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Abstract: This study was aimed at verifying the efficacy of EMS training by investigating the changes
in upper-limb muscle functions and energy expenditure in athletes with disabilities after an 8-week
intervention of EMS training. We compared variations in muscle activity, respiratory gas, and
symmetry index (SI) after an 8-week intervention in eight professional male athletes with disabilities
wearing an electromyostimulation (EMS) suit (age: 42.00 ± 8.67 years, height: 1.65 ± 0.16 m, weight:
64.00 ± 8.72 kg, career length: 11.75 ± 3.83 years). For EMS training, each participant wore an
EMS suit. EMS was applied to the upper-limb muscles pectoralis major and triceps at 40 ◦C water
temperature, with a 25 Hz frequency (duty cycle 10%) for 15 min, followed by a 5 Hz frequency (duty
cycle 5%) for 5 min. The pre- and post-intervention measurements were taken in the same way at a
pre-set time (for 1 h, twice a week) for 8 weeks. Training involved a seated chest press, and the muscle
activity (pectoralis major, triceps, and antebrachial muscles), upper-limb SI, and respiratory gas
variables (maximal oxygen consumption (VO2), carbon dioxide output (VCO2), respiratory quotient
(RQ), metabolic equivalents (METs), and energy expenditure per min (Energy expended per minute;
EEm)) were analyzed. Variations pre- and post-intervention across the measured variables were
analyzed. Regarding the change in muscle activity, significant variations were found in the pectoralis
major right (p < 0.004), pectoralis major left (p < 0.001), triceps right (p < 0.002), and antebrachial
right (p < 0.001). Regarding left-to-right SI, a positive change was detected in the pectoralis major
and triceps muscles. Additionally, respiratory gas analysis indicated significant variations in VO2

(p < 0.001), VCO2 (p < 0.001), METs (p < 0.001), and EEm (p < 0.001). EMS training improved muscle
strength and respiratory gas variables and is predicted to contribute to enhanced muscle function
and rehabilitation training for athletes with disabilities.

Keywords: disabled athletes; disability; electromyostimulation; respiratory gas analysis

1. Introduction

Exercise can enhance the quality of life through improved mental health and physical
fitness [1–3] and increased life expectancy [4]. Exercise can also prevent chronic diseases
such as diabetes, osteoporosis, and cardiovascular disease by promoting muscle develop-
ment [5] and calorie consumption [6]. Hence, the importance of exercise is recognized by
both individuals with and without disabilities. However, for individuals with disabilities,
the innate or acquired damage to motor and sensory nerves prevents exercise due to the
discomfort related to reduced mobility [7]. If this could be overcome so that individuals
with disabilities could perform regular exercise, the exercise would serve as a critical means
not only of improving health and maintaining physical fitness but also of rehabilitation
and functional recovery [8].
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Recently, athletes with disabilities have further improved in performance through the
Paralympics and other opportunities; therefore, the difference from professional athletes
without disabilities is no longer prominent, while the emphasis is now placed on the
highest athletic performance [9,10]. Nevertheless, in the case of athletes with disabilities,
their physical strength and ability are lower than those of non-disabled athletes due to
limitations in environmental factors such as training grounds and convenience facilities
for participation in sports, constraints in economic factors, and the lack of time, affecting
training and performance [11]. This indicates the need to ensure that athletes with dis-
abilities maintain certain performance levels regarding aerobic and anaerobic muscular
abilities [12]. As a result, there is an urgent need for suitable venues and assistive devices
to help with the improvement of muscle strength, energy expenditure, and the respiratory
quotient (RQ) in athletes with disabilities.

Among various assistive devices, the electromyostimulation (EMS) device has been
clinically accepted for rehabilitation purposes [13]. The EMS device has recently been
recognized as a method to induce changes in the active potential based on the involuntary
contraction of the skeletal muscles classified as voluntary muscles, and the use of EMS
training in muscles has been reported to effectively increase muscle strength and the
joint range of motion [14]. In addition, repeated EMS on muscles has been reported to
increase capillary vessels and the flexibility of blood vessels in muscle fibers, as well as the
blood flow [15], enhance the muscle strength [16], increase the motor units at nerve root
junctures [17,18], and restore the damaged functions of the central nervous system [19,20].
As such, low-frequency EMS has attracted much attention as a new method of exercise [21],
and EMS training in athletes has been shown to effectively enhance muscle strength [22–24].
However, in contrast to the positive findings on the effects of EMS in muscle development,
the reported drawbacks include fatigue of the neuromuscular system due to excessive
involuntary muscle contractions caused by electrical stimulation and sudden muscle fatigue
caused by conflicting orders of muscle recruitment [14,25].

While systematic training for athletes with disabilities should reflect the scientific
principles and medical outcomes and concerns to a greater degree compared to athletes
without disabilities [26,27], it is also truly important to address the limitations felt by
athletes with disabilities regarding the types and levels of disabilities, the lack of the
systematization of training, and psychological stress [28]. The range of possible upper-
limb motor functions varies substantially according to the affected area in athletes with
disabilities, and continuous stimulation should be applied to the muscles due to the limited
range of possible motions caused by degenerated muscles and nerves [29]. Among upper-
limb joint injuries in athletes with disabilities, injury of the shoulder joint that constitutes
the rotator cuff based on the scapular was reported to cause markedly reduced upper-limb
muscle strength and range of motion (ROM) [30,31]. EMS training on such injuries has
been shown to improve the involuntary upper-limb motions [32]. Furthermore, Alon and
Levitt [33,34] reported that EMS training on the wrist and finger muscles in stroke patients
could improve upper-limb function. In addition, EMS training was reported to have
positive effects on the physical composition and muscle function in menopausal women
(Kemmler et al.; 2010); when the energy consumption was compared according to the use of
EMS in identical participants, the level was approximately 20% higher in the EMS training
group, indicating a high level of exercise efficiency [23]. However, participants in previous
studies regarding whole-body-EMS were older adults [35,36]; therefore, a greater variety of
participants should be investigated. It was suggested that a novel exercise program could
be developed using EMS training to replace conventional exercise programs, especially for
individuals who do not have time to exercise or dislike exercise itself, as well as those who
are faced with a challenge in performing exercises due to conditions such as sarcopenia
and osteoporosis [23,24].

Most previous studies were clinical studies conducted on athletes without disabilities
or older adults regarding the validation of EMS training effects such as enhanced muscle
strength, reduced pain at the site of injury, and increased fatigue of the neuromuscular
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system. There is a general lack of studies on the effects of EMS training in enhancing muscle
function. Thus, this study investigated pre–post changes in upper-extremity muscles (pec-
toralis major, triceps, and antebrachial), the bilateral symmetry index, and gas respiration
(VO2) before and after 8 weeks of EMS training to verify the effects of EMS training in
athletes with disabilities. VCO2, RQ, METs, and EEm were analyzed.

2. Materials and Methods
2.1. Participants

We recruited volunteers after explaining the purpose of the study and the measure-
ment procedure to athletes (swimming, weightlifting, and running) participating in the
National Paralympic Games. Eight athletes (six with paraplegia and two with physical dis-
abilities) with normal scores were selected. Table 1 shows the physical characteristics of all
participants. Measurements were obtained after Bioethics Committee approval (approval
no.: 1041449-202206-HR-002).

Table 1. The physical composition of the participants.

Variable Age (years) Height (m) Weight (kg) Duration of Athletic
Career (years)

Mean ± SD 42.00 ± 8.67 1.65 ± 0.16 64.00 ± 8.72 11.75 ± 3.83

2.2. Procedures

The athletes with disabilities participating in this study were given an explanation
on the study procedures and the goals of the measurements, after which they signed
and submitted written consent. To determine the effects of an 8-week intervention of
EMS training, the pre- and post-intervention variables were measured with the seated
chest press (Miniplus, Ronfic, Korea). First, the participants performed a light warm-up
exercise for 5 min, and upper-limb muscle stiffness was measured in the sitting position.
The participants were guided to sit before the seated chest press device with their hands
holding the bar, their forearms parallel to the floor, their chin pulled toward their chest,
and their line of sight adjusted to 15◦ forward. The participants then lightly grasped the
grip with their elbows directed outward, and, while breathing out in a relaxed manner,
they pushed their elbow joints outward through extension. This was followed by slow
flexion as the participants breathed in. The cable direction was set to allow for the pull at an
identical 90◦ position from the ground by all participants. To examine the changes in muscle
activity, six surface electrodes were attached to the left and right pectoralis major, triceps,
and antebrachial muscles, and the maximum voluntary isometric contraction (MVIC) was
measured at 60% of the participant’s weight for 5 s. Next, preparations for muscle activity
and respiratory gas measurements were made by applying a soft nylon mask on the nose
and mouth of the participant and maximally tightening the head harness to prevent the
escape of the inspiratory and expiratory gases. In addition, three sets of seated chest presses
were performed by the participants five times, in the same posture as previously described.
The rest between each set was 3 min. For EMS training, each participant wore an EMS
suit, and at a 40 ◦C water temperature, the frequency was set to 25 Hz (duty cycle 10%) for
15 min and then 5 Hz (duty cycle 5%) for 5 min, with the EMS applied to the upper-limb
muscles (pectoralis major and triceps). The pre- and post-intervention measurements were
taken in the same way at a pre-set time (for 1 h, twice a week) for 8 weeks.

2.3. Data Processing and Analysis
2.3.1. Muscle Stiffness Analysis

Prior to the measurements, participants were given time to take an adequate rest.
To measure the stiffness of the muscles during the upper-limb motions in athletes with
disabilities, the participants were guided to sit on a chair in a relaxed manner to perform
the MMT. Then, in a manner that does not cause pain or muscle fatigue, and with adequate
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rest and explanations of the directions, the participants were guided to perform shoulder
joint flexion and extension, shoulder joint abduction and adduction, and heel joint flexion
and extension. Each motion was maintained for 10 s and repeated three times to measure
the stiffness at the upper-limb joints. Figure 1 describes each motion. The rating of the
measurements was as follows: Normal, if the participant could overcome strong resistance
in a sitting position; Good, if the resistance was weak; Fair, for the motions without
resistance in a sitting position; Poor, for the motions without resistance in a hanging to
prone position; Trace, if contraction was detected upon examining the antagonistic muscles.
All participants displayed a level of Good or above.
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2.3.2. Muscle Activity Analysis

To measure muscle activity, electromyography (EMG) (Noraxon Inc. U.S.A) was used.
At three muscle sites on both arms (pectoralis major, triceps, and antebrachial muscles)
(Figure 2), the hair was removed, the skin surface was wiped with alcohol and then calmed,
and six surface electrodes were attached. The distance between two electrodes was 2 cm,
while the position was set in reference to the EMG manufacturer’s guidelines (SENIAM
Guideline). The EMG signals were collected at 2000 Hz/s, and the raw data were filtered at
a 40–450 Hz bandpass and then rectified. For smoothing, the root mean square (RMS) was
used, and the time window was set as 50–100 ms. With the EMG connected to the surface
electrodes, the MVIC was measured with actual motions of the seated chest press at 60% of
the participant’s body weight. The data of 5 s were applied with the elbow joint extension.
The raw data of the seated chest press performed in three sets five times were collected
for each muscle type, and the mean values were used in the analysis. The equation for
standardization was as follows:

Muscle activation =
EMGraw

EMGMVIC
× 100(%) (1)

EMGraw: RMS of muscle activity upon movement
EMGMVIC: RMS of muscle activity upon MVIC.

2.3.3. Left-to-Right Symmetry Index

To determine the left-to-right symmetry index (SI), the variables of all muscles on the
left and right arms were computed as follows:

SI =
|XR − XL|

1
2 (XR + XL)

× 100% (2)

XR: muscles on the right, XL: muscles on the left
Here, the SI values ranged from the lowest (0%) to the highest (200%), with values

closer to 0% indicating a higher level of symmetry [37].
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2.3.4. Respiratory Gas Analysis

In the respiratory gas analysis (K5, COSMED, Italy) (Figure 2), maximal oxygen
consumption (VO2), carbon dioxide output (VCO2), respiratory quotient (RQ), metabolic
equivalents (METs), and energy expenditure per min (Energy expended per minute; EEm)
were selected as the main variables for the use of a wireless respiratory gas analyzer, which
represent the metabolic energy expenditure. The mean values of the respiratory gas data
obtained during the five trials of the three seated chest presses were used. Steady state was
defined as a state showing a 100 mL/min difference between the mean of the last 1 min
of oxygen consumption per min and the mean of the preceding 1 min [37]. To adequately
remove the noise but retain the dynamic changes in the data of all metabolic variables, the
moving average filtering at a 15-window size was applied, as it was verified to have high
validity by Robergs et al. [38].
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this study.

2.4. Statistical Analysis

Statistical analyses were performed using SPSS 20.0 for descriptive statistics. The
descriptive statistics and homogeneity test were conducted to analyze the general character-
istics of the participants. Paired-samples t-tests were performed to analyze the changes in
muscle activity and respiratory gas parameters, and effect sizes (Cohen’s d) were calculated.
The significance level for all data was an α of 0.05.

3. Results

In this study, an 8-week intervention of EMS training was performed on athletes with
disabilities. The consequent changes in upper-limb muscle functions and respiratory gas
variables were analyzed to verify the effects of the EMS training.

3.1. Muscle Activity Analysis

Table 2 presents the changes in muscle activity on the left and right arms (pectoralis
major, triceps, and antebrachial muscles) of athletes with disabilities upon seated chest
presses, before and after the EMS training for 8 weeks. The pre- and post-intervention vari-
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ations were statistically significant in the pectoralis major right (RT) (t = −4.844, p < 0.004),
pectoralis major left (LT) (t = −0.4.073, p < 0.001), triceps RT (t = −4.277, p < 0.002), and
antebrachial RT (t = −4.046, p < 0.001), while no significant variation was found in the
triceps LT (t = −1.451, p < 0.100) (Figure 3).

Table 2. Changes in muscle activity pre- and post-intervention on the left and right arms.

Variables
Pre Post

t Effect Size p
Mean ± SD Mean ± SD

Pectoralis Major RT 58.22 ± 21.78 75.31 ± 18.06 −4.844 0.84 L 0.004 *
Pectoralis Major LT 62.83 ± 21.87 92.64 ± 20.48 −4.073 1.33 L 0.001 *

Triceps RT 57.09 ± 24.13 98.58 ± 54.42 −4.277 0.84 L 0.002 *
Triceps LT 63.71 ± 17.02 74.73 ± 35.23 −1.451 0.44 S 0.100

Antebrachial RT 50.27 ± 14.81 75.13 ± 27.61 −4.046 1.16 L 0.001 *
Antebrachial LT 79.86 ± 41.45 94.77 ± 34.49 −1.167 0.27 S 0.095

LT: left, RT: right. * p < 0.05, effect size: S small (~0.2), L large (~0.8).
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3.2. Left-to-Right SI

Table 3 presents the changes in the left-to-right SI (pectoralis major, triceps, and
antebrachial muscles) of athletes with disabilities upon seated chest presses, before and after
EMS training for 8 weeks. The pre- and post-intervention variations were not statistically
significant in the pectoralis major (t = −3.697, p < 0.084), triceps (t = −1.723, p < 0.167), and
antebrachial (t = 3.997, p < 0.078) muscles (Figure 3).

Table 3. Left-to-right symmetry index (SI, %).

Variables
Pre Post

t Effect Size p
Mean ± SD Mean ± SD

Pectoralis Major 13.13 ± 2.42 4.85 ± 3.14 0.189 0.28 S 0.441
Triceps 9.12 ± 2.89 3.63 ± 2.34 0.942 0.46 S 0.260

Antebrachial 2.20 ± 1.06 4.33 ± 2.51 1.001 0.88 L 0.250

Effect size: S small (~0.2), L large (~0.8).

3.3. Respiratory Gas Analysis

Table 4 presents the changes in the respiratory gas variables (VO2, VCO2, RQ, METs,
and EEm) of athletes with disabilities upon seated chest presses, before and after EMS
training for 8 weeks. The pre- and post-intervention variations were statistically significant
for the VO2 (t =−3.293, p < 0.001), VCO2 (t =−3.245, p < 0.002), METs (t =−3.618, p < 0.001),
and EEm (t = −3.318, p < 0.001), whereas no significant variation was found for the RQ
(t = −1.291, p < 0.104).
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Table 4. Changes in respiratory gas variables pre- and post-intervention.

Variables
Pre Post

t Effect Size p
Mean ± SD Mean ± SD

VO2 (mL/min) 448.79 ± 163.46 645.69 ± 208.87 −3.293 1.10 L 0.001 *
VCO2 (mL/min) 407.28 ± 172.92 611.08 ± 198.74 −3.245 1.14 L 0.002 *

RQ 0.92 ± 0.11 0.98 ± 0.17 −1.291 0.36 S 0.104
METs 2.09 ± 0.68 3.05 ± 1.04 −3.618 1.15 L 0.001 *

EEm (kcal/min) 2.20 ± 0.82 3.19 ± 1.01 −3.318 1.13 L 0.001 *
VO2: peak oxygen uptake, VCO2: carbon dioxide production, RQ: respiratory quotient, METs: metabolic
equivalents, EEm: energy expenditure per minute. * p < 0.05, effect size: S small (~0.2), L large (~0.8).

4. Discussion

This study was conducted to investigate the changes in upper-limb muscle functions
and energy expenditure in athletes with disabilities through an 8-week intervention of EMS
training, with the aim being to verify the efficacy of EMS training.

EMS training was developed as an assistive device for short-term whole-body training.
While the participants in previous studies were older adults [23,34,35], the participants
in this study were athletes with disabilities. EMS training given to athletes with disabili-
ties was shown to induce significant variations in the activity of the pectoralis major RT
(p < 0.004), pectoralis major LT (p < 0.001), triceps RT (p < 0.002), and antebrachial RT
(p < 0.001) muscles when the pre- and post-intervention muscle activity with seated chest
presses were examined. The triceps LT and antebrachial LT muscles showed an increase
in activity by 17% and 18%, respectively, despite the lack of significant variations, which
indicated a positive effect. Previous studies on the changes in muscle strength upon EMS
training included studies reporting enhanced muscle strength in athletes [38,39], those
reporting an increase in muscle strength for the lower-limb and trunk maximum extension
in female older adults, and those reporting an increase in muscle mass and strength in
female older adults at a risk of sarcopenia following a 54-week intervention with whole-
body-EMS training [23,35]. In addition, EMS (30 min a day) applied to patients with a
syndromic disease was clinically verified to decrease the disease severity, which enhanced
the quality of life and reduced the risk of onset [40]. In another study investigating the
effects of trunk stabilization exercise and low-frequency EMS in patients with chronic back
pain, the index of functional disability for back pain was shown to decrease [41]. Gradually,
regular low-frequency EMS training is indicated to enhance the isokinetic muscle function
and promote the development of upper-limb muscles, with an assistive role in enhancing
muscle strength in athletes with disabilities, for whom fluent motions are challenging. EMS
training is also predicted to have positive effects on lower-limb muscles in addition to
upper-limb muscles, as it can increase exercise ability by continuously inducing muscle
contractions.

While left-to-right muscle asymmetry results from an injury to the musculoskeletal
system [42,43], the left-to-right SI for upper-limb muscles measured in this study did
not show significant variations in the pectoralis major, triceps, and antebrachial muscles.
However, in the pectoralis major and triceps muscles, EMS training was effective, as the
left-to-right SI increased by 36% and 39%, respectively. Following low-frequency EMS
training for 8 weeks, the pectoralis major and triceps muscles were confirmed to have
improved left-to-right symmetry. A comparison of the bilateral motor loss between 40 right-
dominant and 40 left-dominant people found that muscle strength and activity differed
significantly [44]. Although motor loss appeared to be low, it was bilateral. In addition, [45]
showed that the asymmetry index decreased when using a power-assisted wheelchair;
however, antebrachial muscles without low-frequency EMS displayed asymmetry. This
suggested that regular low-frequency EMS could lead to the symmetry of left and right
muscles, with predicted positive effects in preventing injuries and reducing pain.

Respiratory gas analysis with the seated chestpress after the 8-week EMS training in
athletes with disabilities showed significant variations in VO2 (p < 0.001), VCO2 (p < 0.001),
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METs (p < 0.001), and EEm (p < 0.001). VO2 and VCO2 are variables of cardiopulmonary
fitness [46]; in a study conducted on sedentary patients, EMS training was shown to
increase the VO2 by approximately 20% [45]. The increase in VO2 in this study was 43%,
indicating an increase of >4-fold, which suggested an improvement in cardiopulmonary
fitness. Similar to the results of this study, VO2 (42 times) and VCO2 (47 times) also
increased, and the increase in the rate of CO2 production was higher than that of oxygen
intake [47]. In addition, the VCO2 is an indicator of CO2 production, as the oxygen
demand upon muscle contraction is satisfied during exercise because of the excitation of
the inspiratory and expiratory systems [48]. The VCO2 in this study showed a significant
variation with EMS training, which is thought to be due to the cardiopulmonary fitness
being improved based on the increased VO2 in athletes with disabilities after EMS training.
Therefore, EMS training is presumed to promote more efficient muscle contractions through
an increased VCO2.

METs, measured by a wireless respiratory gas analyzer, are categorized based on the
intensity of physical activity performed by adults as follows: low-intensity (~3 METs),
moderate-intensity (3–6 METs), and high-intensity (6 METs) [49]. In this study, the 8-week
EMS training led to a 1 METs increase. In the study by Lee et al. [50], where the gait intensity
(METs) was measured at speeds of 3.2 km/ h, 4.8 km/h, and 5.6 km/h on the treadmill for
52 adults in their 20s (23 males and 19 females), the mean METs per speed were 3.46 ± 0.45,
4.70 ± 0.59, and 5.69 ± 0.69, respectively. This lent support to the change in METs through
continuous EMS training in athletes with disabilities, and exercise intensity was presumed
to be low to moderate based on the EMS training.

Lastly, the EEm in the respiratory gas analysis increased from 2.20 ± 0.82 kcal/min to
3.19± 1.01 kcal/min after the 8-week EMS training, which agreed with the observed increase
of 1–2 kcal/min through EMS in a previous study [51]. In addition, Scott et al. [52] claimed
that an increase in EEm could be achieved through EMS training, and Hamada et al. [53]
mentioned that EMS was deeply associated with EEm. Therefore, regular EMS training is
presumed to promote cardiopulmonary fitness and energy expenditure through increased
muscle mass. Regular EMS training given to athletes with disabilities for 8 weeks had
activated the calorie consumption to a high level, even in the absence of exercise; therefore,
it is predicted that EMS training without exercise could solve the problem of obesity risk
factors in individuals with disabilities, for whom motions are not fluent, through the
generation of energy expenditure.

5. Conclusions

In this study, athletes with disabilities underwent EMS training for 8 weeks, and
the consequent changes in upper-limb muscle functions and energy expenditure were
examined. The conclusions are as follows: First, EMS significantly increased muscle activity
in the pectoralis major RT, pectoralis major LT, triceps RT, and antebrachial RT. Second, EMS
induced significant variations in the VO2, VCO2, METs, and EEm. Third, no significant
variation in the left-to-right SI was found for the pectoralis major, triceps, and antebrachial
muscles through EMS training. EMS training in this study was shown to have a significant
short-term training effect on upper-limb muscle activities for athletes with disabilities,
which would lead to positive effects for muscle strength and cardiopulmonary fitness
and enhance athletic performance. Athletes in a greater diversity of fields should be
investigated, while the changes in training effects on the upper- and lower-limb muscles
and the changes in the effects of aerobic exercise should be determined, for which future
follow-up studies will be conducted to continue the academic research on EMS training.
In the future, it is suggested to study the changes in the muscles of the upper and lower
extremities.
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