between Digital Economy and Environmental Pollution
4.3. Robustness Test
5. Additional Analysis
6. Discussions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Z.-N.; Chen, H.; Hao, Y.; Wang, J.; Song, X.; Mok, T.M. The dynamic relationship between environmental pollution, economic development and public health: Evidence from China. J. Clean. Prod. 2017, 166, 134–147. [Google Scholar] [CrossRef]
- Liang, W.; Yang, M. Urbanization, economic growth and environmental pollution: Evidence from China. Sustain. Comput. Inform. Syst. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Liao, G.; Drakeford, B.M. An analysis of financial support, technological progress and energy efficiency:evidence from China. Green Financ. 2019, 1, 174–187. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, S.; Wang, N. Does financial agglomeration enhance regional green economy development? Evidence from China. Green Financ. 2020, 2, 173–196. [Google Scholar] [CrossRef]
- Hao, Y.; Zheng, S.; Zhao, M.; Wu, H.; Guo, Y.; Li, Y. Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—New evidence using the dynamic threshold panel model. Energy Rep. 2020, 6, 28–39. [Google Scholar] [CrossRef]
- Guan, C.; Weng, Y.; Zhao, J.; Lin, Y.; Zhang, W.; Tu, Q. Examining China’s sustainable development based on genuine progress indicator. Sustain. Prod. Consum. 2021, 28, 1635–1644. [Google Scholar] [CrossRef]
- Li, Z.; Ao, Z.; Mo, B. Revisiting the Valuable Roles of Global Financial Assets for International Stock Markets: Quantile Coherence and Causality-in-Quantiles Approaches. Mathematics 2021, 9, 1750. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Dong, H. What are bitcoin market reactions to its-related events? Int. Rev. Econ. Financ. 2021, 73, 1–10. [Google Scholar] [CrossRef]
- Li, Z.; Dong, H.; Floros, C.; Charemis, A.; Failler, P. Re-examining Bitcoin Volatility: A CAViaR-based Approach. Emerg. Mark. Finance Trade 2021, 58, 1320–1338. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Failler, P. Dynamic Correlation between Crude Oil Price and Investor Sentiment in China: Heterogeneous and Asymmetric Effect. Energies 2022, 15, 687. [Google Scholar] [CrossRef]
- Kostoska, O.; Kocarev, L. A Novel ICT Framework for Sustainable Development Goals. Sustainability 2019, 11, 1961. [Google Scholar] [CrossRef] [Green Version]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Guo, S.; Huang, H.; Liu, W.; Xiang, Y. Information and Communications Technologies for Sustainable Development Goals: State-of-the-Art, Needs and Perspectives. IEEE Commun. Surv. Tutor. 2018, 20, 2389–2406. [Google Scholar] [CrossRef] [Green Version]
- Ahi, K.; Laidroo, L. Banking market competition in Europe-financial stability or fragility enhancing? Quant. Financ. Econ. 2019, 3, 257–285. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Wei, J. Do financial inclusion, stock market development attract foreign capital flows in developing economy: A panel data investigation. Quant. Financ. Econ. 2019, 3, 88–108. [Google Scholar] [CrossRef]
- Tripathy, N. Does measure of financial development matter for economic growth in India? Quant. Financ. Econ. 2019, 3, 508–525. [Google Scholar] [CrossRef]
- Del Río Castro, G.; Fernández, M.C.G.; Colsa, U. Unleashing the convergence amid digitalization and sustainability towards pursuing the Sustainable Development Goals (SDGs): A holistic review. J. Clean. Prod. 2021, 280, 122204. [Google Scholar] [CrossRef]
- Gouvea, R.; Kapelianis, D.; Kassicieh, S. Assessing the nexus of sustainability and information & communications technology. Technol. Forecast. Soc. Change 2018, 130, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockstroem, J. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Seele, P.; Lock, I. The game-changing potential of digitalization for sustainability: Possibilities, perils, and pathways. Sustain. Sci. 2017, 12, 183–185. [Google Scholar] [CrossRef] [Green Version]
- França, A.; Neto, J.A.; Gonçalves, R.; Almeida, C. Proposing the use of blockchain to improve the solid waste management in small municipalities. J. Clean. Prod. 2019, 244, 118529. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Lo, I.M.C.; Ma, J.; Tse, K.T.; Cheng, J.C.; Chan, C.-M. Simulation optimisation towards energy efficient green buildings: Current status and future trends. J. Clean. Prod. 2020, 254, 120012. [Google Scholar] [CrossRef]
- Hao, J.L.; Cheng, B.; Lu, W.; Xu, J.; Wang, J.; Bu, W.; Guo, Z. Carbon emission reduction in prefabrication construction during materialization stage: A BIM-based life-cycle assessment approach. Sci. Total Environ. 2020, 723, 137870. [Google Scholar] [CrossRef]
- Rajala, R.; Hakanen, E.; Mattila, J.; Seppala, T.; Westerlund, M. How Do Intelligent Goods Shape Closed-Loop Systems? Calif. Manag. Rev. 2018, 60, 20–44. [Google Scholar] [CrossRef] [Green Version]
- Dumont, B.; Groot, J.C.J.; Tichit, M. Review: Make ruminants green again—How can sustainable intensification and agroecology converge for a better future? Animal 2018, 12, S210–S219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenken, K.; Schor, J. Putting the sharing economy into perspective. Environ. Innov. Soc. Transit. 2017, 23, 3–10. [Google Scholar] [CrossRef]
- Cervero, R.; Golub, A.; Nee, B. City CarShare: Longer-term travel demand and car ownership impacts. Transp. Res. Rec. 2007, 9, 70–80. [Google Scholar] [CrossRef]
- Firnkorn, J.; Mueller, M. Free-floating electric carsharing-fleets in smart cities: The dawning of a post-private car era in urban environments? Environ. Sci. Policy 2015, 45, 30–40. [Google Scholar] [CrossRef]
- Cramer, J.; Krueger, A.B. Disruptive Change in the Taxi Business: The Case of Uber. Am. Econ. Rev. 2016, 106, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Maddison, D. Environmental Kuznets curves: A spatial econometric approach. J. Environ. Econ. Manag. 2006, 51, 218–230. [Google Scholar] [CrossRef]
- Zhong, K. Does the digital finance revolution validate the Environmental Kuznets Curve? Empirical findings from China. PLoS ONE 2022, 17, e0257498. [Google Scholar] [CrossRef] [PubMed]
- DE Bruyn, S.M. Explaining the environmental Kuznets curve: Structural change and international agreements in reducing sulphur emissions. Environ. Dev. Econ. 1997, 2, 485–503. [Google Scholar] [CrossRef] [Green Version]
- Shuai, C.; Chen, X.; Wu, Y.; Zhang, Y.; Tan, Y. A three-step strategy for decoupling economic growth from carbon emission: Empirical evidences from 133 countries. Sci. Total Environ. 2019, 646, 524–543. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Sun, J.; Zhang, M.; Su, B. Using the Tapio-Z decoupling model to evaluate the decoupling status of China’s CO2 emissions at provincial level and its dynamic trend. Struct. Change Econ. Dyn. 2020, 52, 120–129. [Google Scholar] [CrossRef]
- Wu, Y.; Tam, V.W.Y.; Shuai, C.; Shen, L.; Zhang, Y.; Liao, S. Decoupling China’s economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). Sci. Total Environ. 2019, 656, 576–588. [Google Scholar] [CrossRef]
- Martin, C.J.; Evans, J.; Karvonen, A. Smart and sustainable? Five tensions in the visions and practices of the smart-sustainable city in Europe and North America. Technol. Forecast. Soc. Change 2018, 133, 269–278. [Google Scholar] [CrossRef]
- Jin, S.T.; Kong, H.; Wu, R.; Sui, D.Z. Ridesourcing, the sharing economy, and the future of cities. Cities 2018, 76, 96–104. [Google Scholar] [CrossRef]
- Akande, A.; Cabral, P.; Casteleyn, S. Assessing the Gap between Technology and the Environmental Sustainability of European Cities. Inf. Syst. Front. 2019, 21, 581–604. [Google Scholar] [CrossRef] [Green Version]
- Kuntsman, A.; Rattle, I. Towards a Paradigmatic Shift in Sustainability Studies: A Systematic Review of Peer Reviewed Literature and Future Agenda Setting to Consider Environmental (Un)sustainability of Digital Communication. Environ. Commun.—J. Nat. Cult. 2019, 13, 567–581. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, Y. Environmental policy effects: An R&D-based economic growth model with endogenous labour supply. J. Econ. Policy Reform 2021, 24, 236–252. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.; Lai, C.C. Abatement R&D, market imperfections, and environmental policy in an endogenous growth model. J. Econ. Dyn. Control. 2014, 41, 20–37. [Google Scholar] [CrossRef]
- Hamaguchi, Y. Polluting firms’ location choices and pollution havens in an R&D-based growth model for an international emissions trading market. J. Int. Trade Econ. Dev. 2021, 30, 625–642. [Google Scholar] [CrossRef]
- Nakada, M. Does Environmental Policy Necessarily Discourage Growth? J. Econ. 2004, 81, 249–275. [Google Scholar] [CrossRef]
- Grimaud, A.; Tournemaine, F. Corrigendum to “Why can an environmental policy tax promote growth through the channel of education?”. Ecol. Econ. 2007, 62, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Grimaud, A. Pollution Permits and Sustainable Growth in a Schumpeterian Model. J. Environ. Econ. Manag. 1999, 38, 249–266. [Google Scholar] [CrossRef]
- Liu, C.; Xin, L.; Li, J. Environmental regulation and manufacturing carbon emissions in China: A new perspective on local government competition. Environ. Sci. Pollut. Res. 2022, 41. [Google Scholar] [CrossRef]
- Wang, C.a.; Liu, X.; Xi, Q.; Zhang, Y. The Impact of Emissions Trading Program on the Labor Demand of Enterprises: Evidence From China. Front. Environ. Sci. 2022, 10, 872248. [Google Scholar] [CrossRef]
- Xin, L.; Sun, H.; Xia, X.; Wang, H.; Xiao, H.; Yan, X. How does renewable energy technology innovation affect manufacturing carbon intensity in China? Environ. Sci. Pollut. Res. 2022, 1–18. [Google Scholar] [CrossRef]
- Gan, T.; Yang, H.; Liang, W. How do urban haze pollution and economic development affect each other? Empirical evidence from 287 Chinese cities during 2000–2016. Sustain. Cities Soc. 2020, 65, 102642. [Google Scholar] [CrossRef]
- Zellner, A.; Theil, H. Three-Stage Least Squares: Simultaneous Estimation of Simultaneous Equations. Econometrica 1962, 30, 54. [Google Scholar] [CrossRef]
- Gebremariam, G.H.; Gebremedhin, T.G.; Schaeffer, P.V. Analysis of county employment and income growth in Appalachia: A spatial simultaneous-equations approach. Empir. Econ. 2010, 38, 23–45. [Google Scholar] [CrossRef]
- Long, R.; Gan, X.; Chen, H.; Wang, J.; Li, Q. Spatial econometric analysis of foreign direct investment and carbon productivity in China: Two-tier moderating roles of industrialization development. Resour. Conserv. Recycl. 2020, 155, 104677. [Google Scholar] [CrossRef]
- Hayes, A. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Li, Z. Spatio-Temporal Evolution Characteristics and Spatial Interaction Spillover Effects of New-Urbanization and Green Land Utilization Efficiency. Land 2021, 10, 1105. [Google Scholar] [CrossRef]
- Su, Y.; Li, Z.; Yang, C. Spatial Interaction Spillover Effects between Digital Financial Technology and Urban Ecological Efficiency in China: An Empirical Study Based on Spatial Simultaneous Equations. Int. J. Environ. Res. Public Health 2021, 18, 8535. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, D.; Yang, C.; Tan, Y. The impact and mechanism of fintech on green total factor productivity. Green Financ. 2021, 3, 198–221. [Google Scholar] [CrossRef]
- Yang, C.; Li, T.; Albitar, K. Does Energy Efficiency Affect Ambient PM2.5? The Moderating Role of Energy Investment. Front. Environ. Sci. 2021, 9, 707751. [Google Scholar] [CrossRef]
- Yang, X.; Wang, W.; Wu, H.; Wang, J.; Ran, Q.; Ren, S. The impact of the new energy demonstration city policy on the green total factor productivity of resource-based cities: Empirical evidence from a quasi-natural experiment in China. J. Environ. Plan. Manag. 2021, 1–34. [Google Scholar] [CrossRef]
- Zhao, S.; Cao, Y.; Feng, C.; Guo, K.; Zhang, J. How do heterogeneous R&D investments affect China’s green productivity: Revisiting the Porter hypothesis. Sci. Total Environ. 2022, 825, 154090. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Liao, G. Research on the Impact of Green Technology Innovation on Energy Total Factor Productivity, Based on Provincial Data of China. Front. Environ. Sci. 2021, 9, 710931. [Google Scholar] [CrossRef]
- Chen, Z.; Kahn, M.E.; Liu, Y.; Wang, Z. The consequences of spatially differentiated water pollution regulation in China. J. Environ. Econ. Manag. 2018, 88, 468–485. [Google Scholar] [CrossRef]
- Li, F.; Yang, C.; Li, Z.; Failler, P. Does Geopolitics Have an Impact on Energy Trade? Empirical Research on Emerging Countries. Sustainability 2021, 13, 5199. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Liao, G. Business cycles and energy intensity. Evidence from emerging economies. Borsa Istanb. Rev. 2021. [Google Scholar] [CrossRef]
- Li, Z.; Zou, F.; Mo, B. Does mandatory CSR disclosure affect enterprise total factor productivity? Econ. Res.—Ekon. Istraz. 2021. [Google Scholar] [CrossRef]
- Li, Z.; Zou, F.; Tan, Y.; Zhu, J. Does Financial Excess Support Land Urbanization-An Empirical Study of Cities in China. Land 2021, 10, 635. [Google Scholar] [CrossRef]
- Botev, Z.I.; Grotowski, J.F.; Kroese, D.P. Kernel Density Estimation via Diffusion. Ann. Stat. 2010, 38, 2916–2957. [Google Scholar] [CrossRef] [Green Version]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Li, H.; Calder, C.A.; Cressie, N. Beyond Moran’s I: Testing for spatial dependence based on the spatial autoregressive model. Geogr. Anal. 2007, 39, 357–375. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Cao, J.; Ren, S.; Ran, Q.; Wu, H. The spatial spillover effect of urban sprawl and fiscal decentralization on air pollution: Evidence from 269 cities in China. Empir. Econ. 2021, 1–29. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, L.; Tarbert, H.; Yan, Z. Analysis on Spatio-Temporal Characteristics and Influencing Factors of Industrial Green Innovation Efficiency-From the Perspective of Innovation Value Chain. Sustainability 2022, 14, 342. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Huang, W.; Liu, S.; Yang, B.; Zheng, W. Spatiotemporal Analysis of Haze in Beijing Based on the Multi-Convolution Model. Atmosphere 2021, 12, 1408. [Google Scholar] [CrossRef]
Primary Indicator | Secondary Indicator | Weight |
---|---|---|
Digital finance (0.3169) | Digital finance index | 0.3169 |
Digital industry (0.5818) | Employees in digital industry | 0.3508 |
Total Telecommunication Services | 0.2310 | |
Digital infrastructure (0.1013) | Internet penetration | 0.0367 |
Mobile phone penetration | 0.0646 |
Variable | Abbr. | Unit | Items | Summary | Source |
---|---|---|---|---|---|
Digital economy | d-eco | - | Mean Std | 41.925 10.724 | Entropy weight method |
Environmental pollution | ep | - | Mean Std | 6.027 6.854 | Statistical yearbook |
Ecological efficiency | e-eff | - | Mean Std | 1.528 0.516 | Data Envelopment Analysis |
Innovation and entrepreneurship index | inn | - | Mean Std | 52.588 28.465 | Center for Enterprise Research |
Number of scientific researchers | rd | - | Mean Std | 42.963 13.051 | Statistical yearbook |
Environmental regulation index | er | - | Mean Std | 6.933 2.742 | Textual analysis |
Economic Development Level | pgdp | ln(RMB/person) | Mean Std | 10.498 0.644 | Statistical yearbook |
Urbanization | urb | ratio | Mean Std | 0.357 0.238 | Statistical yearbook |
Industrial Structure | ind | ratio | Mean Std | 0.872 0.081 | Statistical yearbook |
Openness | ope | ratio | Mean Std | 0.027 0.096 | Statistical yearbook |
Marketization | mar | ratio | Mean Std | 0.128 0.136 | Statistical yearbook |
Population density | den | ln(person/km2) | Mean Std | 5.725 0.917 | Statistical yearbook |
Transportation | tra | ln(RMB/person) | Mean Std | 2.771 0.784 | Statistical yearbook |
Posts | pos | ln(RMB/person) | Mean Std | 4.235 0.796 | Statistical yearbook |
Items | d-eco | ep | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
d-eco | - | - | - | −0.065 *** (−5.70) | −0.305 *** (−22.04) | −0.055 *** (−2.65) |
ep | −0.159 *** (−5.70) | −0.442 *** (−22.04) | −0.045 *** (−2.65) | - | - | - |
pgdp | - | 6.669 *** (21.18) | 10.079 *** (44.05) | - | 3.161 *** (11.53) | 0.048 (0.15) |
urb | - | −1.386 ** (−2.19) | 3.551 *** (4.35) | - | 5.225 *** (10.10) | 0.764 (0.84) |
ind | - | 12.160 *** (5.29) | −9.973 *** (−3.64) | - | 24.079 *** (12.89) | 5.059 * (1.66) |
ope | - | −3.623 *** (−3.03) | −0.648 (−1.19) | - | −1.995 ** (−2.01) | −0.396 (−0.66) |
mar | - | 17.961 *** (15.89) | 13.038 *** (15.28) | - | 4.960 *** (5.10) | −1.199 (−1.22) |
den | - | 2.637 *** (18.21) | 1.160 ** (2.46) | - | −1.348 *** (−10.85) | −4.514 *** (−8.75) |
tra | - | 0.125 (0.77) | −0.610 *** (−5.54) | - | 1.184 *** (8.83) | 1.629 *** (13.71) |
pos | - | 2.309 *** (12.42) | 1.056 *** (7.94) | - | −0.355 ** (−2.25) | −0.691 *** (−4.65) |
N | 3124 | 3124 | 3124 | 3124 | 3124 | 3124 |
FE | No | No | Yes | No | No | Yes |
R2 | 0.0103 | 0.6414 | 0.7296 | 0.0103 | 0.3936 | 0.1705 |
F | 32.52 *** | 618.95 *** | 848.91 *** | 32.52 *** | 224.62 *** | 64.66 *** |
Items | Geographical Distance | Economic–Geographical Distance | ||
---|---|---|---|---|
d-eco (1) | ep (2) | d-eco (3) | ep (4) | |
d-eco | 0.129 ** (2.10) | −0.133 *** (−3.30) | 0.053 * (1.75) | −0.037 (−1.34) |
ep | −0.101 (−0.45) | 0.999 *** (11.80) | −0.063 (−1.10) | 0.010 (0.18) |
d-eco | - | −0.133 * (−1.80) | - | −0.926 *** (−14.48) |
ep | −0.173 * (−1.86) | - | −0.745 *** (−13.58) | - |
pgdp | 5.361 *** (9.75) | 3.187 *** (6.83) | 6.837 *** (17.73) | 6.664 *** (13.59) |
urb | −2.438 ** (−2.43) | 4.723 *** (8.35) | 0.797 (1.12) | 2.890 *** (4.67) |
ind | 9.358 *** (2.77) | 17.787 *** (9.21) | 19.526 *** (7.62) | 26.545 *** (12.71) |
ope | −2.553 ** (−2.06) | −1.724 * (−1.74) | −3.792 *** (−3.19) | −3.931 *** (−3.60) |
mar | 17.714 *** (15.05) | 2.634 * (1.67) | 17.614 *** (15.48) | 15.713 *** (9.83) |
den | 3.226 *** (9.91) | −1.522 *** (−5.39) | 1.823 *** (9.67) | 0.864 *** (3.33) |
tra | −0.048 (−0.24) | 0.566 *** (4.15) | 0.615 *** (3.48) | 0.869 ** (5.71) |
pos | 2.584 *** (11.94) | −0.249 (−1.02) | 1.842 *** (9.38) | 1.450 *** (5.86) |
N | 3124 | 3124 | 3124 | 3124 |
R2 | 0.9503 | 0.6822 | 0.9796 | 0.3651 |
F | 5002.69 *** | 535.88 *** | 13297.45 *** | 343.36 *** |
Items | ||||
---|---|---|---|---|
d-eco | ep | d-eco | ep | |
(1) | (2) | (3) | (4) | |
d-eco | 0.244 *** (4.55) | −0.263 *** (−6.57) | 0.166 ** (2.51) | −0.173 *** (−4.15) |
ep | −0.075 (−0.65) | 0.599 *** (8.13) | −0.559 ** (−2.34) | 1.045 *** (11.82) |
d-eco | - | −0.102 *** (−2.80) | - | −0.050 *** (2.66) |
ep | −0.048 * (−1.86) | - | −0.237 * (1.66) | - |
pgdp | 4.829 *** (3.54) | 2.927 *** (6.02) | 4.315 *** (7.82) | 2.326 *** (4.91) |
urb | −3.116 *** (5.21) | 4.416 *** (7.61) | −4.658 *** (−4.63) | 5.428 *** (9.43) |
ind | 5.750 * (1.70) | 16.176 *** (8.23) | 2.588 (0.77) | 16.716 *** (8.54) |
ope | −2.778 ** (−3.17) | −1.595 (−1.57) | −1.902 (−1.49) | −1.237 (−1.23) |
mar | 17.301 *** (14.39) | 0.629 (0.39) | 17.738 *** (14.53) | −0.601 (−0.38) |
den | 3.479 *** (10.79) | −1.913 *** (−6.56) | 4.075 *** (12.74) | −2.190 *** (−7.60) |
tra | −0.135 (0.13) | 0.753 *** (5.46) | −0.315 (−1.53) | 0.564 *** (4.04) |
pos | 2.606 *** (12.35) | −0.746 *** (−2.94) | 2.863 *** (12.97) | −0.723 *** (−2.90) |
N | 3124 | 3124 | 3124 | 3124 |
R2 | 0.9780 | 0.6547 | 0.9248 | 0.6196 |
F | 12,492.64 *** | 533.57 *** | 3905.33 *** | 491.66 *** |
Items | ||||||
---|---|---|---|---|---|---|
d-eco | ep | d-eco | ep | d-eco | ep | |
(1) | (2) | (3) | (4) | (5) | (6) | |
d-eco | 0.448 *** (10.10) | −0.362 *** (−5.77) | 0.217 *** (4.34) | −0.086 ** (−2.11) | 0.656 *** (6.62) | −0.041 (−1.18) |
ep | 0.081 (0.91) | 0.224 *** (2.73) | −0.734 *** (5.13) | 0.896 *** (17.51) | −0.271 *** (−3.96) | 0.918 *** (18.16) |
d-eco | - | −0.033 (0.23) | - | −0.434 *** (−4.77) | - | −0.551 *** (−8.01) |
ep | −0.234 ** (−2.44) | - | −0.626 *** (−4.24) | - | −1.802 *** (−7.17) | - |
pgdp | 3.763 *** (7.93) | 2.889 *** (4.13) | 6.242 *** (11.64) | 4.674 *** (9.26) | 9.370 *** (11.13) | 5.182 *** (12.19) |
urb | −4.705 *** (−5.74) | 5.211 *** (7.43) | 0.116 (0.11) | 4.217 *** (7.10) | 6.849 *** (4.04) | 3.814 *** (6.80) |
ind | 4.484 (1.54) | 15.655 *** (6.79) | 19.229 *** (5.42) | 21.663 *** (10.79) | 41.188 *** (7.19) | 22.830 *** (11.70) |
ope | −1.670 (−1.31) | −1.987 * (−1.92) | −2.983 ** (−2.46) | −2.405 ** (−2.50) | −4.977 *** (−2.91) | −2.753 *** (−2.86) |
mar | 17.798 *** (14.88) | −0.450 (−0.17) | 18.286 *** (16.20) | 8.281 *** (4.46) | 18.649 *** (11.63) | 10.281 *** (6.73) |
den | 4.246 *** (16.36) | −2.423 *** (−4.59) | 2.166 *** (5.67) | −0.832 ** (−2.36) | −0.738 (−1.15) | −0.423 (−1.54) |
tra | −0.155 (−0.84) | 0.803 *** (5.77) | 0.236 (1.28) | 0.460 *** (3.72) | 0.866 *** (3.49) | 0.480 *** (3.81) |
pos | 2.749 *** (12.92) | −0.859 ** (−2.12) | 2.293 *** (11.02) | 0.593 ** (2.13) | 1.620 *** (5.37) | 0.889 *** (3.79) |
N | 3124 | 3124 | 3124 | 3124 | 3124 | 3124 |
R2 | 0.9878 | 0.5909 | 0.9884 | 0.8858 | 0.9889 | 0.8725 |
F | 24,709.48 *** | 435.11 *** | 22,685.97 *** | 2066.63 *** | 27,343.34 *** | 1967.06 *** |
Items | Geographical Distance | Economic–Geographical Distance | ||||
---|---|---|---|---|---|---|
ep | M | ep | ep | M | ep | |
(1) | (2) | (3) | (4) | (5) | (6) | |
d-eco | −0.014 ** (−2.49) | 0.003 *** (2.95) | −0.012 ** (−2.33) | −0.035 * (−1.74) | 0.003 *** (2.95) | −0.034 * (−1.72) |
d-eco | −0.203 *** (−6.05) | - | −0.162 *** (−4.70) | −0.230 *** (−7.82) | - | −0.175 *** (−5.93) |
ep | 0.845 *** (24.73) | - | 0.800 *** (20.43) | 0.304 *** (11.53) | - | 0.263 *** (9.81) |
M | - | - | −1.035 *** (−6.53) | - | - | −1.619 *** (−9.98) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3124 | 3124 | 3124 | 3124 | 3124 | 3124 |
R2 | 0.1776 | 0.2425 | 0.2231 | 0.2050 | 0.2425 | 0.2351 |
Items | Geographical Distance | Economic–Geographical Distance | ||||
---|---|---|---|---|---|---|
ep | M | ep | ep | M | ep | |
(1) | (2) | (3) | (4) | (5) | (6) | |
d-eco | −0.014 ** (−2.49) | 1.564 *** (36.15) | −0.013 * (1.86) | −0.035 * (−1.74) | 1.564 *** (36.15) | −0.033 * (−1.65) |
d-eco | −0.203 *** (−6.05) | - | −0.206 *** (−5.97) | −0.230 *** (−7.82) | - | −0.208 *** (−7.37) |
ep | 0.845 *** (24.73) | - | 0.844 *** (24.67) | 0.304 *** (11.53) | - | 0.291 *** (10.21) |
M | - | - | −0.005 * (1.69) | - | - | −0.008 * (−1.75) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3124 | 3124 | 3124 | 3124 | 3124 | 3124 |
R2 | 0.1776 | 0.6569 | 0.1779 | 0.2050 | 0.6569 | 0.2050 |
Items | Geographical Distance | Economic–Geographical Distance | ||||
---|---|---|---|---|---|---|
d-eco | M | d-eco | d-eco | M | d-eco | |
(1) | (2) | (3) | (4) | (5) | (6) | |
ep | −0.111 *** (−6.61) | −0.617 *** (−19.44) | −0.108 *** (−6.33) | −0.022 ** (−2.40) | −0.617 *** (−19.44) | −0.018 ** (−2.12) |
ep | −0.106 ** (−2.22) | - | −0.017 (−0.35) | −0.110 *** (−3.51) | - | −0.103 *** (−3.12) |
d-eco | 0.850 *** (52.57) | - | 0.754 *** (41.46) | 0.358 *** (16.13) | - | 0.329 *** (15.08) |
M | - | - | 0.196 *** (11.86) | - | - | 0.206 *** (13.77) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3124 | 3124 | 3124 | 3124 | 3124 | 3124 |
R2 | 0.7277 | 0.3947 | 0.7298 | 0.7533 | 0.3947 | 0.7530 |
Items | Geographical Distance | Economic–Geographical Distance | ||||
---|---|---|---|---|---|---|
d-eco | M | d-eco | d-eco | M | d-eco | |
(1) | (2) | (3) | (4) | (5) | (6) | |
ep | −0.111 *** (−6.61) | 0.031 *** (3.82) | −0.108 *** (−6.38) | −0.022 ** (−2.40) | 0.031 *** (3.82) | −0.016 ** (1.99) |
ep | −0.106 ** (−2.22) | - | −0.101 ** (−2.11) | −0.110 *** (−3.51) | - | −0.108 *** (−3.45) |
d-eco | 0.850 *** (52.57) | - | 0.852 *** (52.23) | 0.358 *** (16.13) | - | 0.348 *** (15.63) |
M | - | - | −0.051 ** (2.04) | - | - | −0.024 *** (−3.90) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3124 | 3124 | 3124 | 3124 | 3124 | 3124 |
R2 | 0.7277 | 0.1016 | 0.7280 | 0.7533 | 0.1016 | 0.7540 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Yang, C.; Huang, Z.; Failler, P. Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5074. https://doi.org/10.3390/ijerph19095074
Xu S, Yang C, Huang Z, Failler P. Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective. International Journal of Environmental Research and Public Health. 2022; 19(9):5074. https://doi.org/10.3390/ijerph19095074
Chicago/Turabian StyleXu, Sa, Cunyi Yang, Zhehao Huang, and Pierre Failler. 2022. "Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective" International Journal of Environmental Research and Public Health 19, no. 9: 5074. https://doi.org/10.3390/ijerph19095074
APA StyleXu, S., Yang, C., Huang, Z., & Failler, P. (2022). Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective. International Journal of Environmental Research and Public Health, 19(9), 5074. https://doi.org/10.3390/ijerph19095074