Food Practice Lifestyles: Identification and Implications for Energy Sustainability
Abstract
:1. Introduction
2. Background
2.1. Social Practice Theory
2.2. American Food Consumption and Preparation Patterns
2.3. Connections to Energy Use and Sustainability
3. Methods
3.1. Data
3.2. Analytic Approach
4. Results
4.1. Temporal and Locational Patterns of Food-Related Practice
4.1.1. Prevalence
4.1.2. Duration
4.1.3. Periodicity
4.1.4. Sequential Bundling
4.2. Clustered Patterns of Food Practice
4.2.1. Eating Patterns by Cluster
4.2.2. Eating Patterns by Cluster
4.2.3. Cluster Characteristics
Cluster 1: Home for Dinner (24%)
Cluster 2: Home for Breakfast, Lunch and Dinner (22%)
Cluster 3: Out for Lunch (20%)
Cluster 4: Home for Breakfast and Dinner (12%)
Cluster 5: Out for Dinner (11%)
Cluster 6: Out for Lunch and Home for Dinner (8%)
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The Share of Agri-Food Systems in Total Greenhouse Gas Emissions, 1990–2019; FAO: Rome, Italy, 2021; p. 12. [Google Scholar]
- Ritchie, H.; Roser, M. Environmental Impacts of Food Production. Our World in Data. 2021. Available online: https://ourworldindata.org/environmental-impacts-of-food (accessed on 21 December 2021).
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickmeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Rosen, M. Energy Sustainability: A Pragmatic Approach and Illustrations. Sustainability 2009, 1, 55–80. [Google Scholar] [CrossRef] [Green Version]
- Steg, L.; Vlek, C. Encouraging Pro-Environmental Behaviour: An Integrative Review and Research Agenda. J. Environ. Psychol. 2009, 29, 309–317. [Google Scholar] [CrossRef]
- Shove, E. Beyond the ABC: Climate Change Policy and Theories of Social Change. Environ. Plan A 2010, 42, 1273–1285. [Google Scholar] [CrossRef] [Green Version]
- Shove, E. Time to Rethink Energy Research. Nat. Energy 2021, 6, 118–120. [Google Scholar] [CrossRef]
- Strengers, Y. Peak Electricity Demand and Social Practice Theories: Reframing the Role of Change Agents in the Energy Sector. Energy Policy 2012, 44, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Warde, A. Consumption and Theories of Practice. J. Consum. Cult. 2005, 5, 131–153. [Google Scholar] [CrossRef]
- Reckwitz, A. Toward a Theory of Social Practices: A Development in Culturalist Theorizing. Eur. J. Soc. Theory 2002, 5, 243–263. [Google Scholar] [CrossRef]
- Schatzki, T.R.; Knorr-Cetina, K.K.; von Savigny, E. The Practice Turn in Contemporary Theory; Routledge: New York, NY, USA, 2001; ISBN 978-1-134-58629-5. [Google Scholar]
- Hampton, S.; Adams, R. Behavioural Economics vs Social Practice Theory: Perspectives from inside the United Kingdom Government. Energy Res. Soc. Sci. 2018, 46, 214–224. [Google Scholar] [CrossRef]
- Blue, S.; Shove, E.; Forman, P. Conceptualising Flexibility: Challenging Representations of Time and Society in the Energy Sector. Time Soc. 2020, 29, 923–944. [Google Scholar] [CrossRef]
- Southerton, D. Analysing the Temporal Organization of Daily Life: Social Constraints, Practices and Their Allocation. Sociology 2006, 40, 435–454. [Google Scholar] [CrossRef]
- Shove, E.; Cass, N. Time, Practices and Energy Demand: Implications for Flexibility; Insights across DEMAND: Lancaster, UK, 2018; p. 14. Available online: https://eprints.lancs.ac.uk/id/eprint/130369/ (accessed on 2 July 2021).
- Schatzki, T.R. A Primer on Practices: Theory and Research. In Practice-Based Education Perspectives and Strategies; Higgs, J., Barnett, R., Billett, S., Hutchings, M., Trede, F., Eds.; Practice, Education, Work and Society; Sense Publishers: Rotterdam, The Netherlands, 2012; ISBN 978-94-6209-128-3. [Google Scholar]
- Torriti, J. Understanding the Timing of Energy Demand through Time Use Data: Time of the Day Dependence of Social Practices. Energy Res. Soc. Sci. 2017, 25, 37–47. [Google Scholar] [CrossRef]
- Richardson, I.; Thomson, M.; Infield, D. A High-Resolution Domestic Building Occupancy Model for Energy Demand Simulations. Energy Build. 2008, 40, 1560–1566. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.; Thomson, M.; Infield, D.; Clifford, C. Domestic Electricity Use: A High-Resolution Energy Demand Model. Energy Build. 2010, 42, 1878–1887. [Google Scholar] [CrossRef] [Green Version]
- Wilke, U.; Haldi, F.; Scartezzini, J.-L.; Robinson, D. A Bottom-up Stochastic Model to Predict Building Occupants’ Time-Dependent Activities. Build. Environ. 2013, 60, 254–264. [Google Scholar] [CrossRef]
- Barthelmes, V.M.; Li, R.; Andersen, R.K.; Bahnfleth, W.; Corgnati, S.P.; Rode, C. Profiling Occupant Behaviour in Danish Dwellings Using Time Use Survey Data. Energy Build. 2018, 177, 329–340. [Google Scholar] [CrossRef]
- Bertrand, M.; Schanzenbach, D.W. Time Use and Food Consumption. Am. Econ. Rev. 2009, 99, 170–176. [Google Scholar] [CrossRef]
- Hamermesh, D.S. Incentives, Time Use and BMI: The Roles of Eating, Grazing and Goods. Econ. Hum. Biol. 2010, 8, 2–15. [Google Scholar] [CrossRef]
- Kolodinsky, J.M.; Goldstein, A.B. Time Use and Food Pattern Influences on Obesity. Obesity 2011, 19, 2327–2335. [Google Scholar] [CrossRef]
- Albert, A.; Rajagopal, R. Smart Meter Driven Segmentation: What Your Consumption Says About You. IEEE Trans. Power Syst. 2013, 28, 4019–4030. [Google Scholar] [CrossRef]
- Kwac, J.; Flora, J.; Rajagopal, R. Household Energy Consumption Segmentation Using Hourly Data. IEEE Trans. Smart Grid 2014, 5, 420–430. [Google Scholar] [CrossRef]
- Bourdieu, P. Outline of a Theory of Practice; Cambridge Studies in Social Anthropology; No. 16; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1977; ISBN 978-0-521-21178-9. [Google Scholar]
- Bourdieu, P. The Logic of Practice; Stanford University Press: Redwood City, CA, USA, 1990; ISBN 978-0-8047-2011-3. [Google Scholar]
- Giddens, A. The Constitution of Society: Outline of the Theory of Structuration; University of California Press: Berkeley, CA, USA, 1984; ISBN 978-0-520-05292-5. [Google Scholar]
- Warde, A. The Sociology of Consumption: Its Recent Development. Annu. Rev. Sociol. 2015, 41, 117–134. [Google Scholar] [CrossRef]
- Warde, A. Consumption: A Sociological Analysis; Palgrave Macmillan UK: London, UK, 2016; ISBN 978-1-137-55682-0. [Google Scholar]
- Balke, T.; Roberts, T.; Xenitidou, M.; Gilbert, N. Model Description: Social Practice Model. 4. Available online: http://www.wholesem.ac.uk/documents/social-practices-documentation (accessed on 22 December 2021).
- Castelo, A.F.M.; Schäfer, M.; Silva, M.E. Food Practices as Part of Daily Routines: A Conceptual Framework for Analysing Networks of Practices. Appetite 2021, 157, 104978. [Google Scholar] [CrossRef]
- Hui, A. Variation and the Intersection of Practices. In The Nexus of Practices: Connections, Constellations, Practitioners; Hui, A., Schatzki, T.R., Shove, E., Eds.; Routledge: Abingdon, UK; New York, NY, USA, 2017; pp. 52–67. ISBN 978-1-138-67514-8. [Google Scholar]
- Southerton, D. Habits, Routines and Temporalities of Consumption: From Individual Behaviours to the Reproduction of Everyday Practices. Time Soc. 2012, 22, 335–355. [Google Scholar] [CrossRef]
- Stelmach, G.; Zanocco, C.; Flora, J.; Rajagopal, R.; Boudet, H.S. Exploring Household Energy Rules and Activities during Peak Demand to Better Determine Potential Responsiveness to Time-of-Use Pricing. Energy Policy 2020, 144, 111608. [Google Scholar] [CrossRef]
- Warde, A.; Cheng, S.-L.; Olsen, W.; Southerton, D. Changes in the Practice of Eating: A Comparative Analysis of Time-Use. Acta Sociol. 2007, 50, 363–385. [Google Scholar] [CrossRef]
- National Center for Health Statistics. Health, United States 2019; National Center for Health Statistics: Hyattsville, MD, USA, 2021; p. 9. [Google Scholar]
- Smith, L.P.; Ng, S.W.; Popkin, B.M. Trends in US Home Food Preparation and Consumption: Analysis of National Nutrition Surveys and Time Use Studies from 1965–1966 to 2007–2008. Nutr. J. 2013, 12, 45. [Google Scholar] [CrossRef] [Green Version]
- Zeballos, E.; Todd, J.E.; Restrepo, B. Frequency and Time of Day That Americans Eat: A Comparison of Data from the American Time Use Survey and the National Health and Nutrition Examination Survey; United States Department of Agriculture (USDA): Washington, DC, USA, 2019; p. 31. [Google Scholar]
- Flood, S.M.; Hill, R.; Genadek, K.R. Daily Temporal Pathways: A Latent Class Approach to Time Diary Data. Soc. Indic. Res. 2018, 135, 117–142. [Google Scholar] [CrossRef] [Green Version]
- Durand-Daubin, M. Talk: Practice-Hunting Using Time Use Surveys. In Proceedings of the BEHAVE 2014, Said Business School, Oxford, UK, 3 September 2014. [Google Scholar]
- Kalenkoski, C.M.; Hamrick, K.S.; Andrews, M. Time Poverty Thresholds and Rates for the US Population. Soc. Indic. Res. 2011, 104, 129–155. [Google Scholar] [CrossRef]
- Kalenkoski, C.M.; Hamrick, K.S. How Does Time Poverty Affect Behavior? A Look at Eating and Physical Activity. Appl. Econ. Perspect. Policy 2013, 35, 89–105. [Google Scholar] [CrossRef] [Green Version]
- California ISO. What the Duck Curve Tells Us about Managing a Green Grid; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Center for Sustainable Systems, University of Michigan. U.S. Food System Factsheet; University of Michigan: Ann Arbor, MI, USA, 2020. [Google Scholar]
- Grünewald, P.; Diakonova, M. The Specific Contributions of Activities to Household Electricity Demand. Energy Build. 2019, 204, 109498. [Google Scholar] [CrossRef]
- Strengers, Y.; Nicholls, L.; Maller, C. Curious Energy Consumers: Humans and Nonhumans in Assemblages of Household Practice. J. Consum. Cult. 2016, 16, 761–780. [Google Scholar] [CrossRef]
- Higginson, S.; Thomson, M.; Bhamra, T. “For the Times They Are a-Changin”: The Impact of Shifting Energy-Use Practices in Time and Space. Local Environ. 2014, 19, 520–538. [Google Scholar] [CrossRef]
- Powells, G.; Bulkeley, H.; Bell, S.; Judson, E. Peak Electricity Demand and the Flexibility of Everyday Life. Geoforum 2014, 55, 43–52. [Google Scholar] [CrossRef] [Green Version]
- U.S. Bureau of Labor Statistics American Time Use Survey Home Page. Available online: https://www.bls.gov/tus/ (accessed on 17 November 2020).
- Hofferth, S.L.; Flood, S.M.; Sobek, M.; Backman, D. American Time Use Survey Data Extract Builder: Version 2.8 [Dataset]; University of Maryland and Minneapolis: College Park, MD, USA; IPUMS: Minneapolis, MN, USA, 2020. [Google Scholar]
- Wu, J. Cluster Analysis and K-Means Clustering: An Introduction. In Advances in K-Means Clustering: A Data Mining Thinking; Wu, J., Ed.; Springer Theses; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–16. ISBN 978-3-642-29807-3. [Google Scholar]
- Kwac, J.; Flora, J.; Rajagopal, R. Lifestyle Segmentation Based on Energy Consumption Data. IEEE Trans. Smart Grid 2018, 9, 2409–2418. [Google Scholar] [CrossRef]
- Bernardi, L.; Huinink, J.; Settersten, R.A. The Life Course Cube: A Tool for Studying Lives. Adv. Life Course Res. 2019, 41, 100258. [Google Scholar] [CrossRef]
- Elder, G.H., Jr. Time, Human Agency, and Social Change: Perspectives on the Life Course. Soc. Psychol. Q. 1994, 57, 4. [Google Scholar] [CrossRef]
- Settersten, R.A. It Takes Two to Tango: The (Un)Easy Dance between Life-Course Sociology and Life-Span Psychology. Adv. Life Course Res. 2009, 14, 74–81. [Google Scholar] [CrossRef]
- Hager, T.J.; Morawicki, R. Energy Consumption during Cooking in the Residential Sector of Developed Nations: A Review. Food Policy 2013, 40, 54–63. [Google Scholar] [CrossRef]
- Karlin, B.; Davis, N.; Sanguinetti, A.; Gamble, K.; Kirkby, D.; Stokols, D. Dimensions of Conservation: Exploring Differences among Energy Behaviors. Environ. Behav. 2014, 46, 423–452. [Google Scholar] [CrossRef] [Green Version]
- McLoughlin, F.; Duffy, A.; Conlon, M. A Clustering Approach to Domestic Electricity Load Profile Characterisation Using Smart Metering Data. Appl. Energy 2015, 141, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Buechler, E.; Powell, S.; Sun, T.; Astier, N.; Zanocco, C.; Bolorinos, J.; Flora, J.; Boudet, H.; Rajagopal, R. Global Changes in Electricity Consumption during COVID-19. iScience 2022, 25, 103568. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary Reduction in Daily Global CO2 Emissions during the COVID-19 Forced Confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Creutzig, F.; Niamir, L.; Bai, X.; Callaghan, M.; Cullen, J.; Díaz-José, J.; Figueroa, M.; Grubler, A.; Lamb, W.F.; Leip, A.; et al. Demand-Side Solutions to Climate Change Mitigation Consistent with High Levels of Well-Being. Nat. Clim. Chang. 2022, 12, 36–46. [Google Scholar] [CrossRef]
Food Practice Element | Definition |
---|---|
Prevalence | Proportion of population engaging in various food-related activities |
Duration | Duration of all food-related activities as (1) total time spent; (2) a percentage of the day; and (3) a percentage of all food-related activities |
Periodicity | Pattern of events over the course of the day, including peak duration at various intervals (morning, midday, evening) |
Sequential Bundling | Sequence of selected food-related activities (preparation, eating/drinking, cleaning) in combinations that occur in close temporal and locational proximity |
At-Home Cluster Membership | ||||
---|---|---|---|---|
Home Cluster 1 | Home Cluster 2 | Home Cluster 3 | ||
Not-Home Cluster Membership | Not-home Cluster 1 | Cluster 1 | Cluster 2 | Cluster 3 |
Not-home Cluster 2 | Cluster 4 | Cluster 5 | Cluster 6 | |
Not-home Cluster 3 | Cluster 7 | Cluster 8 | Cluster 9 |
Percent 2 | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | Category | Sample 1 | (1) Home Dinner | (2) Home B, L and D | (3) Out to Lunch | (4) Home B and D | (5) Out to Dinner | (6) Out L, Home D |
Age | 15–24 | 16.7 | 15.8 | 12.8 | 18.4 | 15.0 | 25.7 | 16.1 |
25–64 | 65.2 | 65.5 | 54.1 | 71.9 | 69.8 | 61.9 | 76.5 | |
65+ | 18.2 | 18.7 | 33.1 | 9.7 | 15.2 | 12.4 | 7.4 | |
Sex | Male | 48.4 | 46.0 | 42.1 | 52.8 | 55.9 | 48.1 | 51.4 |
Female | 51.6 | 54.0 | 57.9 | 47.2 | 44.1 | 51.9 | 48.6 | |
Race | White | 80.9 | 80.9 | 80.9 | 80.9 | 77.1 | 81.8 | 85.3 |
Black | 12.3 | 12.2 | 12.7 | 12.1 | 16.8 | 10.6 | 7.3 | |
Asian | 4.3 | 4.0 | 4.4 | 4.6 | 3.9 | 4.3 | 5.2 | |
NA/PI/ HI | 1.1 | 1.3 | 0.8 | 0.9 | 1.0 | 1.2 | 1.4 | |
Multiple | 1.4 | 1.6 | 1.2 | 1.5 | 1.3 | 2.0 | 0.8 | |
Ethnicity | Hispanic | 15.9 | 14.1 | 16.7 | 19.8 | 15.2 | 12.3 | 15.5 |
Not Hispanic | 84.1 | 85.9 | 83.3 | 80.2 | 84.8 | 87.7 | 84.5 | |
Education | No BA | 44.1 | 45.8 | 49.1 | 41.2 | 44.1 | 37.4 | 41.1 |
BA and higher | 25.4 | 25.5 | 24.8 | 25.0 | 26.3 | 28.0 | 22.7 | |
30.5 | 28.7 | 26.1 | 33.7 | 29.5 | 34.6 | 36.2 | ||
Employment | Employed | 61.7 | 54.8 | 36.2 | 80.6 | 67.7 | 73.0 | 84.9 |
Unemployed/NILF | 38.3 | 38.2 | 56.9 | 17.1 | 26.9 | 22.8 | 13.8 | |
Marital Status | Married | 52.2 | 56.9 | 54.0 | 49.0 | 47.0 | 42.9 | 61.9 |
Not married | 47.8 | 43.1 | 46.0 | 51.0 | 53.0 | 57.1 | 38.1 | |
Household Size | 1–2 | 75.3 | 72.7 | 80.0 | 73.6 | 75.8 | 77.9 | 66.6 |
3–5 | 14.3 | 15.6 | 11.4 | 14.8 | 14.0 | 12.7 | 21.6 | |
6+ | 10.0 | 11.3 | 7.9 | 11.3 | 10.1 | 9.4 | 9.7 | |
Children < 5 in HH | No child(ren) < 5 | 86.6 | 85.8 | 86.9 | 86.9 | 87.3 | 89.5 | 81.9 |
Child(ren) < 5 | 13.4 | 14.2 | 13.1 | 13.1 | 12.7 | 10.5 | 18.1 | |
Home Ownership | Owned | 72.8 | 73.5 | 73.7 | 70.6 | 70.1 | 72.8 | 77.0 |
Rented | 27.2 | 26.5 | 26.3 | 29.4 | 29.9 | 27.2 | 23.0 | |
Family Income | <25 K | 23.2 | 23.9 | 32.7 | 17.6 | 25.3 | 17.4 | 13.3 |
25 K–49 K | 22.4 | 22.8 | 25.4 | 21.0 | 22.3 | 18.9 | 21.4 | |
50 K–99 K | 27.0 | 26.8 | 22.5 | 29.3 | 26.3 | 31.5 | 29.7 | |
100 K+ | 27.3 | 26.5 | 19.3 | 32.2 | 26.1 | 32.2 | 35.6 | |
Household Poverty | Income ≥ 185% | 65.2 | 63.7 | 54.0 | 72.4 | 64.6 | 73.5 | 74.3 |
Income < 185% | 32.2 | 33.3 | 42.2 | 25.8 | 33.0 | 24.9 | 24.5 | |
Ref/DK/NIU | 2.6 | 3.1 | 3.7 | 1.8 | 2.4 | 1.6 | 1.3 | |
Purchased fast food | Did not purchase | 42.9 | 47.0 | 52.2 | 35.2 | 42.5 | 32.4 | 37.3 |
Purchased | 56.8 | 52.5 | 47.4 | 64.5 | 57.3 | 67.0 | 62.4 | |
Refused/ DK/NIU | 0.4 | 0.5 | 0.4 | 0.3 | 0.2 | 0.6 | 0.3 | |
Metro Status | Metro | 84.0 | 84.0 | 82.1 | 86.0 | 82.9 | 85.9 | 83.5 |
Nonmetro | 15.2 | 15.1 | 16.8 | 13.6 | 16.0 | 13.7 | 15.7 | |
Metro NA | 0.8 | 0.9 | 1.1 | 0.4 | 1.1 | 0.4 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordono, L.S.; Flora, J.; Zanocco, C.; Boudet, H. Food Practice Lifestyles: Identification and Implications for Energy Sustainability. Int. J. Environ. Res. Public Health 2022, 19, 5638. https://doi.org/10.3390/ijerph19095638
Giordono LS, Flora J, Zanocco C, Boudet H. Food Practice Lifestyles: Identification and Implications for Energy Sustainability. International Journal of Environmental Research and Public Health. 2022; 19(9):5638. https://doi.org/10.3390/ijerph19095638
Chicago/Turabian StyleGiordono, Leanne S., June Flora, Chad Zanocco, and Hilary Boudet. 2022. "Food Practice Lifestyles: Identification and Implications for Energy Sustainability" International Journal of Environmental Research and Public Health 19, no. 9: 5638. https://doi.org/10.3390/ijerph19095638
APA StyleGiordono, L. S., Flora, J., Zanocco, C., & Boudet, H. (2022). Food Practice Lifestyles: Identification and Implications for Energy Sustainability. International Journal of Environmental Research and Public Health, 19(9), 5638. https://doi.org/10.3390/ijerph19095638