Mapping Research Trends from 20 Years of Publications in Rhythmic Auditory Stimulation
Abstract
:1. Introduction
2. Methods
2.1. Source of Data and Search Strategy
2.2. Inclusion Criteria
2.3. Analytical Methods
3. Results
3.1. Literature Distribution
3.2. Research Topics and Hotspots
4. Discussion
4.1. Motor Dysfunctions
4.2. Cognition
4.3. Perception
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McIntosh, G.C.; Brown, S.H.; Rice, R.R.; Thaut, M.H. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1997, 62, 22–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaut, M.H.; McIntosh, G.C.; Rice, R.R.; Miller, R.A.; Rathbun, J.; Brault, J.M. Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord. 1996, 11, 193–200. [Google Scholar] [CrossRef]
- Thaut, M.H.; Abiru, M. Rhythmic Auditory Stimulation in Rehabilitation of Movement Disorders: A Review Of Current Research. Music Percept. 2010, 27, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Rossignol, S.; Jones, G.M. Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalogr. Clin. Neurophysiol. 1976, 41, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Yoo, G.E.; Kim, S.J. Rhythmic auditory cueing in motor rehabilitation for stroke patients: Systematic review and meta-analysis. J. Music Ther. 2016, 53, 149–177. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, L.; Bedoin, N.; Krifi-Papoz, S.; Herbillon, V.; Roch, D.; Léculier, L.; Kotz, S.A.; Tillmann, B. Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. Neuropsychology 2013, 27, 121. [Google Scholar] [CrossRef] [Green Version]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Franchignoni, F.; Lasa, S.M. Bibliometric indicators and core journals in physical and rehabilitation medicine. J. Rehabil. Med. 2011, 43, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Moura, L.K.B.; de MESQUITA, R.F.; Mobin, M.; Matos, F.T.C.; Monte, T.L.; Lago, E.C.; Falcão, C.A.M.; Ferraz, M.Â.D.A.L.; Santos, T.C.; Sousa, L.R.M. Uses of bibliometric techniques in public health research. Iran. J. Public Health 2017, 46, 1435–1436. [Google Scholar]
- Tran, B.X.; Vu, G.T.; Ha, G.H.; Vuong, Q.-H.; Ho, M.-T.; Vuong, T.-T.; La, V.-P.; Nghiem, K.-C.P.; Nguyen, H.L.T.; Latkin, C.A.; et al. Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. J. Clin. Med. 2019, 8, 360. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.-Y.; Dai, G.-Y.; Lan, Y.; Wang, X.-Q. Trends of Repetitive Transcranial Magnetic Stimulation from 2009 to 2018: A Bibliometric Analysis. Front. Neurosci. 2020, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Software Graphpad. GraphPad Prism Version 8.0 for Windows; GraphPad: La Jolla, CA, USA, 2018. [Google Scholar]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Waltman, L.; Van Eck, N.J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 2013, 86, 1–14. [Google Scholar] [CrossRef]
- Braunlich, K.; Seger, C.A.; Jentink, K.G.; Buard, I.; Kluger, B.M.; Thaut, M.H. Rhythmic auditory cues shape neural network recruitment in Parkinson’s disease during repetitive motor behavior. Eur. J. Neurosci. 2019, 49, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef]
- Chen, C. The citespace manual. Coll. Comput. Inform. 2014, 1, 1–84. [Google Scholar]
- Liang, Y.D.; Li, Y.; Zhao, J.; Wang, X.Y.; Zhu, H.Z.; Chen, X.H. Study of acupuncture for low back pain in recent 20 years: A bibliometric analysis via CiteSpace. J. Pain Res. 2017, 10, 951. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Liu, R.; Pu, Y.; Yin, L. Trends in esophageal and esophagogastric junction cancer research from 2007 to 2016: A bibliometric analysis. Medicine 2017, 96, e6924. [Google Scholar] [CrossRef]
- Grahn, J.A.; Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 2007, 19, 893–906. [Google Scholar] [CrossRef] [Green Version]
- Luft, A.R.; McCombe-Waller, S.; Whitall, J.; Forrester, L.W.; Macko, R.; Sorkin, J.D.; Schulz, J.B.; Goldberg, A.P.; Hanley, D.F. Repetitive bilateral arm training and motor cortex activation in chronic stroke: A randomized con-trolled trial. JAMA 2004, 292, 1853–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, H.V.V.; Martinetz, T.; Born, J.; Mölle, M. Auditory Closed-Loop Stimulation of the Sleep Slow Oscillation Enhances Memory. Neuron 2013, 78, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, T.; Trainor, L.J.; Large, E.W.; Ross, B. Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J. Neurosci. 2012, 32, 1791–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 436–446. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Lowenthal, J.; Herman, T.; Gruendlinger, L.; Peretz, C.; Giladi, N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur. J. Neurosci. 2007, 26, 2369–2375. [Google Scholar] [CrossRef]
- Thaut, M.H.; Leins, A.K.; Rice, R.R.; Argstatter, H.; Kenyon, G.P.; McIntosh, G.C.; Bolay, H.V.; Fetter, M. Rhythmic auditor y stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: A single-blind, randomized trial. Neurorehabilit. Neural Repair 2007, 21, 455–459. [Google Scholar] [CrossRef]
- Vuust, P.; Pallesen, K.J.; Bailey CVan Zuijen Tl Gjedde, A.; Roepstorff, A.; Stergaard, L. To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage 2005, 24, 560–564. [Google Scholar] [CrossRef]
- Kim, T.; Thankachan, S.; McKenna, J.T.; McNally, J.M.; Yang, C.; Choi, J.H.; Chen, L.; Kocsis, B.; Deisseroth, K.; Strecker, R.E.; et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc. Natl. Acad. Sci. USA 2015, 112, 3535–3540. [Google Scholar] [CrossRef] [Green Version]
- Corriveau, K.H.; Goswami, U. Rhythmic motor entrainment in children with speech and language impairments: Tapping to the beat. Cortex 2009, 45, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Morillon, B.; Baillet, S. Motor origin of temporal predictions in auditory attention. Proc. Natl. Acad. Sci. USA 2017, 114, E8913–E8921. [Google Scholar] [CrossRef] [Green Version]
- Ghai, S.; Ghai, I.; Schmitz, G.; Effenberg, A.O. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, J.; Makeig, S.; Gola, M.; Neuper, C.; Müller-Putz, G. Distinct β band oscillatory networks subserving motor and cognitive control during gait adaptation. J. Neurosci. 2016, 36, 2212–2226. [Google Scholar] [CrossRef] [PubMed]
- Albouy, P.; Weiss, A.; Baillet, S.; Zatorre, R.J. Selective entrainment of theta oscillations in the dorsal stream causally enhances auditory working memory performance. Neuron 2017, 94, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bella, S.D.; Benoit, C.E.; Farrugia, N.; Keller, P.E.; Obrig, H.; Mainka, S.; Kotz, S.A. Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci. Rep. 2017, 7, 42005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoefel, B.; VanRullen, R. EEG oscillations entrain their phase to high-level features of speech sound. Neuroimage 2016, 124, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.; Lardy, C.; Desiles, T.; Commeiras, C.; Chobert, J.; Besson, M. Music and dyslexia: A new musical training method to improve reading and related disorders. Front. Psychol. 2016, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morillon, B.; Schroeder, C.E.; Wyart, V.; Arnal, L.H. Temporal prediction in lieu of periodic stimulation. J. Neurosci. 2016, 36, 2342–2347. [Google Scholar] [CrossRef] [Green Version]
- Effenberg, A.O.; Fehse, U.; Schmitz, G.; Krueger, B.; Mechling, H. Movement sonification: Effects on motor learning beyond rhythmic adjustments. Front. Neurosci. 2016, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Doelling, K.B.; Assaneo, M.F.; Bevilacqua, D.; Pesaran, B.; Poeppel, D. An oscillator model better predicts cortical entrainment to music. Proc. Natl. Acad. Sci. USA 2019, 116, 10113–10121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripollés, P.; Rojo, N.; Grau-Sánchez, J.; Amengual, J.L.; Càmara, E.; Marco-Pallarés, J.; Juncadella, M.; Vaquero, L.; Rubio, F.; Duarte, E.; et al. Music supported therapy promotes motor plasticity in individuals with chronic stroke. Brain Imaging Behav. 2016, 10, 1289–1307. [Google Scholar] [CrossRef]
- Chen, C.; Dubin, R.; Kim, M.C. Orphan drugs and rare diseases: A scientometric review (2000–2014). Expert Opin. Orphan Drugs 2014, 2, 709–724. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Filoni, S.; Pullia, M.; Billeri, L.; Tomasello, P.; Portaro, S.; Di Lorenzo, G.; Tomaino, C.; Bramanti, P. Walking to your right music: A randomized controlled trial on the novel use of treadmill plus music in Parkinson’s disease. J. Neuroeng. Rehabil. 2019, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Murgia, M.; Pili, R.; Corona, F.; Sors, F.; Agostini, T.A.; Bernardis, P.; Casula, C.; Cossu, G.; Guicciardi, M.; Pau, M. The use of footstep sounds as rhythmic auditory stimulation for gait rehabilitation in Parkinson’s disease: A randomized controlled trial. Front. Neurol. 2018, 9, 348. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2010 (GBD 2010) Results; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2012. [Google Scholar]
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- Whiteford, H.A.; Ferrari, A.J.; Degenhardt, L.; Feigin, V.; Vos, T. The global burden of mental, neurological and substance use disorders: An analysis from the Global Burden of Disease Study 2010. PLoS ONE 2015, 10, e0116820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Ortiz, C.; Gaebler-Spira, D.J.; Mckeeman, S.N.; Mcnish, R.N.; Green, D. Dance and rehabilitation in cerebral palsy: A systematic search and review. Dev. Med. Child Neurol. 2019, 61, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Silverman, F.H. The Effect of Rhythmic Auditory Stimulation on the Disfluency of Nonstutterers. J. Speech Hear. Res. 1971, 14, 350–355. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, Y.; Lin, C.; He, M.; Hao, F.; Liu, H.; Zhu, W. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci. Total Environ. 2018, 637–638, 208–220. [Google Scholar] [CrossRef]
- Pfeiffer, K.; Clements, J.; Smith, M.; Gregoire, M.; Conti, C. Does rhythmic auditory stimulation compared to no rhythmic auditory stimulation improve patient’s static and dynamic standing balance post stroke? Phys. Ther. Rev. 2019, 24, 216–222. [Google Scholar] [CrossRef]
- Suzuki, K.; Niitsu, M.; Kamo, T.; Otake, S.; Nishida, Y. Effect of exercise with rhythmic auditory stimulation on muscle coordination and gait stability in patients with diabetic peripheral neuropathy: A randomized controlled trial. Open J. Ther. Rehabil. 2019, 7, 79. [Google Scholar] [CrossRef]
- Park, J.; Chung, Y. The effects of robot-assisted gait training using virtual reality and auditory stimulation on balance and gait abilities in persons with stroke. NeuroRehabilitation 2018, 43, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.; Bronas, U.G.; Steffen, A.D.; Marquez, D.X.; Fritschi, C.; Quinn, L.T.; Collins, E.G. Rhythmic auditory stimulation increases 6-Minute walk distance in individuals with COPD: A repeated measures study. Heart Lung 2020, 49, 324–328. [Google Scholar] [CrossRef]
- Schwartz, A.E.; van Walsem, M.R.; Brean, A.; Frich, J.C. Therapeutic use of music, dance, and rhythmic auditory cueing for patients with Huntington’s disease: A systematic review. J. Huntingt. Dis. 2019, 8, 393–420. [Google Scholar] [CrossRef] [Green Version]
- Shahraki, M.; Sohrabi, M.; Torbati, H.T.; Nikkhah, K.; NaeimiKia, M. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. J. Med. Life 2017, 10, 33. [Google Scholar]
- Toukhsati, S.; Rickard, N.S. Exposure to a rhythmic auditory stimulus facilitates memory formation for the passive avoidance task in the day-old chick. J. Comp. Psychol. 2001, 115, 132. [Google Scholar] [CrossRef]
- Fernández, A.; Maestu, F.; Campo, P.; Hornero, R.; Escudero, J.; Poch, J.J.A.E.P. Impact of auditory stimulation at a frequency of 5 Hz in verbal memory. Actas Esp. Psiquiatr. 2008, 36, 307–313. [Google Scholar]
- Lenc, T.; Keller, P.E.; Varlet, M.; Nozaradan, S. Neural tracking of the musical beat is enhanced by low-frequency sounds. Proc. Natl. Acad. Sci. USA 2018, 115, 8221–8226. [Google Scholar] [CrossRef] [Green Version]
- Colling, L.J.; Noble, H.L.; Goswami, U. Neural entrainment and sensorimotor synchronization to the beat in children with developmental dyslexia: An EEG study. Front. Neurosci. 2017, 11, 360. [Google Scholar] [CrossRef]
- Pecenka, N.; Engel, A.; Keller, P.E. Neural correlates of auditory temporal predictions during sensorimotor synchronization. Front. Hum. Neurosci. 2013, 7, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nozaradan, S.; Schwartze, M.; Obermeier, C.; Kotz, S.A. Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex 2017, 95, 156–168. [Google Scholar] [CrossRef] [PubMed]
Sources | Np | IF 2020 | Category | Region |
---|---|---|---|---|
PLoS ONE | 32 | 3.240 | Multidisciplinary | USA |
Frontiers in Neuroscience | 20 | 4.677 | Neuroscience | Switzerland |
Experimental Brain Research | 16 | 1.972 | Neuroscience | Germany |
Frontiers in Human Neuroscience | 16 | 3.169 | Neuroscience | Switzerland |
Human Movement Science | 16 | 2.161 | Psychology | The Netherlands |
Journal of Neuroscience | 16 | 6.167 | Neuroscience | UK |
Neuroimage | 16 | 6.556 | Neuroimaging | USA |
Frontiers in Neurology | 15 | 4.003 | Neuroscience | Switzerland |
European Journal of Neuroscience | 14 | 3.386 | Neuroscience | UK |
Gait & Posture | 14 | 2.840 | Rehabilitation | Ireland |
Institution | Country | Np | Publications, % | |
---|---|---|---|---|
1 | University of Toronto | Canada | 42 | 7.17% |
2 | Colorado State University | USA | 26 | 4.44% |
2 | Radboud University Nijmegen | The Netherlands | 26 | 4.44% |
4 | University of Cambridge | UK | 25 | 4.27% |
5 | Northwestern University | USA | 22 | 3.75% |
5 | Washington University | USA | 22 | 3.75% |
7 | McMaster University | Canada | 21 | 3.58% |
7 | University of Maryland | USA | 21 | 3.58% |
9 | University of California Irvine | USA | 20 | 3.41% |
10 | Max Planck Institute for Human Cognitive and Brain Sciences | Germany | 18 | 3.07% |
Author | Country | Np | |
---|---|---|---|
1. | Goswami U. | UK | 15 |
2. | Thaut M. | Canada | 13 |
3. | Dalla-Bella S. | Canada | 12 |
4. | Nieuwboer A. | Belgium | 10 |
5. | Rochester L. | UK | 10 |
6. | Kotz S. | Germany | 9 |
7 | Trainor L. | Canada | 9 |
8. | Grahn J. | Canada | 8 |
9. | Kwakkel G. | The Netherlands | 8 |
10. | Earhart G. | USA | 7 |
Paper | Autor(s) | Year | Journal | DOI | |
---|---|---|---|---|---|
1. | Rhythm and beat perception in motor areas of the brain | Grahn & Brett | 2007 [21] | Journal of Cognitive Neuroscience | 10.1162/jocn.2007.19.5.893 |
2. | Repetitive bilateral arm training and motor cortex activation in chronic stroke: A randomized controlled trial | Luft et al. | 2004 [22] | Journal of the American Medical Association | 10.1001/jama.292.15.1853 |
3. | Auditory closed-loop stimulation of the sleep slow oscillation enhances memory | Ngo et al. | 2013 [23] | Neuron | 10.1016/j.neuron.2013.03.006 |
4. | Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations | Fujioka et al. | 2012 [24] | Journal of Neuroscience | 10.1523/jneurosci.4107-11.2012 |
5. | Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom | Bachlin et al. | 2010 [25] | IEEE Transactions on Information Technology in Biomedicine | 10.1109/titb.2009.2036165 |
6. | Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease | Hausdorff et al. | 2007 [26] | European Journal of Neuroscience | 10.1111/j.1460-9568.2007.05810.x |
7 | Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: A single-blind randomized trial | Thaut et al. | 2007 [27] | Neurorehabilitation and Neural Repair | 10.1177/1545968307300523 |
8. | To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians | Vuust et al. | 2005 [28] | Neuroimage | 10.1016/j.neuroimage.2004.08.039 |
9. | Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations | Kim et al. | 2015 [29] | Proceedings of the National Academy of Sciences | 10.1073/pnas.1413625112 |
10. | Rhythmic motor entrainment in children with speech and language impairments: Tapping to the beat | Corriveau & Goswami | 2009 [30] | Cortex | 10.1016/j.cortex.2007.09.008 |
Paper | Author(s) | Year | Journal | DOI | |
---|---|---|---|---|---|
1. | Motor origin of temporal predictions in auditory attention | Morillon & Baillet | 2017 [31] | Proceedings of the National Academy of Sciences | 10.1073/pnas.1705373114 |
2. | Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis | Ghai et al. | 2018 [32] | Scientific Reports | 10.1038/s41598-017-16232-5 |
3. | Distinct β band oscillatory networks subserving motor and cognitive control during gait adaptation | Wagner et al. | 2016 [33] | Journal of Neuroscience | 10.1523/JNEUROSCI.3543-15.2016 |
4. | Selective entrainment of theta oscillations in the dorsal stream causally enhances auditory working memory performance | Albouy et al. | 2017 [34] | Neuron | 10.1016/j.neuron.2017.03.015 |
5. | Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills | Dalla-Bella et al. | 2017 [35] | Scientific Reports | 10.1038/srep42005 |
6. | EEG oscillations entrain their phase to high-level features of speech sound | Zoefel & Vanrullen | 2016 [36] | Neuroimage | 10.1016/j.neuroimage.2015.08.054 |
7 | Music and dyslexia: A new musical training method to improve reading and related disorders | Habib et al. | 2016 [37] | Frontiers in Psychology | 10.3389/fpsyg.2016.00026 |
8. | Temporal prediction in lieu of periodic stimulation | Morillon et al. | 2016 [38] | Journal of Neuroscience | 10.1523/JNEUROSCI.0836-15.2016 |
9. | Movement sonification: Effects on motor learning beyond rhythmic adjustments | Effenberg et al. | 2016 [39] | Frontiers in Neuroscience | 10.3389/fnins.2016.00219 |
10. | An oscillator model better predicts cortical entrainment to music | Doelling et al. | 2019 [40] | Proceedings of the National Academy of Sciences | 10.1073/pnas.1816414116 |
Music supported therapy promotes motor plasticity in individuals with chronic stroke | Ripollés et al. | 2016 [41] | Brain Imaging and Behavior | 10.1007/s11682-015-9498-x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Li, F.; Wang, D.; Ba, X.; Liu, Z. Mapping Research Trends from 20 Years of Publications in Rhythmic Auditory Stimulation. Int. J. Environ. Res. Public Health 2023, 20, 215. https://doi.org/10.3390/ijerph20010215
Zhang M, Li F, Wang D, Ba X, Liu Z. Mapping Research Trends from 20 Years of Publications in Rhythmic Auditory Stimulation. International Journal of Environmental Research and Public Health. 2023; 20(1):215. https://doi.org/10.3390/ijerph20010215
Chicago/Turabian StyleZhang, Meiqi, Fang Li, Dongyu Wang, Xiaohong Ba, and Zhan Liu. 2023. "Mapping Research Trends from 20 Years of Publications in Rhythmic Auditory Stimulation" International Journal of Environmental Research and Public Health 20, no. 1: 215. https://doi.org/10.3390/ijerph20010215
APA StyleZhang, M., Li, F., Wang, D., Ba, X., & Liu, Z. (2023). Mapping Research Trends from 20 Years of Publications in Rhythmic Auditory Stimulation. International Journal of Environmental Research and Public Health, 20(1), 215. https://doi.org/10.3390/ijerph20010215