The Relationship between Exposure to Airborne Particulate and DNA Adducts in Blood Cells in an Urban Population of Subjects with an Unhealthy Body Mass Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Exposure Assessment
2.3. Sample Collection. Blood Analyses. DNA Extraction
2.4. DNA Adducts Analysis by 32P Post-Labelling
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajagopalan, S.; Al-Kindi, S.G.; Brook, R.D. Air pollution and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2018, 72, 2054–2070. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.D.; Bell, M.L.; Geyh, A.S.; McDermott, A.; Zeger, S.L.; Samet, J.M.; Dominici, F. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ. Health Perspect. 2009, 117, 957–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pothirat, C.; Chaiwong, W.; Liwsrisakun, C.; Bumroongkit, C.; Deesomchok, A.; Theerakittikul, T.; Limsukon, A.; Tajaroenmuang, P.; Phetsuk, N. Influence of particulate matter during seasonal smog on quality of life and lung function in patients with chronic obstructive pulmonary disease. Int. J. Environ. Res. Public Health 2019, 16, 106. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.M. Human carcinogenic risk evaluation: An alternative approach to the two-year rodent bioassay. Toxicol. Sci. 2004, 80, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 2007, 356, 447–458. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monographs on the Evaluation of Carcinogenic Risk to Humans; International Agency for Research on Cancer: Lyon, France, 2015; Volume 112, p. 27. [Google Scholar]
- Zhang, Y.X.; Tao, S.; Shen, H.Z.; Ma, J. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. Proc. Natl. Acad. Sci. USA 2009, 106, 21063–21067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srám, R.J.; Binková, B. Molecular epidemiology studies on occupational and environmental exposure to mutagens and carcinogens, 1997–1999. Environ. Health Perspect. 2000, 108, 57–70. [Google Scholar]
- Di, Q.; Wang, Y.; Zanobetti, A.; Wang, Y.; Koutrakis, P.; Choirat, C.; Dominici, F.; Schwartz, J.D. Air pollution and mortality in the Medicare population. N. Engl. J. Med. 2017, 376, 2513–2522. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.; Saldiva, P.H.; Lavigne, E.; Matus, P.; et al. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef]
- Bigi, A.; Ghermandi, G. Long-term trend and variability of atmospheric PM10 concentration in the Po Valley. Atmos. Chem. Phys. 2014, 14, 4895–4907. [Google Scholar] [CrossRef] [Green Version]
- García-Suástegui, W.A.; Huerta-Chagoya, A.; Carrasco-Colín, K.L.; Pratt, M.M.; John, K.; Petrosyan, P.; Rubio, J.; Poirier, M.C.; Gonsebatt, M.E. Seasonal variations in the levels of PAH-DNA adducts in young adults living in Mexico City. Mutagenesis 2011, 26, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Gábelová, A.; Valovicová, Z.; Lábaj, J.; Bacová, G.; Binková, B.; Farmer, P.B. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10). Mutat. Res. 2007, 620, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Sevastyanova, O.; Novakova, Z.; Hanzalova, K.; Binkova, B.; Sram, R.J.; Topinka, J. Temporal variation in the genotoxic potential of urban air particulate matter. Mutat. Res. 2008, 649, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Topinka, J.; Schwarz, L.R.; Wiebel, F.J.; Cerná, M.; Wolff, T. Genotoxicity of urban air pollutants in the Czech Republic. Part II. DNA adduct formation in mammalian cells by extractable organic matter. Mutat. Res. 2000, 469, 83–93. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chiang, H.C.; Hsu, C.Y.; Yang, T.T.; Lin, T.Y.; Chen, M.J.; Chen, N.T.; Wu, Y.S. Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environ. Pollut. 2016, 218, 372–382. [Google Scholar] [CrossRef]
- Lepers, C.; André, V.; Dergham, M.; Billet, S.; Verdin, A.; Garçon, G.; Dewaele, D.; Cazier, F.; Sichel, F.; Shirali, P. Xenobiotic metabolism induction and bulky DNA adducts generated by particulate matter pollution in BEAS-2B cell line: Geographical and seasonal influence. J. Appl. Toxicol. 2014, 34, 703–713. [Google Scholar] [CrossRef]
- Salcido-Neyoy, M.E.; Sánchez-Pérez, Y.; Osornio-Vargas, A.R.; Gonsebatt, M.E.; Meléndez-Zajgla, J.; Morales-Bárcenas, R.; Petrosyan, P.; Molina-Servin, E.D.; Vega, E.; Manzano-León, N.; et al. Induction of c-Jun by air particulate matter (PM10) of Mexico city: Participation of polycyclic aromatic hydrocarbons. Environ. Pollut. 2015, 203, 175–182. [Google Scholar] [CrossRef]
- Mao, S.; Li, S.; Wang, C.; Li, Y.L.N.; Liu, F.; Huang, S.; Liu, S.; Lu, Y.; Mao, Z.; Huo, W.; et al. Is long-term PM1 exposure associated with blood lipids and dyslipidemias in a Chinese rural population? Environ. Int. 2020, 138, 105637. [Google Scholar] [CrossRef]
- Bollati, V.; Angelici, L.; Rizzo, G.; Pergoli, L.; Rota, F.; Hoxha, M.; Nordio, F.; Bonzini, M.; Tarantini, L.; Cantone, L.; et al. Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells. J. Appl. Toxicol. 2015, 35, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Brooks, S.A.; Dormoy, V.; Hsu, C.W.; Hsu, H.Y.; Lin, L.T.; Massfelder, T.; Rathmell, W.K.; Xia, M.; Al-Mulla, F.; et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: Focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015, 36, S184–S202. [Google Scholar] [CrossRef]
- Izzotti, A.; Balansky, R.; Scatolini, L.; Rovida, A.; De Flora, S. Inhibition by N-acetylcysteine of carcinogen-DNA adducts in the tracheal epithelium of rats exposed to cigarette smoke. Carcinogenesis 1995, 16, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.R.; Olson, E.S.; Stanley, D. Microbial desulfurization of dibenzothiophene: A sulfur-specific pathway FEMS. Microbiol. Lett. 1993, 107, 31–35. [Google Scholar] [CrossRef]
- Kiwerska, K.; Szyfter, K. DNA repair in cancer initiation, progression, and therapy-a double-edged sword. J. Appl. Genet. 2019, 60, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Bollati, V.; Iodice, S.; Favero, C.; Angelici, L.; Albetti, B.; Cacace, R.; Cantone, L.; Carugno, M.; Cavalleri, T.; De Giorgio, B.; et al. Susceptibility to particle health effects, miRNA and exosomes: Rationale and study protocol of the SPHERE study. BMC Public Health 2014, 14, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzotti, A.; Bagnasco, M.; D’Agostini, F.; Cartiglia, C.; Lubet, R.A.; Kelloff, G.J.; De Flora, S. Formation and persistence of nucleotide alterations in rats exposed whole-body to environmental cigarette smoke. Carcinogenesis 1999, 20, 1499–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maranzano, P. Air Quality in Lombardy, Italy: An Overview of the Environmental Monitoring System of ARPA Lombardia. Earth 2022, 3, 172–203. [Google Scholar] [CrossRef]
- Magnani, N.D.; Muresan, X.M.; Belmonte, G.; Cervellati, F.; Sticozzi, C.; Pecorelli, A.; Miracco, C.; Marchini, T.; Evelson, P.; Valacchi, G. Skin Damage Mechanisms Related to Airborne Particulate Matter Exposure. Toxicol. Sci. 2016, 149, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Alopecia Areata, L.W. Particulate matter: A 5-year retrospective study in Korea. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e751–e754. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Rossi, G.A.; Bagnasco, M.; De Flora, S. Benzoα a αpyrene diolepoxide-DNA adducts in alveolar macrophages of smokers. Carcinogenesis 1991, 12, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Palli, D.; Saieva, C.; Munnia, A.; Peluso, M.; Grechi, D.; Zanna, I.; Caini, S.; Decarli, A.; Sera, F.; Masala, G. DNA adducts and PM(10) exposure in traffic-exposed workers and urban residents from the EPIC-Florence City study. Sci. Total Environ. 2008, 403, 105–112. [Google Scholar] [CrossRef]
- Venkat, J.A.; Shami, S.; Davis, K.; Nayak, M.; Plimmer, J.R.; Pfeil, R.; Nair, P.P. Relative genotoxic activities of pesticides evaluated by a modified SOS microplate assay. Environ. Mol. Mutagen. 1995, 25, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Czechowski, P.O.; Konstancja Piksa, K.; Browiecki, P.A.; Aneta IOniszczuk-Jastrząbek, A.I.; Ernest Czermański, E.; Tomasz Owczarek, T.; Badyda, A.J.; Cirella, G.T. Financing Costs and Health Effects of Air Pollution in the Tri-City Agglomeration. Front. Public Health 2022, 10, 831312. [Google Scholar] [CrossRef] [PubMed]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef]
- Tapiero, H.; Ba, G.N.; Tew, K.D. Estrogens and environmental estrogens. Biomed. Pharm. 2002, 56, 36–44. [Google Scholar] [CrossRef]
- Huderson, A.C.; Harris, D.L.; Niaz, M.S.; Ramesh, A. Effect of benzo(a)pyrene exposure on fluoranthene metabolism by mouse adipose tissue microsomes. Toxicol. Mech. Methods 2010, 20, 53. [Google Scholar] [CrossRef]
- Rossner, P., Jr.; VSvecova Schmuczerova, V.J.; Milcova, A.; Tabashidze, N.; Topinka, J.; Pastorkov, A.; Sram, R.J. Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part I Bulky DNA Adducts. Mutagenesis 2013, 28, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossner, P., Jr.; Rossnerova, A.; Spatova, M.; Beskid, O.; Uhlirova, K.; Libalova, H.; Solansky, I.; Topinka, J.; Sram, R. Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part II: Chromosom. Aberrations Oxidative Stress. Mutagenesis 2013, 28, 97–106. [Google Scholar] [CrossRef]
- Charisiadis, P.; Andrianou, X.D.; van der Meer, T.P.; den Dunnen, W.F.A.; Swaab, D.F.; Wolffenbuttel, B.H.R.; Makris, K.C.; van Vliet-Ostaptchouk, J.V. Possible Obesogenic Effects of Bisphenols Accumulation in the Human Brain. Sci. Rep. 2018, 8, 8186. [Google Scholar] [CrossRef] [Green Version]
- Asikainen, A.; Paolo Carrer, P.; Stylianos Kephalopoulos, S.; de Oliveira Fernandes, E.; Wargocki, P.; Hänninen, O. Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project). Environ. Health 2016, 15, 35. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Study participants, n | 196 |
Sex, n (%) | |
Male | 49 (25.0%) |
Female | 147 (75.0%) |
Age, years, mean ± SD, | 50.6 ± 13.3 |
Season of enrolment | |
Winter | 54 (27.6%) |
Spring | 18 (9.2%) |
Summer | 36 (18.4%) |
Autumn | 88 (44.9%) |
BMI, mean ± SD, Kg/m2 | 34.2 ± 5.3 |
BMI classification, Kg/m2 | |
25–29.9 (overweight) | 42 (21.4%) |
30–34.9 (obese) | 80 (40.8%) |
35–39.9 (severely obese) | 74 (37.8%) |
Smoking, n (%) | |
Never smoker | 104 (53.1%) |
Ex-smoker | 65 (33.1%) |
Actual smoker | 27 (13.8%) |
Diabetes, n% | |
Diabetics | 25 (12.8%) |
Prediabetics | 87 (44.4%) |
Normal | 79 (40.3%) |
Missing | 5 (2.5%) |
CRP, mg/dL, mean ± SD | 0.5 ± 0.7 |
Hemochrome, 103 cell/µL, mean ± SD | |
White blood cells | 6.8 ± 1.5 |
Red blood cells | 4.8 ± 0.4 |
Hemoglobin | 13.7 ± 1.4 |
Hematocrit | 40.5 ± 3.4 |
Mean Corpuscular Volume | 84.6 ± 6.9 |
Platelets | 258.5 ± 64 |
Neutrophils, % | 58.3 ± 7.2 |
Eosinophils, % | 2.3 ± 1.3 |
Lymphocytes, % | 31.3 ± 6.6 |
Monocytes, % | 7.6 ± 2 |
Basophils, % | 0.5 ± 0.3 |
Granulocytes, % | 61.1 ± 6.9 |
Median | IQ Range | Minimum | Maximum | |
---|---|---|---|---|
PM10 short term, µg/m3 | 52.7 | 34.3 | 23.1 | 79 |
PM10 long term, µg/m3 | 44.7 | 3.4 | 43 | 49.1 |
Variable | Estimate | 95% LCI | 95% UCI | p-Value |
---|---|---|---|---|
Season | (0.001) | |||
Spring | 0.122 | −0.688 | 0.933 | 0.767 |
Summer | 1.281 | 0.640 | 1.921 | <0.001 |
Autumn | 0.520 | 0.005 | 1.035 | 0.048 |
Winter | Reference | |||
Apparent temperature, celsius | 0.023 | 0.003 | 0.044 | 0.024 |
Smoking habits | (0.211) | |||
Ex-smoker | 0.186 | −0.299 | 0.672 | 0.450 |
Actual smoker | −0.445 | −1.108 | 0.219 | 0.188 |
Never smoker | Reference | |||
Diabetes | (0.865) | |||
Diabetics | 0.164 | −0.546 | 0.873 | 0.650 |
Prediabetics | 0.105 | −0.375 | 0.586 | 0.666 |
Normal | Reference | |||
Sex | ||||
Male | −0.070 | −0.579 | 0.439 | 0.787 |
Female | Reference | |||
Age, years | 0.005 | −0.011 | 0.022 | 0.515 |
BMI, kg/m2 | −0.013 | −0.054 | 0.029 | 0.544 |
CRP, mg/dL | −0.141 | −0.477 | 0.195 | 0.408 |
Hemochrome, 103 cell/µL | ||||
White blood cells | −0.219 | −0.366 | −0.072 | 0.004 |
Red blood cells | −0.142 | −0.666 | 0.382 | 0.594 |
Hemoglobin | 0.002 | −0.157 | 0.161 | 0.983 |
Hematocrit | −0.006 | −0.071 | 0.060 | 0.862 |
Mean Corpuscular Volume | 0.005 | −0.027 | 0.038 | 0.752 |
Platelets | −0.004 | −0.007 | −0.001 | 0.021 |
Neutrophils, % | −0.018 | −0.049 | 0.013 | 0.263 |
Eosinophils, % | −0.026 | −0.204 | 0.151 | 0.771 |
Lymphocytes, % | 0.019 | −0.014 | 0.053 | 0.257 |
Monocytes, % | 0.031 | −0.079 | 0.141 | 0.577 |
Basophils, % | 0.411 | −0.369 | 1.190 | 0.300 |
Granulocytes, % | −0.019 | −0.052 | 0.013 | 0.238 |
Regression Coefficient | 95% LCI | 95% UCI | p-Value | |
---|---|---|---|---|
Univariate model | ||||
PM10 short term | −0.020 | −0.033 | −0.008 | 0.002 |
Multivariate models | ||||
Model 1 * | ||||
PM10 short term | −0.023 | −0.070 | 0.024 | 0.327 |
BMI | −0.010 | −0.052 | 0.033 | 0.655 |
Sex | ||||
Male | −0.341 | −0.876 | 0.194 | 0.210 |
Female | Reference | |||
Diabetes | (0.468) | |||
Diabetics | 0.289 | −0.429 | 1.006 | 0.428 |
Prediabetics | 0.288 | −0.191 | 0.767 | 0.237 |
Normal | Reference | |||
Smoking habits | 0.119 | |||
Ex-smoker | 0.230 | −0.251 | 0.711 | 0.346 |
Actual smoker | −0.509 | −1.171 | 0.153 | 0.131 |
Never smoker | Reference | |||
Season | (0.036) | |||
Spring | 0.176 | −1.487 | 1.840 | 0.835 |
Summer | 1.403 | −0.261 | 3.067 | 0.098 |
Autumn | 0.490 | −0.387 | 1.367 | 0.272 |
Winter | Reference | |||
White blood cells | −0.065 | −0.226 | 0.095 | 0.423 |
Platelets | −0.004 | −0.008 | −0.001 | 0.027 |
Apparent temperature | −0.042 | −0.098 | 0.014 | 0.137 |
Model 2 * | ||||
PM10 short term | −0.038 | −0.082 | 0.007 | 0.095 |
Smoking habits | 0.062 | |||
Ex-smoker | 0.243 | −0.227 | 0.711 | 0.309 |
Actual smoker | −0.573 | −1.210 | 0.064 | 0.078 |
Never smoker | Reference | |||
Season | 0.062 | |||
Spring | −0.252 | −1.839 | 1.335 | 0.754 |
Summer | 1.038 | −0.548 | 2.624 | 0.198 |
Autumn | 0.281 | −0.551 | 1.113 | 0.506 |
Winter | Reference | |||
White blood cells | ||||
Platelets | −0.004 | −0.007 | −0.001 | 0.021 |
Apparent temperature | −0.052 | −0.107 | 0.003 | 0.066 |
Regression Coefficient | 95% LCI | 95% UCI | p-Value | |
---|---|---|---|---|
Univariate analysis | ||||
PM10 long term | −0.22 | −0.34 | −0.11 | <0.001 |
Multivariate analysis | ||||
Model 1* | ||||
PM10 long term | −0.52 | −0.85 | −0.20 | 0.002 |
BMI | −0.01 | −0.05 | 0.03 | 0.741 |
Sex | ||||
Male | −0.46 | −0.98 | 0.07 | 0.089 |
Female | Reference | |||
Diabetes | (0.595) | |||
Diabetes | 0.22 | −0.48 | 0.92 | 0.534 |
Prediabetes | 0.24 | −0.23 | 0.70 | 0.322 |
Normal | Reference | |||
Smoking habits | 0.086 | |||
Ex-smoker | 0.26 | −0.21 | 0.73 | 0.271 |
Actual smoker | −0.51 | −1.16 | 0.13 | 0.120 |
Never smoker | Reference | |||
Season | 0.009 | |||
Spring | −1.08 | −2.74 | 0.58 | 0.202 |
Summer | 0.37 | −1.22 | 1.97 | 0.644 |
Autumn | −0.38 | −1.36 | 0.60 | 0.449 |
Winter | Reference | |||
White blood cells | −0.06 | −0.22 | 0.09 | 0.442 |
Platelets | 0.00 | −0.01 | 0.00 | 0.021 |
Apparent temperature | −0.06 | −0.10 | −0.01 | 0.018 |
Model 2* | ||||
PM10 long term | −0.56 | −0.86 | −0.25 | <0.001 |
Smoking habits | (0.055) | |||
Ex-smoker | 0.23 | −0.23 | 0.68 | 0.328 |
Actual smoker | −0.58 | −1.20 | 0.04 | 0.066 |
Never smoker | Reference | |||
Season | (0.004) | |||
Spring | −1.22 | −2.78 | 0.34 | 0.124 |
Summer | 0.28 | −1.23 | 1.79 | 0.717 |
Autumn | −0.45 | −1.35 | 0.46 | 0.335 |
Winter | Reference | |||
White blood cells | 0.00 | −0.01 | 0.00 | 0.025 |
Apparent temperature | −0.06 | −0.10 | −0.01 | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulliero, A.; Iodice, S.; Pesatori, A.C.; Vigna, L.; Khalid, Z.; Bollati, V.; Izzotti, A. The Relationship between Exposure to Airborne Particulate and DNA Adducts in Blood Cells in an Urban Population of Subjects with an Unhealthy Body Mass Index. Int. J. Environ. Res. Public Health 2022, 19, 5761. https://doi.org/10.3390/ijerph19095761
Pulliero A, Iodice S, Pesatori AC, Vigna L, Khalid Z, Bollati V, Izzotti A. The Relationship between Exposure to Airborne Particulate and DNA Adducts in Blood Cells in an Urban Population of Subjects with an Unhealthy Body Mass Index. International Journal of Environmental Research and Public Health. 2022; 19(9):5761. https://doi.org/10.3390/ijerph19095761
Chicago/Turabian StylePulliero, Alessandra, Simona Iodice, Angela Cecilia Pesatori, Luisella Vigna, Zumama Khalid, Valentina Bollati, and Alberto Izzotti. 2022. "The Relationship between Exposure to Airborne Particulate and DNA Adducts in Blood Cells in an Urban Population of Subjects with an Unhealthy Body Mass Index" International Journal of Environmental Research and Public Health 19, no. 9: 5761. https://doi.org/10.3390/ijerph19095761
APA StylePulliero, A., Iodice, S., Pesatori, A. C., Vigna, L., Khalid, Z., Bollati, V., & Izzotti, A. (2022). The Relationship between Exposure to Airborne Particulate and DNA Adducts in Blood Cells in an Urban Population of Subjects with an Unhealthy Body Mass Index. International Journal of Environmental Research and Public Health, 19(9), 5761. https://doi.org/10.3390/ijerph19095761