Perturbation of Circadian Rhythm Is Associated with Increased Prevalence of Chronic Kidney Disease: Results of the Korean Nationwide Population-Based Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Assessment of Sleep Parameters
2.3. Assessment of Work Schedule
2.4. Assessment of Covariates
2.5. Statistical Analyses
3. Results
3.1. General Characteristics of the Participants
3.2. Association between Sleep Disturbance and CKD
3.3. Work Schedule and CKD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayyar, V.S.; Sukumaran, S. Circadian rhythms: Influence on physiology, pharmacology, and therapeutic interventions. J. Pharmacokinet. Pharmacodyn. 2021, 48, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Giudice, A.; Crispo, A.; Grimaldi, M.; Polo, A.; Bimonte, S.; Capunzo, M.; Amore, A.; D’Arena, G.; Cerino, P.; Budillon, A.; et al. The Effect of Light Exposure at Night (LAN) on Carcinogenesis via Decreased Nocturnal Melatonin Synthesis. Molecules 2018, 23, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Tang, Q.; Chen, G.; Xie, M.; Yu, S.; Zhao, J.; Chen, L. New Insights Into the Circadian Rhythm and Its Related Diseases. Front. Physiol. 2019, 10, 682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.H.; Yang, G.R. Recent advances in circadian rhythms in cardiovascular system. Front. Pharmacol. 2015, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serin, Y.; Tek, N.A. Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance. Ann. Nutr. Metab. 2019, 74, 322–330. [Google Scholar] [CrossRef]
- Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl. Acad. Sci. USA 2014, 111, 16219–16224. [Google Scholar] [CrossRef] [Green Version]
- Stow, L.R.; Gumz, M.L. The circadian clock in the kidney. J. Am. Soc. Nephrol. JASN 2011, 22, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.G.; Pollock, D.M. Circadian regulation of renal function. Free Radic. Biol. Med. 2018, 119, 93–107. [Google Scholar] [CrossRef]
- Firsov, D.; Bonny, O. Circadian rhythms and the kidney. Nat. Rev. Nephrol. 2018, 14, 626–635. [Google Scholar] [CrossRef]
- Kamperis, K.; Hagstroem, S.; Radvanska, E.; Rittig, S.; Djurhuus, J.C. Excess diuresis and natriuresis during acute sleep deprivation in healthy adults. Am. J. Physiol. Physiol. 2010, 299, F404–F411. [Google Scholar] [CrossRef]
- Motohashi, H.; Tahara, Y.; Whittaker, D.S.; Wang, H.B.; Yamaji, T.; Wakui, H.; Haraguchi, A.; Yamazaki, M.; Miyakawa, H.; Hama, K.; et al. The circadian clock is disrupted in mice with adenine-induced tubulointerstitial nephropathy. Kidney Int. 2020, 97, 728–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, R.; Shinzawa, M.; Isaka, Y.; Yamakoshi, E.; Imai, E.; Ohashi, Y.; Hishida, A. Sleep Quality and Sleep Duration with CKD are Associated with Progression to ESKD. Clin. J. Am. Soc. Nephrol. CJASN 2018, 13, 1825–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bo, Y.; Yeoh, E.K.; Guo, C.; Zhang, Z.L.; Tam, T.; Chan, T.C.; Chang, L.Y.; Lao, X.Q. Sleep and the Risk of Chronic Kidney Disease: A Cohort Study. J. Clin. Sleep Med. 2019, 15, 393–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data Resource Profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Thio, C.H.L.; Vart, P.; Kieneker, L.M.; Snieder, H.; Gansevoort, R.T.; Bültmann, U. Educational level and risk of chronic kidney disease: Longitudinal data from the PREVEND study. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transplant Assoc. Eur. Ren. Assoc. 2020, 35, 1211–1218. [Google Scholar] [CrossRef]
- Delanaye, P.; Jager, K.J.; Bökenkamp, A.; Christensson, A.; Dubourg, L.; Eriksen, B.O.; Gaillard, F.; Gambaro, G.; van der Giet, M.; Glassock, R.J.; et al. CKD: A Call for an Age-Adapted Definition. J. Am. Soc. Nephrol. JASN 2019, 30, 1785–1805. [Google Scholar] [CrossRef]
- Li, J.J.; Huang, Z.; Hou, J.H.; Sawyer, A.M.; Wu, Z.J.; Cai, J.F.; Curhan, G.; Wu, S.L.; Gao, X. Sleep and CKD in Chinese Adults: A Cross-Sectional Study. Clin. J. Am. Soc. Nephrol. 2017, 12, 885–892. [Google Scholar] [CrossRef] [Green Version]
- McMullan, C.J.; Curhan, G.C.; Forman, J.P. Association of short sleep duration and rapid decline in renal function. Kidney Int. 2016, 89, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Myung, J.; Wu, M.Y.; Lee, C.Y.; Rahim, A.R.; Truong, V.H.; Wu, D.; Piggins, H.D.; Wu, M.S. The Kidney Clock Contributes to Timekeeping by the Master Circadian Clock. Int. J. Mol. Sci. 2019, 20, 2765. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, A.C.; Knutson, K.; Chen, J.; Appel, L.J.; Bazzano, L.; Carmona-Powell, E.; Cohan, J.; Tamura, M.K.; Steigerwalt, S.; Thornton, J.D.; et al. The Association of Sleep Duration and Quality with CKD Progression. J. Am. Soc. Nephrol. 2017, 28, 3708–3715. [Google Scholar] [CrossRef]
- Choi, H.; Kim, H.C.; Lee, J.Y.; Lee, J.M.; Choi, D.P.; Suh, I. Sleep duration and chronic kidney disease: The Korean Genome and Epidemiology Study (KoGES)-Kangwha study. Korean J. Intern. Med. 2017, 32, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikbakhtian, S.; Reed, A.B.; Obika, B.D.; Morelli, D.; Cunningham, A.C.; Aral, M.; Plans, D. Accelerometer-derived sleep onset timing and cardiovascular disease incidence: A UK Biobank cohort study. Eur. Heart J. Digit. Health 2021, 2, 658–666. [Google Scholar] [CrossRef]
- Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.J. Overview and Description of Circadian Rhythm Sleep Disorders. In Encycl of Sleep; Kushida, C.A., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 11–15. [Google Scholar]
- Tokonami, N.; Mordasini, D.; Pradervand, S.; Centeno, G.; Jouffe, C.; Maillard, M.; Bonny, O.; Gachon, F.; Gomez, R.A.; Sequeira-Lopez, M.L.S.; et al. Local Renal Circadian Clocks Control Fluid-Electrolyte Homeostasis and BP. J. Am. Soc. Nephrol. 2014, 25, 1430–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razavi, P.; Devore, E.E.; Bajaj, A.; Lockley, S.W.; Figueiro, M.G.; Ricchiuti, V.; Gauderman, W.J.; Hankinson, S.E.; Willett, W.C.; Schernhammer, E.S. Shift Work, Chronotype, and Melatonin Rhythm in Nurses. Cancer Epidemiol. Biomark. Prév. 2019, 28, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Hrenak, J.; Paulis, L.; Repova, K.; Aziriova, S.; Nagtegaal, E.J.; Reiter, R.J.; Simko, F. Melatonin and Renal Protection: Novel Perspectives from Animal Experiments and Human Studies (Review). Curr. Pharm. Des. 2015, 21, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Hasan, A.U.; Kobori, H. Melatonin in chronic kidney disease: A promising chronotherapy targeting the intrarenal renin–angiotensin system. Hypertens. Res. 2019, 42, 920–923. [Google Scholar] [CrossRef]
- Ohashi, N.; Ishigaki, S.; Isobe, S. The pivotal role of melatonin in ameliorating chronic kidney disease by suppression of the renin–angiotensin system in the kidney. Hypertens. Res. 2019, 42, 761–768. [Google Scholar] [CrossRef]
- Santhi, N.; Lazar, A.S.; McCabe, P.J.; Lo, J.C.; Groeger, J.A.; Dijk, D.J. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc. Natl. Acad. Sci. USA 2016, 113, E2730–E2739. [Google Scholar] [CrossRef] [Green Version]
- Wong, I.S.; Smith, P.M.; Mustard, C.A.; Gignac, M.A. For better or worse? Changing shift schedules and the risk of work injury among men and women. Scand. J. Work Environ. Health 2014, 40, 621–630. [Google Scholar] [CrossRef]
- Cain, S.W.; Dennison, C.F.; Zeitzer, J.M.; Guzik, A.M.; Khalsa, S.B.S.; Santhi, N.; Schoen, M.W.; Czeisler, C.A.; Duffy, J.F. Sex Differences in Phase Angle of Entrainment and Melatonin Amplitude in Humans. J. Biol. Rhythm. 2010, 25, 288–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, J.F.; Cain, S.W.; Chang, A.-M.; Phillips, A.J.K.; Münch, M.Y.; Gronfier, C.; Wyatt, J.K.; Dijk, D.-J.; Wright, K.P.; Czeisler, C.A. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc. Natl. Acad. Sci. USA 2011, 108, 15602–15608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, Y.; Zhu, Y.; Li, X.; Song, Y.; Yuan, J. Rotating Night Shift Work, Exposure to Light at Night, and Glomerular Filtration Rate: Baseline Results from a Chinese Occupational Cohort. Int. J. Environ. Res. Public Health 2020, 17, 9035. [Google Scholar] [CrossRef] [PubMed]
- Charles, L.E.; Gu, J.K.; Fekedulegn, D.; Andrew, M.E.; Violanti, J.M.; Burchfiel, C.M. Association Between Shiftwork and Glomerular Filtration Rate in Police Officers. J. Occup. Environ. Med. 2013, 55, 1323–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.I.; Baek, H.; Jung, H.H. Prevalence of Chronic Kidney Disease in Korea: The Korean National Health and Nutritional Examination Survey 2011–2013. J. Korean Med. Sci. 2016, 31, 915–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.F.; Lucas, H.C.; Shmueli, G. Too Big to Fail: Large Samples and the p-Value Problem. Inf. Syst. Res. 2013, 24, 906–917. [Google Scholar] [CrossRef] [Green Version]
Control (n = 16,445) | CKD (n = 963) | p | |||
---|---|---|---|---|---|
n (or MEAN) | % (or STD) | n (or MEAN) | % (or STD) | ||
SEX | <0.0001 | ||||
Male | 7078 | 43.04 | 515 | 53.48 | |
Female | 9367 | 56.96 | 448 | 46.52 | |
Age | 50.42 | 16.47 | 66.17 | 15.27 | <0.0001 |
BMI | 23.91 | 3.54 | 24.8 | 3.69 | <0.0001 |
Education | <0.0001 | ||||
Completion of middle school | 4786 | 29.14 | 552 | 57.44 | |
Higher than high school | 11,640 | 70.86 | 409 | 42.56 | |
Smoking status | <0.0001 | ||||
No | 9984 | 60.85 | 507 | 53.03 | |
Yes | 6424 | 39.15 | 449 | 46.97 | |
Drinking status | <0.0001 | ||||
No | 1721 | 10.49 | 209 | 21.84 | |
Yes | 14,692 | 89.51 | 748 | 78.16 | |
Physical activity | <0.0001 | ||||
<2 days/week | 15,076 | 91.69 | 935 | 97.19 | |
≥2 days/week | 1366 | 8.31 | 27 | 2.81 | |
Diabetes | <0.0001 | ||||
No | 15,090 | 91.76 | 640 | 66.46 | |
Yes | 1355 | 8.24 | 323 | 33.54 | |
Hypertension | <0.0001 | ||||
No | 12,789 | 77.77 | 349 | 36.24 | |
Yes | 3656 | 22.23 | 614 | 63.76 | |
Sleep onset time | <0.0001 | ||||
Early bedtime | 1886 | 11.58 | 248 | 25.81 | |
Mid bedtime | 13,044 | 80.11 | 660 | 68.68 | |
Late bedtime | 1352 | 8.30 | 53 | 5.52 | |
Sleep duration | <0.0001 | ||||
<6 h/day | 2345 | 14.26 | 120 | 12.46 | |
6–<8 h/day | 9169 | 55.76 | 475 | 49.33 | |
≥8 h/day | 4931 | 29.98 | 368 | 38.21 | |
SBP | 118.32 | 16.44 | 128.3 | 18.64 | <0.0001 |
DBP | 75.46 | 10.02 | 73.98 | 12.65 | 0.004 |
Cr | 0.79 | 0.16 | 1.23 | 0.81 | <0.0001 |
FBG | 100.47 | 23.12 | 115.44 | 38.61 | <0.0001 |
TG | 134.53 | 110.24 | 159.96 | 126.96 | <0.0001 |
MODEL 1 | MODEL 2 | MODEL 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | ||||
Sleep onset time | <0.0001 | 0.016 | 0.046 | |||||||||
Early bedtime | 2.599 | 2.228 | 3.031 | 1.086 | 0.922 | 1.280 | 1.049 | 0.883 | 1.248 | |||
Mid bedtime | REF | REF | REF | |||||||||
Late bedtime | 0.775 | 0.582 | 1.031 | 1.531 | 1.135 | 2.066 | 1.479 | 1.083 | 2.020 | |||
Sleep duration | <0.0001 | 0.061 | 0.047 | |||||||||
<6 h/day | 0.988 | 0.804 | 1.213 | 0.887 | 0.718 | 1.095 | 0.852 | 0.685 | 1.058 | |||
6 to <8 h/day | REF | REF | REF | |||||||||
≥8 h/day | 1.441 | 1.252 | 1.658 | 1.133 | 0.978 | 1.312 | 1.123 | 0.963 | 1.309 |
MODEL 1 | MODEL 2 | MODEL 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | ||||
Sleep onset time | <0.0001 | 0.005 | 0.037 | |||||||||
Early bedtime | 2.921 | 2.033 | 4.196 | 1.748 | 1.175 | 2.602 | 1.535 | 1.011 | 2.330 | |||
Mid bedtime | REF | REF | REF | |||||||||
Late bedtime | 1.186 | 0.762 | 1.845 | 1.536 | 0.976 | 2.417 | 1.485 | 0.942 | 2.339 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Son, S.; Yang, J.; Oh, S.; Jo, S.-K.; Cho, W.; Kim, M.-G. Perturbation of Circadian Rhythm Is Associated with Increased Prevalence of Chronic Kidney Disease: Results of the Korean Nationwide Population-Based Survey. Int. J. Environ. Res. Public Health 2022, 19, 5732. https://doi.org/10.3390/ijerph19095732
Fang Y, Son S, Yang J, Oh S, Jo S-K, Cho W, Kim M-G. Perturbation of Circadian Rhythm Is Associated with Increased Prevalence of Chronic Kidney Disease: Results of the Korean Nationwide Population-Based Survey. International Journal of Environmental Research and Public Health. 2022; 19(9):5732. https://doi.org/10.3390/ijerph19095732
Chicago/Turabian StyleFang, Yina, Serhim Son, Jihyun Yang, Sewon Oh, Sang-Kyung Jo, Wonyong Cho, and Myung-Gyu Kim. 2022. "Perturbation of Circadian Rhythm Is Associated with Increased Prevalence of Chronic Kidney Disease: Results of the Korean Nationwide Population-Based Survey" International Journal of Environmental Research and Public Health 19, no. 9: 5732. https://doi.org/10.3390/ijerph19095732
APA StyleFang, Y., Son, S., Yang, J., Oh, S., Jo, S. -K., Cho, W., & Kim, M. -G. (2022). Perturbation of Circadian Rhythm Is Associated with Increased Prevalence of Chronic Kidney Disease: Results of the Korean Nationwide Population-Based Survey. International Journal of Environmental Research and Public Health, 19(9), 5732. https://doi.org/10.3390/ijerph19095732