Public and Private Information Sharing under “New Normal” of COVID-19: Understanding the Roles of Habit and Outcome Expectation
Abstract
:1. Introduction
2. Literature Review
2.1. Information Sharing
2.2. Factors Influencing Information Sharing
2.2.1. Risk Characteristics
2.2.2. Information Features
2.2.3. Subjective Factors
2.3. Habit
2.4. Cognitive Mechanism
2.4.1. Information Seeking Outcome Expectation
2.4.2. Emotion Regulation Outcome Expectation
2.4.3. Altruism Outcome Expectation
2.4.4. Public Engagement Outcome Expectation
2.5. Demographic Influences on Information Sharing
3. Methods
3.1. Design
3.2. Material
3.3. Data Collection
3.4. Data Analysis
4. Results
4.1. Sample Characteristics
4.2. Measurement Models
4.3. Measurement Model Invariance
4.4. Structural Models
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lkreps, G. The Pervasive Role of Information in Health and Health Care: Implications for Health Communication Policy. Ann. Int. Commun. Assoc. 1988, 11, 238–276. [Google Scholar] [CrossRef]
- Rimal, R. Why Health Communication Is Important in Public Health. Bull. World Health Org. 2009, 87, 247. [Google Scholar] [CrossRef] [PubMed]
- Risk Communication. Available online: https://www.who.int/emergencies/risk-communications (accessed on 6 March 2022).
- Reddy, B.V.; Gupta, A. Importance of Effective Communication during COVID-19 Infodemic. J. Fam. Med. Prim. Care 2020, 9, 3793. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, M.; Quattrociocchi, W.; Galeazzi, A.; Valensise, C.M.; Brugnoli, E.; Schmidt, A.L.; Zola, P.; Zollo, F.; Scala, A. The COVID-19 Social Media Infodemic. Sci. Rep. 2020, 10, 16598. [Google Scholar] [CrossRef] [PubMed]
- Dinh, L.; Parulian, N. COVID-19 Pandemic and Information Diffusion Analysis on Twitter. Proc. Assoc. Inf. Sci. Technol. 2020, 57, e252. [Google Scholar] [CrossRef]
- Digital 2021: Global Overview Report—DataReportal—Global Digital Insights. Available online: https://datareportal.com/reports/digital-2021-global-overview-report (accessed on 6 March 2022).
- Stockmann, D.; Luo, T. Which Social Media Facilitate Online Public Opinion in China? Probl. Post-Communism 2017, 64, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Chen, S. A Study on Factors Influencing Risk Information Sharing About Food Safety on Social Media; Wuhan University: Wuhan, China, 2019. [Google Scholar]
- Tsao, S.-F.; Chen, H.; Tisseverasinghe, T.; Yang, Y.; Li, L.; Butt, Z.A. What Social Media Told Us in the Time of COVID-19: A Scoping Review. Lancet Digit. Health 2021, 3, e175–e194. [Google Scholar] [CrossRef]
- Chan, A.K.M.; Nickson, C.P.; Rudolph, J.W.; Lee, A.; Joynt, G.M. Social Media for Rapid Knowledge Dissemination: Early Experience from the COVID-19 Pandemic. Anaesthesia 2020, 75, 1579–1582. [Google Scholar] [CrossRef]
- Weibo Data Center. 2020 Weibo User Development Report. Available online: https://data.weibo.com/report/reportDetail?id=456 (accessed on 6 March 2022).
- China Records First Case of Omicron COVID Variant as Manufacturing Hub Zhejiang Fights First 2021 Outbreak—ABC News. Available online: https://www.abc.net.au/news/2021-12-14/china-records-first-case-of-omicron-covid-variant/100697798 (accessed on 6 March 2022).
- New Normal. Available online: https://www.who.int/indonesia/news/novel-coronavirus/new-infographics/new-normal (accessed on 6 March 2022).
- Kubey, R.W.; Peluso, T. Emotional Response as a Cause of Interpersonal News Diffusion: The Case of the Space Shuttle Tragedy. J. Broadcast. Electron. Media 1990, 34, 69–76. [Google Scholar] [CrossRef]
- Liao, W.; Yuan, Y.C.; McComas, K.A. Communal Risk Information Sharing: Motivations Behind Voluntary Information Sharing for Reducing Interdependent. Risks A Community Commun. Res. 2018, 45, 909–933. [Google Scholar] [CrossRef]
- Major, A.M. The Utility of Situational Theory of Publics for Assessing Public Response to a Disaster Prediction. Public Relat. Rev. 1998, 24, 489–508. [Google Scholar] [CrossRef]
- Shen, L.; Bigsby, E. The Effects of Message Features: Content, Structure, and Style. In The SAGE Handbook of Persuasion: Developments in Theory and Practice, 2nd ed.; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2013; pp. 20–35. ISBN 978-1-4129-8313-6. [Google Scholar]
- Bandura, A. Social Cognitive Theory of Mass Communication. Media Psychol. 2001, 3, 265–299. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, C.; Cai, D. Understanding WeChat Users’ Behavior of Sharing Social Crisis Information. Int. J. Hum. Comput. Interact. 2018, 34, 356–366. [Google Scholar] [CrossRef]
- Bao, X.; Bouthillier, F. Information Sharing: As a Type of Information Behavior. In Proceedings of the Annual Conference of CAIS/Actes Du congrès Annuel De l’ACSI, Montreal, ON, Canada, 24 October 2013. [Google Scholar] [CrossRef]
- Rafaeli, S.; Raban, D.R. Information Sharing Online: A Research Challenge; Social Science Research Network: Rochester, NY, USA, 2007. [Google Scholar]
- Gantz, W.; Trenholm, S.; Pittman, M. The Impact of Salience and Altruism on Diffusion of News. J. Q. 1976, 53, 727–732. [Google Scholar] [CrossRef]
- Mei, J.S.A.; Bansal, N.; Pang, A. New Media: A New Medium in Escalating Crises? Corp. Commun. Int. J. 2010, 15, 143–155. [Google Scholar] [CrossRef]
- Xu, W.W.; Zhang, C. Sentiment, Richness, Authority, and Relevance Model of Information Sharing during Social Crises—The Case of #MH370 Tweets. Comput. Hum. Behav. 2018, 89, 199–206. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ye, J.; Hoffner, C. Diffusion of News of the Shuttle Columbia Disaster: The Role of Emotional Responses and Motives for Interpersonal Communication. Commun. Res. Rep. 2008, 25, 91–101. [Google Scholar] [CrossRef]
- Lane, D.S.; Dal Cin, S. Sharing beyond Slacktivism: The Effect of Socially Observable Prosocial Media Sharing on Subsequent Offline Helping Behavior. Inf. Commun. Soc. 2018, 21, 1523–1540. [Google Scholar] [CrossRef]
- Myrick, J.G. Identification and Emotions Experienced after a Celebrity Cancer Death Shape Information Sharing and Prosocial Behavior. J. Health Commun. 2017, 22, 515–522. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Chen, K. Effective Risk Communication for Public Health Emergency: Reflection on the COVID-19 (2019-NCoV) Outbreak in Wuhan, China. Healthcare 2020, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Burkell, J.; Fortier, A.; Wong, L.Y.C.; Simpson, J.L. Facebook: Public Space, or Private Space? Inf. Commun. Soc. 2014, 17, 974–985. [Google Scholar] [CrossRef]
- Gross, R.; Acquisti, A. Information Revelation and Privacy in Online Social Networks. In Proceedings of the 2005 ACM workshop on Privacy in the electronic society (WPES ’05), New York, NY, USA, 7 November 2005. [Google Scholar] [CrossRef]
- Dong, M.; Chen, L.; Wang, L. Investigating the User Behaviors of Sharing Health- and Fitness-Related Information Generated by Mi Band on Weibo. Int. J. Hum. Comput. Interact. 2019, 35, 773–786. [Google Scholar] [CrossRef]
- Dubois, D.; Bonezzi, A.; De Angelis, M. Sharing with Friends versus Strangers: How Interpersonal Closeness Influences Word-of-Mouth Valence. J. Mark. Res. 2016, 53, 712–727. [Google Scholar] [CrossRef]
- Negro, G. The Development of Mobile Internet. Weixin (WeChat): A Killer Application for Sina Weibo. In The Internet in China; Palgrave Macmillan: Cham, Switzerland, 2017; pp. 193–208. ISBN 978-3-319-60404-6. [Google Scholar]
- Austin, L.; Jin, Y. Social Media and Crisis Communication, 2nd ed.; Routledge: New York, NY, USA, 2017; ISBN 978-1-315-74906-8. [Google Scholar]
- Lindell, M.K.; Perry, R.W. The Protective Action Decision Model: Theoretical Modifications and Additional Evidence: The Protective Action Decision Model. Risk Anal. 2012, 32, 616–632. [Google Scholar] [CrossRef] [PubMed]
- Malecki, K.M.C.; Keating, J.A.; Safdar, N. Crisis Communication and Public Perception of COVID-19 Risk in the Era of Social Media. Clin. Infect. Dis. 2021, 72, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Yuan, J.; Dong, M.; Yang, L.; Fielding, R.; Lam, W.W.T. Public Engagement and Government Responsiveness in the Communications About COVID-19 During the Early Epidemic Stage in China: Infodemiology Study on Social Media Data. J. Med. Internet Res. 2020, 22, e18796. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, H.; Zou, Y.; Lin, F. Changes in Psychological Wellbeing, Attitude and Information-Seeking Behaviour among People at the Epicentre of the COVID-19 Pandemic: A Panel Survey of Residents in Hubei Province, China. Epidemiol. Infect. 2020, 148, e201. [Google Scholar] [CrossRef]
- Li, L.; Zhang, G. The Influence of Media Message Features on Information Sharing Willingness and its Mechanism in the Context of COVID-19 Pandemic. J. Res. 2021, 4, 83–122. [Google Scholar]
- Blauza, S.; Heuckmann, B.; Kremer, K.; Büssing, A.G. Psychological Distance towards COVID-19: Geographical and Hypothetical Distance Predict Attitudes and Mediate Knowledge. Curr. Psychol. 2021, 1–12. [Google Scholar] [CrossRef]
- Bronfman, N.C.; Cisternas, P.C.; Repetto, P.B.; Castañeda, J.V.; Guic, E. Understanding the Relationship Between Direct Experience and Risk Perception of Natural Hazards. Risk Anal. 2020, 40, 2057–2070. [Google Scholar] [CrossRef]
- Naveed, N.; Gottron, T.; Kunegis, J.; Alhadi, A.C. Bad News Travel Fast: A Content-Based Analysis of Interestingness on Twitter. In Proceedings of the 3rd International Web Science Conference on—WebSci ’11, Koblenz, Germany, 15 – 17 June 2011; pp. 1–7. [Google Scholar]
- Igartua, J.-J.; Cheng, L. Moderating Effect of Group Cue While Processing News on Immigration: Is the Framing Effect a Heuristic Process? J. Commun. 2009, 59, 726–749. [Google Scholar] [CrossRef]
- Bigman, C.A. Social Comparison Framing in Health News and Its Effect on Perceptions of Group Risk. Health Commun. 2014, 29, 267–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igartua, J.-J.; Moral-Toranzo, F.; Fernández, I. Cognitive, Attitudinal, and Emotional Effects of News Frame and Group Cues, on Processing News about Immigration. J. Media Psychol. Theor. Methods Appl. 2011, 23, 174–185. [Google Scholar] [CrossRef]
- Dan, V.; Raupp, J. A Systematic Review of Frames in News Reporting of Health Risks: Characteristics, Construct Consistency vs. Name Diversity, and the Relationship of Frames to Framing Functions. Health Risk Soc. 2018, 20, 203–226. [Google Scholar] [CrossRef]
- Liu, L.; Xie, J. Structure, Style and Content: Information Characteristics of Social Media Users’ Re-posting—Based on Media Reports about COVID-19. J. Mass Commun. Mon. 2020, 11, 39–49. [Google Scholar] [CrossRef]
- So, J.; Prestin, A.; Lee, L.; Wang, Y.; Yen, J.; Chou, W.-Y.S. What Do People Like to “Share” About Obesity? A Content Analysis of Frequent Retweets About Obesity on Twitter. Health Commun. 2016, 31, 193–206. [Google Scholar] [CrossRef]
- Vos, S.C.; Sutton, J.; Yu, Y.; Renshaw, S.L.; Olson, M.K.; Gibson, C.B.; Butts, C.T. Retweeting Risk Communication: The Role of Threat and Efficacy. Risk Anal. 2018, 38, 2580–2598. [Google Scholar] [CrossRef] [Green Version]
- Mutua, S.N.; Ong’ong’a, D.O. Online News Media Framing of COVID-19 Pandemic: Probing the Initial Phases of the Disease Outbreak in International Media. Eur. J. Interact. Multimed. Educ. 2020, 1, e02006. [Google Scholar] [CrossRef]
- Uribe, M.R. Framing of Online News Coverage of the Coronavirus in the United States. Elon J. Undergrad. Res. Commun. 2020, 11, 89–98. [Google Scholar]
- Constant, D.; Kiesler, S.; Sproull, L. What’s Mine Is Ours, or Is It? A Study of Attitudes about Information Sharing. Inf. Syst. Res. 1994, 5, 400–421. [Google Scholar] [CrossRef]
- Lin, H.-C.; Chang, C.-M. What Motivates Health Information Exchange in Social Media? The Roles of the Social Cognitive Theory and Perceived Interactivity. Inf. Manag. 2018, 55, 771–780. [Google Scholar] [CrossRef]
- Yang, Z.J.; Kahlor, L.A.; Griffin, D.J. I Share, Therefore I Am: A U.S.−China Comparison of College Students’ Motivations to Share Information About Climate Change: Information Sharing. Hum. Commun. Res. 2014, 40, 112–135. [Google Scholar] [CrossRef]
- Ruggiero, T.E. Uses and Gratifications Theory in the 21st Century. Mass Commun. Soc. 2000, 3, 3–37. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Wu, T.; Zhou, L. Sharing of Verified Information about COVID-19 on Social Network Sites: A Social Exchange Theory Perspective. Int. J. Environ. Res. Public Health 2021, 18, 1260. [Google Scholar] [CrossRef]
- City University of Hong Kong; Limayem, M.; Hirt, S.; Instituto de Empresa. Spain Force of Habit and Information Systems Usage: Theory and Initial Validation. JAIS 2003, 4, 65–97. [Google Scholar] [CrossRef] [Green Version]
- Lankton, N.K.; Wilson, E.V.; Mao, E. Antecedents and Determinants of Information Technology Habit. Inf. Manag. 2010, 47, 300–307. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G.; Cheung, C.M. How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Q. 2007, 31, 705. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.; Rainie, L. Millennials Will Make Online Sharing in Networks a Lifelong Habit. Available online: https://www.pewresearch.org/internet/2010/07/09/millennials-will-make-online-sharing-in-networks-a-lifelong-habit/ (accessed on 6 March 2022).
- Mazar, A.; Wood, W. Defining Habit in Psychology. In The Psychology of Habit: Theory, Mechanisms, Change, and Contexts; Verplanken, B., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 13–29. ISBN 978-3-319-97529-0. [Google Scholar]
- Lizardo, O.; Mowry, R.; Sepulvado, B.; Stoltz, D.S.; Taylor, M.A. What Are Dual Process Models? Implications for Cultural Analysis in Sociology. Sociol. Theory 2016, 34, 287–310. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, C.-H.; Chang, J.-J.; Tang, K.-Y. Exploring the Influential Factors in Continuance Usage of Mobile Social Apps: Satisfaction, Habit, and Customer Value Perspectives. Telemat. Inform. 2016, 33, 342–355. [Google Scholar] [CrossRef]
- Broersma, M.; Swart, J. Do Novel Routines Stick After the Pandemic? The Formation of News Habits During COVID-19. J. Stud. 2021, 23, 551–568. [Google Scholar] [CrossRef]
- Verplanken, B.; Aarts, H.; Van Knippenberg, A. Habit, Information Acquisition, and the Process of Making Travel Mode Choices. Eur. J. Soc. Psychol. 1997, 27, 539–560. [Google Scholar] [CrossRef]
- Hu, T.; Stafford, T.F.; Kettinger, W.J.; Zhang, X.; Dai, H. Formation and Effect of Social Media Usage Habit. J. Comput. Inf. Syst. 2018, 58, 334–343. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.; Shi, D.; Yan, T. The Public’s Risk Information Seeking and Avoidance in China During Early Stages of the COVID-19 Outbreak. Front. Psychol. 2021, 12, 649180. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Cho, K.M.; Kim, M. Information-Sharing Behaviors Among Sports Fans Using #Hashtags. Commun. Sport 2021, 9, 646–669. [Google Scholar] [CrossRef]
- Alvi, I.; Saraswat, N. Information processing—Heuristic vs. systematic and susceptibility of sharing covid 19-related fake news on social media. J. Content Community Commun. 2020, 12, 42–56. [Google Scholar] [CrossRef]
- Nan, X.; Daily, K.; Qin, Y. Relative Persuasiveness of Gain- vs. Loss-Framed Messages: A Review of Theoretical Perspectives and Developing an Integrative Framework. Rev. Commun. 2018, 18, 370–390. [Google Scholar] [CrossRef]
- Compeau, D.R.; Higgins, C.A. Application of Social Cognitive Theory to Training for Computer Skills. Inf. Syst. Res. 1995, 6, 118–143. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory. In Prentice-Hall Series in Social Learning Theory; Prentice-Hall: Hoboken, NJ, USA, 1986; ISBN 978-0-13-815614-5. [Google Scholar]
- Wojcicki, T.R.; White, S.M.; McAuley, E. Assessing Outcome Expectations in Older Adults: The Multidimensional Outcome Expectations for Exercise Scale. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2009, 64, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-L.; Lin, C.-H.; Hsu, B.-F.; Yeh, R.-S. Interpersonal Trust and Knowledge Sharing: Moderating Effects of Individual Altruism and a Social Interaction Environment. Soc. Behav. Pers. 2009, 37, 83–93. [Google Scholar] [CrossRef]
- Whitmarsh, L.; Lorenzoni, I.; O’Neill, S. Engaging the Public with Climate Change: Behaviour Change and Communication; Routledge: London, UK, 2011; ISBN 978-1-84977-524-3. [Google Scholar]
- Verplanken, B.; Wood, W. Interventions to Break and Create Consumer Habits. J. Public Policy Mark. 2006, 25, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Featherman, M.; Sarker, S. Information Sharing in the Context of Social Media: An Application of the Theory of Reasoned Action and Social Capital Theory. In Proceedings of the AIS SIGHCI Workshop on HCI Research in MIS, Paris, France, 27 April – 2 May 2013; pp. 1–5. [Google Scholar]
- Case, D.O. Looking for Information: A Survey of Research on Information Seeking, Needs, and Behavior. In Library and Information Science; Academic Press: San Diego, CA, USA, 2002; ISBN 978-0-12-150381-9. [Google Scholar]
- Kahlor, L.A. An Augmented Risk Information Seeking Model: The Case of Global Warming. Media Psychol. 2007, 10, 414–435. [Google Scholar] [CrossRef]
- Zhang, X.A.; Cozma, R. Risk Sharing on Twitter: Social Amplification and Attenuation of Risk in the Early Stages of the COVID-19 Pandemic. Comput. Hum. Behav. 2022, 126, 106983. [Google Scholar] [CrossRef]
- Lewis, M.; Haviland-Jones, J.M.; Barrett, L.F. Handbook of Emotions, 3rd ed.; Guilford Press: New York, NY, USA, 2008; ISBN 978-1-59385-650-2. [Google Scholar]
- Yang, Y.; Liu, K.; Li, S.; Shu, M. Social Media Activities, Emotion Regulation Strategies, and Their Interactions on People’s Mental Health in COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 8931. [Google Scholar] [CrossRef] [PubMed]
- Bazarova, N.N.; Choi, Y.H.; Schwanda Sosik, V.; Cosley, D.; Whitlock, J. Social Sharing of Emotions on Facebook: Channel Differences, Satisfaction, and Replies. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, Vancouver, BC, Canada, 28 February 2015; pp. 154–164. [Google Scholar]
- Hare, E. Sociobiology, the New Synthesis. By Edward, O. Wilson. Cambridge, Mass. and London: The Belknap Press of Harvard University Press. 1975. Pp 700. Price £12.00. Br. J. Psychiatry 1976, 129, 282–283. [Google Scholar] [CrossRef]
- Dunning, D. Social Motivation; Psychology Press: Hove, UK, 2011; ISBN 978-1-136-84720-2. [Google Scholar]
- Obrenovic, B.; Jianguo, D.; Tsoy, D.; Obrenovic, S.; Khan, M.A.S.; Anwar, F. The Enjoyment of Knowledge Sharing: Impact of Altruism on Tacit Knowledge-Sharing Behavior. Front. Psychol. 2020, 11, 1496. [Google Scholar] [CrossRef]
- Feinberg, M.; Willer, R.; Stellar, J.; Keltner, D. The Virtues of Gossip: Reputational Information Sharing as Prosocial Behavior. J. Personal. Soc. Psychol. 2012, 102, 1015–1030. [Google Scholar] [CrossRef] [Green Version]
- Engagement across Three Social Media Platforms: An Exploratory Study of a Cause-Related PR Campaign. Available online: https://www.infona.pl/resource/bwmeta1.element.elsevier-ce27e863-03d8-3286-b658-dea4390a637c (accessed on 6 March 2022).
- Corner, A.; Randall, A. Selling Climate Change? The Limitations of Social Marketing as a Strategy for Climate Change Public Engagement. Glob. Environ. Change 2011, 21, 1005–1014. [Google Scholar] [CrossRef]
- Shah, Z.; Chu, J.; Feng, B.; Qaisar, S.; Ghani, U.; Hassan, Z. If You Care, I Care: Perceived Social Support and Public Engagement via SNSs during Crises. Technol. Soc. 2019, 59, 101195. [Google Scholar] [CrossRef]
- Bond, C.S. Can I Help You? Information Sharing in Online Discussion Forums by People Living with a Long-Term Condition. J. Innov. Health Inform. 2016, 23, 620. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, N.; Shen, X.-L.; Zhang, J.X. Location Information Disclosure in Location-Based Social Network Services: Privacy Calculus, Benefit Structure, and Gender Differences. Comput. Hum. Behav. 2015, 52, 278–292. [Google Scholar] [CrossRef]
- Rousseau, S.; Puttaraju, K. A Study on Gender Differential Factors in Uses of Social Networking Sites. Int. J. Humanit. Soc. Sci. Invent. 2014, 3, 31–40. [Google Scholar]
- Malcolm, J. Consumers in the Information Society: Access, Fairness and Representation; Consumers International: London, UK, 2012; ISBN 978-0-9567403-9-7. [Google Scholar]
- Rowley, J.; Johnson, F.; Sbaffi, L. Gender as an Influencer of Online Health Information-Seeking and Evaluation Behavior. J. Assoc. Inf. Sci. Technol. 2017, 68, 36–47. [Google Scholar] [CrossRef]
- Mao, B.; Morgan, S.E.; Peng, W.; McFarlane, S.J.; Occa, A.; Grinfeder, G.; Byrne, M.M. What Motivates You to Share? The Effect of Interactive Tailored Information Aids on Information Sharing about Clinical Trials. Health Commun. 2021, 36, 1388–1396. [Google Scholar] [CrossRef]
- Xinhua Headlines: Chinese People Embrace Normal Life amid Regular COVID-19 Control, Prevention—Xinhua|English.News.Cn. Available online: http://www.xinhuanet.com/english/2020-09/10/c_139358563.htm (accessed on 6 March 2022).
- Hong Kong’s COVID-19 Infections Exceed 1 Million amid Outbreak|CBC News. Available online: https://www.cbc.ca/news/world/hong-kong-covid-pandemic-coronavirus-1.6389391 (accessed on 6 March 2022).
- China: Number of Sina Weibo Users 2017–2021|Statista. Available online: https://www.statista.com/statistics/941456/china-number-of-sina-weibo-users/ (accessed on 6 March 2022).
- Liu, L.; Li, K. Research on the Relationship between Motivation and Use Behavior of Multi-devices. Journal. Commun. Rev. 2018, 71, 44–54. [Google Scholar] [CrossRef]
- Hilverda, F.; Kuttschreuter, M. Online Information Sharing About Risks: The Case of Organic Food. Risk Anal. 2018, 38, 1904–1920. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z. A Study on Sharing Behavior of Online Political News; Chinese Culture University: Taipei, Taiwan, 2012. [Google Scholar]
- Hennig-Thurau, T.; Gwinner, K.P.; Walsh, G.; Gremler, D.D. Electronic Word-of-Mouth via Consumer-Opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet? J. Interact. Mark. 2004, 18, 38–52. [Google Scholar] [CrossRef]
- Tencent Questionnaire. Available online: https://wj.qq.com/ (accessed on 6 March 2022).
- Product|SmartPLS. Available online: https://www.smartpls.com/ (accessed on 21 November 2021).
- Chin, W.W. The Partial Least Squares Approach for Structural Equation Modeling. In Modern Methods for Business Research, Methodology for Business and Management; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1998; pp. 295–336. ISBN 978-0-8058-2677-7. [Google Scholar]
- Hair, J.F. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage: Los Angeles, CA, USA, 2017; ISBN 978-1-4833-7744-5. [Google Scholar]
- Guo, C.; Shim, J.P.; Otondo, R. Social Network Services in China: An Integrated Model of Centrality, Trust, and Technology Acceptance. J. Glob. Inf. Technol. Manag. 2010, 13, 76–99. [Google Scholar] [CrossRef]
- Esposito Vinzi, V.; Chin, W.W.; Henseler, J.; Wang, H. Handbook of Partial Least Squares: Concepts, Methods and Applications; Springer: Berlin, Germany; New York, NY, USA, 2010; ISBN 978-3-540-32825-4. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Hua, J.; Shaw, R. Corona Virus (COVID-19) “Infodemic” and Emerging Issues through a Data Lens: The Case of China. Int. J. Environ. Res. Public Health 2020, 17, 2309. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, D.; Meena, K.S. COVID-19 as an “Infodemic” in Public Health: Critical Role of the Social Media. Front. Public Health 2021, 9, 231. [Google Scholar] [CrossRef]
- Ebrahim, S. The Corona Chronicles: Framing Analysis of Online News Headlines of the COVID-19 Pandemic in Italy, USA and South Africa. Health SA 2022, 27, 1683. [Google Scholar] [CrossRef] [PubMed]
- Griffin, R.; Powell, M.; Dunwoody, S.; Neuwirth, K.; Clark, D.; Novotny, V. Testing the Robustness of a Risk Information Processing Model. In Proceedings of the Annual meeting of the Association for Education in Journalism and mass Communication, Toronto, ON, Canada, 4 August 2004. [Google Scholar]
- Chaiken, S.; Ledgerwood, A. A Theory of Heuristic and Systematic Information Processing. In Handbook of Theories of Social Psychology; SAGE Publications Ltd.: London, UK, 2012; Volume 1, pp. 246–266. ISBN 978-0-85702-960-7. [Google Scholar]
- Chaiken, S.; Maheswaran, D. Heuristic Processing Can Bias Systematic Processing: Effects of Source Credibility, Argument Ambiguity, and Task Importance on Attitude Judgment. J. Personal. Soc. Psychol. 1994, 66, 460–473. [Google Scholar] [CrossRef]
Construct | Question | Source |
---|---|---|
Public information sharing intention | PBSI1: When I go through the above type of COVID-19-related information on Weibo and other social media, I am willing to publicly share it on Weibo and other social media. | Chen [9] |
PBSI2: When I go through the above type of COVID-19-related information on Weibo and other social media, I am willing to I am willing to publicly share it twice or more on Weibo and other social media. | ||
PBSI3: When I go through the above type of COVID-19-related information on Weibo and other social media, I am willing to publicly share it on multiple platforms. | ||
PBSI4: When I go through the above type of COVID-19-related information on Weibo and other social media, I am willing to publicly share it on Weibo and other social media to make as many people see it as possible. | ||
Private information sharing intention | PRSI1: When I go through the above type of COVID-19-related information on Weibo and other social media, I am willing to share it with my friends. | Chen [9] |
PRSI2:When I go through the above type of COVID-19-related information on Weibo and other social media, I am willing to share it with others who are in a one-to-one chat with me. | ||
PRSI3: When I go through the above type of COVID-19-related information on Weibo and other social media, I am willing to share it on platforms such as Moments that limits range of information flow. | ||
PRSI4: When I go through the above type of COVID-19-related information on Weibo and other social media, I am willing to share it with familiar people including families, friends and so on. | ||
Habit | HB1: I always share the COVID-19-related information as a habit. | Limayem et al. [60] Liu & Li [101] |
HB2: Sharing the COVID-19-related information is natural to me. | ||
HB3: Sharing the COVID-19-related information is automatic to me. | ||
HB4: I often subconsciously share the COVID-19 information. | ||
Information seeking outcome expectation | IS1: When I share the COVID-19-related information, I want to obtain useful information from others’ feedback. | Chen et al. [20] Hilverda & Kuttschreuter [102] |
IS2: When I share the COVID-19-related information, other people will tell me what they know about these risks too. | ||
IS3: When I share the COVID-19-related information, other people will exchange relevant information with me. | ||
IS4: When I share the COVID-19-related information, I expect that other people share such information with me in the future. | ||
Emotion Regulation outcome expectation | ER1: Sharing the COVID-19-related information can alleviate my negative emotions. | Chen [9] Yu [103] |
ER2: Sharing the COVID-19-related information can bring a sense of relief to me. | ||
ER3: Sharing the COVID-19-related information can make me feel positive. | ||
ER4: Sharing the COVID-19-related information can help me regulate emotions. | ||
Altruism outcome expectation | AL1: Sharing the COVID-19-related information can warn others of risk. | Chen [9] Hennig-Thurau et al. [104] |
AL2: Sharing the COVID-19-related information can save others from risk. | ||
AL3: Sharing the COVID-19-related information can keep others updated. | ||
AL4: Sharing the COVID-19-related information can satisfy other’s interest. | ||
Public engagement outcome expectation | PE1: Sharing the COVID-19-related information can make it attract more attention. | Chen [9] |
PE2: Sharing the COVID-19-related information can contribute to more public discussion. | ||
PE3: Sharing the COVID-19-related information can promote concern for public opinion and help to solve specific problems. | ||
PE4: Sharing the COVID-19-related information can be an important way to express my opinion as a public. |
Variables | Reassurance Group | Action Group | |||
---|---|---|---|---|---|
n = 398 | n = 382 | ||||
n | % | n | % | ||
Gender | Male | 114 | 28.60 | 99 | 25.90 |
Female | 284 | 71.40 | 283 | 74.10 | |
Age | 20–31 | 354 | 88.90 | 338 | 88.48 |
31–40 | 31 | 7.80 | 34 | 8.90 | |
41–50 | 9 | 2.30 | 6 | 1.57 | |
51–60 | 2 | 0.50 | 3 | 0.79 | |
61 or above | 2 | 0.50 | 1 | 0.26 | |
Education Level | High School or Less | 73 | 18.30 | 57 | 14.92 |
Undergraduate and Junior College | 309 | 77.70 | 299 | 78.27 | |
Graduate Degree | 16 | 4.00 | 26 | 6.81 |
Constructs | Loadings | Cronbach’s α | CR | AVE | ||||
---|---|---|---|---|---|---|---|---|
Reassurance Group | Action Group | Reassurance Group | Action Group | Reassurance Group | Action Group | Reassurance Group | Action Group | |
Altruism | 0.904 | 0.891 | 0.933 | 0.925 | 0.776 | 0.754 | ||
AL1 | 0.893 | 0.882 | ||||||
AL2 | 0.842 | 0.830 | ||||||
AL3 | 0.908 | 0.904 | ||||||
AL4 | 0.880 | 0.857 | ||||||
Emotion regulation outcome expectation | 0.911 | 0.895 | 0.944 | 0.934 | 0.848 | 0.826 | ||
ER1 | 0.890 | 0.902 | ||||||
ER2 | 0.938 | 0.917 | ||||||
ER3 | 0.934 | 0.908 | ||||||
Habit | 0.918 | 0.935 | 0.942 | 0.953 | 0.802 | 0.837 | ||
HB1 | 0.870 | 0.913 | ||||||
HB2 | 0.918 | 0.912 | ||||||
HB3 | 0.884 | 0.917 | ||||||
HB4 | 0.909 | 0.917 | ||||||
Information seeking outcome expectation | 0.926 | 0.930 | 0.948 | 0.950 | 0.819 | 0.825 | ||
IS1 | 0.911 | 0.897 | ||||||
IS2 | 0.904 | 0.911 | ||||||
IS3 | 0.902 | 0.912 | ||||||
IS4 | 0.902 | 0.915 | ||||||
Public information sharing intention | 0.931 | 0.914 | 0.956 | 0.946 | 0.878 | 0.853 | ||
PBSI1 | 0.927 | 0.913 | ||||||
PBSI2 | 0.950 | 0.940 | ||||||
PBSI3 | 0.935 | 0.917 | ||||||
Public engagement outcome expectation | 0.911 | 0.921 | 0.938 | 0.944 | 0.790 | 0.809 | ||
PE1 | 0.847 | 0.864 | ||||||
PE2 | 0.923 | 0.908 | ||||||
PE3 | 0.902 | 0.916 | ||||||
PE4 | 0.882 | 0.908 | ||||||
Private information sharing intention | 0.894 | 0.886 | 0.927 | 0.922 | 0.760 | 0.747 | ||
PRS1 | 0.909 | 0.896 | ||||||
PRSI2 | 0.906 | 0.884 | ||||||
PRSI3 | 0.823 | 0.797 | ||||||
PRSI4 | 0.846 | 0.878 |
AL | ER | HB | IS | PBSI | PE | PRSI | |
---|---|---|---|---|---|---|---|
AL | 0.881 | ||||||
ER | 0.406 | 0.921 | |||||
HB | 0.372 | 0.641 | 0.895 | ||||
IS | 0.609 | 0.598 | 0.63 | 0.905 | |||
PBSI | 0.373 | 0.515 | 0.731 | 0.602 | 0.937 | ||
PE | 0.744 | 0.499 | 0.509 | 0.65 | 0.475 | 0.889 | |
PRSI | 0.552 | 0.594 | 0.716 | 0.728 | 0.726 | 0.592 | 0.872 |
AL | ER | HB | IS | PBSI | PE | PRSI | |
---|---|---|---|---|---|---|---|
AL | 0.869 | ||||||
ER | 0.467 | 0.909 | |||||
HB | 0.514 | 0.686 | 0.915 | ||||
IS | 0.698 | 0.613 | 0.689 | 0.909 | |||
PBSI | 0.558 | 0.601 | 0.708 | 0.677 | 0.923 | ||
PE | 0.761 | 0.574 | 0.625 | 0.76 | 0.599 | 0.899 | |
PRSI | 0.608 | 0.533 | 0.685 | 0.754 | 0.75 | 0.648 | 0.864 |
Constructs | Configural Invariance | Compositional Invariance | Partial Measurement Invariance | Equal Mean Assessment | Equal Variance Assessment | Full Measurement Invariance | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Original Correlation | Confidence Interval | Difference | Confidence Interval | Equal | Difference | Confidence Interval | Equal | ||||
AL | Yes | 1.000 | [0.999, 1.000] | Yes | 0.127 | [−0.142, 0.133] | Yes | −0.090 | [−0.203, 0.211] | Yes | Yes |
ER | Yes | 1.000 | [1.000, 1.000] | Yes | 0.010 | [−0.138, 0.146] | Yes | 0.065 | [−0.177, 0.168] | Yes | Yes |
HB | Yes | 1.000 | [1.000, 1.000] | Yes | −0.015 | [−0.139, 0.142] | Yes | 0.001 | [−0.172, 0.154] | Yes | Yes |
IS | Yes | 1.000 | [1.000, 1.000] | Yes | −0.043 | [−0.138, 0.143] | Yes | 0.040 | [−0.196, 0.207] | Yes | Yes |
PBSI | Yes | 1.000 | [1.000, 1.000] | Yes | −0.009 | [−0.142, 0.139] | Yes | 0.057 | [−0.169, 0.161] | Yes | Yes |
PE | Yes | 1.000 | [1.000, 1.000] | Yes | 0.072 | [−0.141, 0.142] | Yes | −0.124 | [−0.209, 0.208] | Yes | Yes |
PRSI | Yes | 1.000 | [1.000, 1.000] | Yes | −0.057 | [−0.144, 0.141] | Yes | 0.048 | [−0.173, 0.188] | Yes | Yes |
Hypothesis | Relationships | Path Coefficient Difference (Reassurance Group—Action Group) | Supported |
---|---|---|---|
H4c | AL → HB | −0.111 ns | - |
H7a | AL → PBSI | −0.138 ns | - |
H7b | AL → PRSI | 0.038 ns | - |
H4b | ER → HB | −0.009 ns | - |
H6a | ER → PBSI | −0.132 ns | - |
H6b | ER → PRSI | 0.106 ns | - |
H2a | HB → PBSI | 0.195 ns | No |
H2b | HB → PRSI | 0.077 ns | No |
H4a | IS → HB | 0.015 ns | - |
H5a | IS → PBSI | −0.03 ns | - |
H5b | IS → PRSI | −0.116 ns | - |
H4d | PE → HB | 0.029 ns | - |
H8a | PE → PBSI | 0.042 ns | - |
H7b | PE → PRSI | −0.017 ns | - |
Hypothesis | Relationships | Path Coefficients | Standard Deviation | T Statistics | Supported | R2 | f2 | Q2 |
---|---|---|---|---|---|---|---|---|
H4c | AL → HB | −0.095 * | 0.038 | 2.518 | Yes | 0.554 | 0.008 | 0.449 |
H4b | ER → HB | 0.392 *** | 0.039 | 10.153 | Yes | 0.211 | ||
H4a | IS → HB | 0.361 *** | 0.04 | 9.019 | Yes | 0.118 | ||
H4d | PE → HB | 0.175 *** | 0.043 | 4.031 | Yes | 0.023 | ||
H7a | AL → PBSI | 0.053 ns | 0.054 | 0.965 | No | 0.572 | 0.003 | 0.489 |
H6a | ER → PBSI | 0.054 ns | 0.043 | 1.269 | No | 0.003 | ||
H2a | HB → PBSI | 0.497 *** | 0.050 | 9.89 | Yes | 0.257 | ||
H5a | IS → PBSI | 0.225 *** | 0.054 | 4.17 | Yes | 0.043 | ||
H8a | PE → PBSI | 0.026 ns | 0.059 | 0.441 | No | 0.001 | ||
- | education → PBSI | −0.037 ns | 0.037 | 0.999 | No | 0.003 | ||
- | gender → PBSI | −0.036 ns | 0.025 | 1.399 | No | 0.003 | ||
H7b | AL → PRSI | 0.137 ** | 0.044 | 3.081 | Yes | 0.643 | 0.021 | 0.479 |
H6b | ER → PRSI | 0.019 ns | 0.038 | 0.499 | No | 0.001 | ||
H2b | HB → PRSI | 0.359 *** | 0.042 | 8.566 | Yes | 0.161 | ||
H5b | IS → PRSI | 0.380 *** | 0.050 | 7.529 | Yes | 0.146 | ||
H8b | PE → PRSI | 0.034 ns | 0.047 | 0.727 | No | 0.001 | ||
- | education → PRSI | 0.017 ns | 0.026 | 0.644 | No | 0.001 | ||
- | gender → PRSI | 0.000 ns | 0.022 | 0.018 | No | 0.000 |
Indirect Effects | Standard Deviation | T Statistics | |
---|---|---|---|
AL → HB → PBSI | −0.047 * | 0.020 | 2.371 |
ER → HB → PBSI | 0.195 *** | 0.027 | 7.187 |
IS → HB → PBSI | 0.179 *** | 0.028 | 6.359 |
PE → HB → PBSI | 0.087 *** | 0.023 | 3.728 |
AL → HB → PRSI | −0.034 * | 0.015 | 2.340 |
ER → HB → PRSI | 0.141 *** | 0.021 | 6.561 |
IS → HB → PRSI | 0.130 *** | 0.021 | 6.139 |
PE → HB → PRSI | 0.063 *** | 0.018 | 3.584 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, H.; Cao, X.; Chen, S.; Liu, L. Public and Private Information Sharing under “New Normal” of COVID-19: Understanding the Roles of Habit and Outcome Expectation. Int. J. Environ. Res. Public Health 2022, 19, 5552. https://doi.org/10.3390/ijerph19095552
Lv H, Cao X, Chen S, Liu L. Public and Private Information Sharing under “New Normal” of COVID-19: Understanding the Roles of Habit and Outcome Expectation. International Journal of Environmental Research and Public Health. 2022; 19(9):5552. https://doi.org/10.3390/ijerph19095552
Chicago/Turabian StyleLv, Han, Xueyan Cao, Shiqi Chen, and Liqun Liu. 2022. "Public and Private Information Sharing under “New Normal” of COVID-19: Understanding the Roles of Habit and Outcome Expectation" International Journal of Environmental Research and Public Health 19, no. 9: 5552. https://doi.org/10.3390/ijerph19095552
APA StyleLv, H., Cao, X., Chen, S., & Liu, L. (2022). Public and Private Information Sharing under “New Normal” of COVID-19: Understanding the Roles of Habit and Outcome Expectation. International Journal of Environmental Research and Public Health, 19(9), 5552. https://doi.org/10.3390/ijerph19095552