Calcium Enhances Thallium Uptake in Green Cabbage (Brassica oleracea var. capitata L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Trials
2.2. The Exchangeable Ca in Ca-Spiked Soils
2.3. The Solubility of Tl in Ca Solution
2.4. Sequential Extraction of Tl in Soils
2.5. Analysis and Quality Control
2.6. Statistical Analysis
3. Results and Discussion
3.1. Ca-Induced Plant-Enhanced Tl Accumulation
3.2. Mechanism of Ca-Induced Phytoextraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Repetto, G.; Del Peso, A.; Repetto, M. Thallium in the Environment; Niragu, J.O., Ed.; Wlley-Interscience Publication: New York, NY, USA, 1998; p. 167. [Google Scholar]
- Robinson, B.; Anderson, C. Element case studies: Thallium and noble metals. In Agromining: Farming for Metals; Van der Ent, A., Echevarria, G., Baker, A.J., Morel, J.L., Eds.; Springer: Cham, Switzerland, 2018; pp. 253–261. [Google Scholar]
- She, J.; Liu, J.; He, H.P.; Zhang, Q.; Lin, Y.Y.; Wang, J.; Yin, M.L.; Wang, L.L.; Wei, X.D.; Huang, Y.L.; et al. Microbial response and adaption to thallium contamination in soil profiles. J. Hazard. Mater. 2022, 423, 127080. [Google Scholar] [CrossRef] [PubMed]
- Karbowska, B. Presence of thallium in the environment: Sources of contaminations, distribution and monitoring methods. Environ. Monit. Assess. 2016, 188, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zitko, V. Toxicity and pollution potential of thallium. Sci. Total Environ. 1975, 4, 185–192. [Google Scholar] [CrossRef]
- Sadykov, R.; Digel, I.; Artmann, A.T.; Porst, D.; Linder, P.; Kayser, P.; Artmann, G.; Savitskaya, I.; Zhubanova, A. Oral lead exposure induces dysbacteriosis in rats. J. Occup. Health 2009, 51, 64–73. [Google Scholar] [CrossRef] [Green Version]
- El Asar, H.M.; Mohammed, E.A.; Aboulhoda, B.E.; Emam, H.Y.; Imam, A.A.A. Selenium protection against mercury neurotoxicity: Modulation of apoptosis and autophagy in the anterior pituitary. Life Sci. 2019, 231, 116578. [Google Scholar] [CrossRef] [PubMed]
- Keith, L.H.; Telliard, W.A. Priority pollutants: I-A perspective view. Environ. Sci. Technol. 1979, 13, 416–423. [Google Scholar] [CrossRef]
- Li, S.H.; Xiao, T.F.; Zheng, B.S. Medical geology of arsenic, selenium and thallium in China. Sci. Total Environ. 2012, 421–422, 31–40. [Google Scholar] [CrossRef]
- Xiao, T.F.; Yang, F.; Li, S.H.; Zheng, B.S.; Ning, Z.P. Thallium pollution in China: A geo-environmental perspective. Sci. Total Environ. 2012, 421–422, 51–58. [Google Scholar] [CrossRef]
- Fergusson, J.E. The Heavy Elements: Chemistry, Environmental Impact and Health Effects; Pergamon Press: Oxford, UK, 1990; p. 614. [Google Scholar]
- CCME (Canadian Council of Ministers of the Environment). Summary of Existing Canadian Environmental Quality Guidelines; CCME: Winnipeg, MB, Canada, 2003. [Google Scholar]
- Tremel, A.; Masson, P.; Sterckeman, T.; Baize, D.; Mench, M. Thallium in French agrosystems.I. Thallium contents in arable soils. Environ. Pollut. 1997, 95, 293–302. [Google Scholar] [CrossRef]
- Lis, J.; Pasieczna, A.; Karbowska, B.; Zembrzuski, W.; Lukaszewski, Z. Thallium in soils and stream sediments of a Zn-Pb mining and smelting area. Environ. Sci. Technol. 2003, 37, 4569–4572. [Google Scholar] [CrossRef]
- Xiao, T.F.; Guha, J.; Boyle, D.; Liu, C.Q.; Chen, J.A. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Sci. Total Environ. 2004, 318, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.F.; Guha, J.; Liu, C.Q.; Zheng, B.S.; Wilson, G.; Ning, Z.P.; He, L.B. Potential health risk in areas of high natural concentrations of thallium and importance of urine screening. Appl. Geochem. 2007, 22, 919–929. [Google Scholar] [CrossRef]
- Sasmaz, A.; Sen, O.; Kaya, G.; Yaman, M.; Sagiroglu, A. Distribution of thallium in soil and plants growing in the keban mining district of Turkey and determined by ICP-MS. At. Spectrosc. 2007, 28, 157–163. [Google Scholar] [CrossRef]
- Álvarez-Ayuso, E.; Otones, V.; Murciego, A.; García-Sánchez, A.; Santa Regina, I. Zinc, cadmium and thallium distribution in soils and plants of an area impacted by sphalerite-bearing mine wastes. Geoderma 2013, 207–208, 25–34. [Google Scholar] [CrossRef]
- Vaněk, A.; Chrastný, V.; Komárek, M.; Penížek, V.; Teper, L.; Cabala, J.; Drábek, O. Geochemical position of thallium in soils from a smelter-impacted area. Geochem. Explor. 2013, 124, 176–182. [Google Scholar] [CrossRef]
- Wang, C.L.; Chen, Y.H.; Liu, J.; Wang, J.; Li, X.P.; Zhang, Y.B.; Liu, Y.M. Health risks of thallium in contaminated arable soils and food crops irrigated with wastewater from a sulfuric acid plant in western Guangdong province, China. Ecotox. Environ. Safe. 2013, 90, 76–81. [Google Scholar] [CrossRef]
- Resongles, E.C.; Casiot, R.; Freydier, L.; Dezileau, J.V.; Elbaz-Poulichet, F. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Sci. Total Environ. 2014, 481, 509–521. [Google Scholar] [CrossRef]
- Vaněk, A.; Grösslová, Z.; Mihaljevič, M.; Ettler, V.; Chrastný, V.; Komárek, M.; Tejnecký, V.; Drábek, O.; Penížek, V.; Galušková, I.; et al. Thallium contamination of soils/vegetation as affected by sphalerite weathering: A model rhizospheric experiment. J. Hazard. Mater. 2015, 283, 148–156. [Google Scholar] [CrossRef]
- Voegelin, A.; Pfenninger, N.; Petrikis, J.; Majzlan, J.; Plötze, M.; Senn, A.; Mangold, S.; Steininger, R.; Gottlicher, J. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock. Environ. Sci. Technol. 2015, 49, 5390–5398. [Google Scholar] [CrossRef]
- Liu, J.; Luo, X.W.; Wang, J.; Xiao, T.F.; Chen, D.Y.; Shen, G.D.; Yin, M.L.; Lippold, H.; Wang, C.L.; Chen, Y.H. Thallium contamination in arable soils and vegetables around a steel plant? A newly-found significant source of Tl pollution in South China. Environ. Pollut. 2017, 224, 445–453. [Google Scholar] [CrossRef]
- Cruz-Hernández, Y.; Ruiz-García, M.; Villalobos, M.; Romero, F.M.; Meza-Figueroa, D.; Garrido, F.; Hernández-Alvarez, E.; Pi-Puig, T. Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction. Environ. Pollut. 2018, 237, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Grösslová, Z.; Vaněk, A.; Oborná, V.; Mihaljevič, M.; Ettler, V.; Trubač, J.; Drahota, P.; Penížek, V.; Pavlů Pavlu, L.; Sracek, O.; et al. Thallium contamination of desert soil in Namibia: Chemical, mineralogical and isotopic insights. Environ. Pollut. 2018, 239, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Tsang, D.C.W.; Xiao, T.F.; Chen, Y.H.; Hou, L. Emerging Thallium pollution in China and source tracing by Thallium isotopes. Environ. Sci. Technol. 2018, 52, 11977–11979. [Google Scholar] [CrossRef] [Green Version]
- D’Orazio, M.; Campanella, B.; Bramanti, E.; Ghezzi, L.; Onor, M.; Vianello, G.; Vittori-Antisari, L.; Petrini, R. Thallium pollution in water, soils and plants from a past-mining site of Tuscany: Sources, transfer processes and toxicity. J. Geochem.Explor. 2020, 209, 106434. [Google Scholar] [CrossRef]
- Vaněk, A.; Voegelin, A.; Mihaljevič, M.; Ettler, V.; Trubač, J.; Drahota, P.; Vaňková, M.; Oborná, V.; Vejvodová, K.; Penížek, V.; et al. Thallium stable isotope ratios in naturally Tl-rich soils. Geoderma 2020, 364, 114183. [Google Scholar] [CrossRef]
- Ning, Z.P.; Liu, E.G.; Yao, D.J.; Xiao, T.F.; Ma, L.; Liu, Y.Z.; Li, H.; Liu, C.S. Contamination, oral bioaccessibility and human health risk assessment of thallium and other metal(loid)s in farmland soils around a historic Tl Hg mining area. Sci. Total Environ. 2021, 758, 143577. [Google Scholar] [CrossRef]
- Ren, S.X.; Wei, X.D.; Wang, J.; Liu, J.; Ouyang, Q.E.; Jiang, Y.J.; Hu, H.Y.; Huang, Y.L.; Zheng, W.T.; Nicoletto, C.; et al. Unexpected enrichment of thallium and its geochemical behaviors in soils impacted by historically industrial activities using lead-zinc carbonate minerals. Sci. Total Environ. 2022, 821, 153399. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wan, Y.B.; Wei, X.D.; She, J.Y.; Ouyang, Q.E.; Deng, P.Y.; Hu, H.Y.; Zhang, X.Y.; Fang, M.Y.; Wei, X.L.; et al. Microbial diversity in paddy rhizospheric soils around a large industrial thallium-containing sulfide utilization zone. Environ. Res. 2022, 216, 114627. [Google Scholar] [CrossRef]
- Tremel, A.; Masson, P.; Garraud, H.; Donard, O.F.X.; Baize, D.; Mench, M. Thallium in French agrosystems-II. Concentration of thallium in field-grown rape and some other plant species. Environ. Pollut. 1997, 97, 161–168. [Google Scholar] [CrossRef]
- Al-Najar, H.; Schulz, R.; Romheld, V. Plant availability of thallium in the rhizosphere of hyperaccumulator plants: A key factor for assessment of phytoextraction. Plant. Soil. 2003, 249, 97–105. [Google Scholar] [CrossRef]
- Xiao, T.F.; Guha, J.; Boyle, D.; Liu, C.Q.; Zheng, B.S.; Wilson, G.C.; Rouleau, A.; Chen, J.A. Naturally occurring thallium: A hidden geoenvironmental health hazard? Environ. Int. 2004, 30, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Pavlickova, J.; Zbiral, J.; Smatanova, M.; Houserova, P.; Cizmarova, E.; Havlikova, S.; Kuban, V. Uptake of thallium from artificially and naturally contaminated soils into rape (Brassica napus L.). J. Agric. Food Chem. 2005, 53, 2867–2871. [Google Scholar] [CrossRef]
- Madejon, P.; Murillo, J.M.; Maranon, T.; Lepp, N.W. Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere 2007, 67, 20–28. [Google Scholar] [CrossRef]
- Wu, Q.H.; Leung, J.Y.S.; Huang, X.X.; Yao, B.; Yuan, X.; Ma, J.H.; Guo, S.J. Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil. Environ. Sci. Pollut. Res. 2015, 22, 11478–11487. [Google Scholar] [CrossRef] [PubMed]
- LaCoste, C.; Robinson, B.; Brooks, R. Uptake of thallium by vegetables: Its significance for human health, phytoremediation, and phytomining. J. Plant Nutr. 2001, 24, 1205–1215. [Google Scholar] [CrossRef]
- Al-Najar, H.; Kaschl, A.; Schulz, R.; Romheld, V. Effect of thallium fractions in the soil and pollution origins on Tl uptake by hyperaccumulator plants: A key factor for the assessment of phytoextraction. Int. J. Phytoremediat. 2005, 7, 55–67. [Google Scholar] [CrossRef]
- Ning, Z.P.; He, L.B.; Xiao, T.F.; Marton, L. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica Oleracea L. Var. Capitata L.). Int. J. Phytoremediat. 2015, 17, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Scheckel, K.G.; Lombi, E.; Rock, S.A.; McLaughlin, M.J. In vivo synchrotron study of thallium speciation and compartmentation in Iberis intermedia. Environ. Sci. Technol. 2004, 38, 5095–5100. [Google Scholar] [CrossRef]
- Scheckel, K.G.; Hamon, R.; Jassogne, L.; Rivers, M.; Lombi, E. Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. Plant Soil 2007, 290, 51–60. [Google Scholar] [CrossRef]
- Wojas, S.; Ruszczynska, A.; Bulska, E.; Wojciechowski, M.; Antosiewicz, D.M. Ca2+-dependent plant response to Pb2+ is regulated by LCT1. Environ. Pollut. 2007, 147, 584–592. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, D.M.; Peijnenburg, W.J.G.M.; Li, L.Z.; Weng, N.Y. Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. Plant. Soil. 2010, 334, 277–288. [Google Scholar] [CrossRef]
- Wan, G.L.; Najeeb, U.; Jilani, G.; Naeem, M.S.; Zhou, W.J. Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environ. Sci. Pollut. Res. 2011, 18, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.H.; He, Z.L.; Ma, L.Q.; Nogueira, T.A.R.; Wang, Y.B.; Liang, Z.B.; Stoffella, P.J. Calcium water treatment residue reduces copper phytotoxicity in contaminated sandy soils. J. Hazard. Mater. 2012, 199, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.Q.; Chen, Y.L.; Cao, J.S. Indium and thallium background contents in soils in China. Int. J. Environ. Stud. 1992, 40, 311–315. [Google Scholar] [CrossRef]
- Ralph, L.; Twiss, M.R. Comparative toxicity of Thallium(I), Thallium(III), and Cadmium(II) to the unicellular alga Chlorella isolated from Lake Erie. Bull. Environ. Contam. Toxicol. 2002, 68, 261–268. [Google Scholar] [CrossRef]
- Lin, T.S.; Nriagu, J.O. Thallium speciation in the Great Lakes. Environ. Sci. Technol. 1999, 33, 3394–3397. [Google Scholar] [CrossRef]
- Karlsson, U.; Karlsson, S.; Duker, A. The effect of light and iron(II)/iron(III) on the distribution of Tl(I)/Tl(III) in fresh water systems. J. Environ. Monit. 2006, 8, 634–640. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil; University of California Agriculture Experiment Station: Berkley, CA, USA, 1950. [Google Scholar]
- Courchesne, F.; Gobran, G.R. Mineralogical Variations of Bulk and Rhizosphere Soils from a Norway Spruce Stand. Soil Sci. Soc. Am. J. 1997, 61, 1245–1249. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.G.; Liang, W.J.; Wen, D.Z. Correlations of exchangeable Ca, Mg, Fe, Mn, Cu and Zn in cultivated soils. Ecol. Environ. 2003, 02, 160–163, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jia, Y.L.; Xiao, T.F.; Zhou, G.Z.; Ning, Z.P. Thallium at the interface of soil and green cabbage (Brassica oleracea L. var. capitata L.): Soil-plant transfer and influencing factors. Sci. Total Environ. 2013, 450–451, 140–147. [Google Scholar] [CrossRef]
- Rauret, G.; Lopez-Sanchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monitor. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.X.; Chen, Y.H.; Peng, P.; Li, C.; Chang, X.Y.; Xie, C.S. Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area. Sci. Total Environ. 2005, 341, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Jakubowska, M.; Pasieczna, A.; Zembrzuski, W.; Swit, Z.; Lukaszewski, Z. Thallium in fractions of soil formed on floodplain terraces. Chemosphere 2007, 66, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, J.D.; Conrad, G. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta. 2000, 51, 507–513. [Google Scholar] [CrossRef]
- Logan, P.G.; Lepp, N.W.; Phipps, D.A. Some aspects of thallium uptake by higher plants. In Proceedings of the 18th Trace Substances in Environmental Health Conference, Columbia, MO, USA, 4 June 1984. [Google Scholar]
- Schoer, J. Thallium. In Handbook of Environmental Chemistry; Huzinger, O., Ed.; Springer: Berlin, Germany, 1984; pp. 143–214. [Google Scholar]
- Kaplan, D.I.; Mattigod, S.V. Aqueous geochemistry of thallium. In Thallium in the Environment; Niragu, J.O., Ed.; Wlley-Interscience Publication: New York, NY, USA, 1998; pp. 15–29. [Google Scholar]
- Jia, Y.L.; Xiao, T.F.; Sun, J.L.; Yang, F.; Baveye, P.C. Microcolumn-based speciation analysis of thallium in soil and green cabbage. Sci. Total Environ. 2018, 630, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhang, F.Y.; Wang, M.Y.; Liu, F.; Liu, W.F.; Li, X.W.; Qin, D.D.; Geng, X.H.; Huang, X.X.; Zhang, P. Thallium-induced oxalate secretion from rice (Oryza sativa L.) root contributes to the reduction of Tl(III) to Tl(I). Environ. Exp. Bot. 2018, 155, 387–393. [Google Scholar] [CrossRef]
- Sarwar, N.; Saifullah Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibi, S.; Farid, G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 2010, 90, 925–937. [Google Scholar] [CrossRef]
- Gorma, A.L.F.; Woolum, J.C.; Cornwall, M.C. Selectivity of the Ca2+-activated and light-dependent K+ channels for monovalent cations. Biophys. J. 1982, 38, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.L.; Zou, X.; Ning, Z.P.; Sun, M.; Peng, J.Q.; Xiao, T.F. Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination. Sci. Total Environ. 2012, 441, 258–264. [Google Scholar] [CrossRef]
- Krasnodębska-Ostręga, B.; Sadowska, M.; Ostrowska, S. Thallium speciation in plant tissues—Tl(III) found in Sinapis alba L. grown in soil polluted with tailing sediment containing thallium minerals. Talanta. 2012, 93, 326–329. [Google Scholar] [CrossRef]
- Xiong, Y.L. Hydrothermal thallium mineralization up to 300 degrees C: A thermodynamic approach. Ore Geol. Rev. 2007, 32, 291–313. [Google Scholar] [CrossRef]
- Vaněk, A.; Komarek, M.; Chrastny, V.; Becka, D.; Mihaljevic, M.; Sebek, O.; Panuskova, G.; Schusterova, Z. Thallium uptake by white mustard (Sinapis alba L.) grown on moderately contaminated soils--Agro-environmental implications. J. Hazard. Mater 2010, 182, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Vaněk, A.; Komárek, M.; Chrastny, V.; Galusková, I.; Mihaljevi, M.; Sebek, O.; Drahota, P.; Tejnecký, V.; Vokurková, P. Effect of low-molecular-weight organic acids on the leaching of thallium and accompanying cations from soil–A model rhizosphere solution approach. J. Geochem. Explor. 2012, 112, 212–217. [Google Scholar] [CrossRef]
- He, L.B. Environmental Geochemistry Study on High Uptake of Thallium by Green Cabbage (Brassica oleracea L. var. capitata L.). Doctor Thesis, State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, 2008. (In Chinese with English Abstract). [Google Scholar]
Soil Parameters | |
---|---|
pH (1:2.5) | 6.27 ± 0.02 |
SOM (g/kg) 1 | 70.3 ± 1.48 |
CEC (cmol/kg) 2 | 21.5 ± 0.87 |
Particle size distribution | |
sand % (>0.05 mm) | 43.5 ± 0.77 |
silt % (0.002–0.05 mm) | 47.4 ± 0.22 |
clay % (<0.002 mm) | 9.05 ± 0.55 |
Total Ca (g/kg) | 9.85 ± 0.64 |
Exchangeable Ca (mg/kg) | 660 ± 43.1 |
Total Tl (mg/kg) | 0.84 ± 0.05 |
Soil Mineral Type | Quartz | Smectite | Illite | Kaolinite | Feldspar | Calcite | Iron Mineral |
---|---|---|---|---|---|---|---|
Percentage composition (%) | 87 | 4.7 | 1.5 | 0.96 | 1.7 | 3.0 | 1.2 |
Ca Treatment | 12 mg/kg Tl(I) | 8 mg/kg Tl(III) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Roots | Stems | Young Leaves | Old Leaves | Whole Plants | Roots | Stems | Young Leaves | Old Leaves | Whole Plants | |
control | 1.3 ± 0.4 b | 3.6 ± 0.3 b | 8.7 ± 2.4 b | 7.4 ± 1.2 c | 21.0 ± 3.6 c | 1.9 ± 0.1 a | 3.4 ± 0.2 c | 7.8 ± 1.2 c | 7.2 ± 1.3 c | 20.2 ± 2.6 c |
1.0 g/kg | 2.0 ± 1.1 ab | 4.4 ± 0.1 ab | 8.6 ± 1.6 b | 9.6 ± 3.1 bc | 24.6 ± 5.7 bc | 1.5 ± 0.3 a | 5.2 ± 1.2 a | 8.0 ± 1.6 c | 7.8 ± 1.7 bc | 22.5 ± 3.6 bc |
1.5 g/kg | 1.9 ± 0.2 ab | 4.0 ± 0.5 b | 12.9 ± 4.4 ab | 12.3 ± 0.4 ab | 31.1 ± 5.1 ab | 1.6 ± 0.6 a | 4.0 ± 0.2 bc | 9.2 ± 1.8 bc | 7.7 ± 2.3 bc | 22.5 ± 3.9 bc |
2.0 g/kg | 2.7 ± 0.7 a | 4.4 ± 0.9 ab | 14.6 ± 3.6 a | 15.7 ± 3.8 a | 37.5 ± 8.3 a | 1.6 ± 0.6 a | 5.1 ± 0.9 ab | 12.2 ± 1.8 a | 12.1 ± 0.4 a | 31.0 ± 3.5 a |
2.5 g/kg | 2.2 ± 0.5 ab | 3.9 ± 0.3 b | 13.1 ± 2.2 ab | 14.1 ± 1.8 a | 33.2 ± 1.9 ab | 1.5 ± 0.2 a | 4.5 ± 0.1 abc | 10.7 ± 1.4 ab | 10.2 ± 1.3 ab | 26.9 ± 0.6 ab |
3.0 g/kg | 1.9 ± 0.6 ab | 5.0 ± 0.2 a | 14.7 ± 0.9 a | 13.4 ± 0.3 ab | 35.0 ± 0.8 a | 1.6 ± 0.4 a | 4.7 ± 0.5 ab | 12.5 ± 0.6 a | 12.6 ± 0.2 a | 31.3 ± 0.9 a |
Ca Treatment | 12 mg/kg Tl(I) | 8 mg/kg Tl(III) | ||||||
---|---|---|---|---|---|---|---|---|
Roots | Stems | Leaves | Whole Plants | Roots | Stems | Leaves | Whole Plants | |
control | 29.0 ± 4.4 ab | 33.2 ± 2.8 b | 36.1 ± 3.2 b | 35.3 ± 3.1 bc | 24.5 ± 3.3 ab | 23.2 ± 6.9 a | 37.7 ± 4.7 b | 33.8 ± 4.6 b |
1.0 g/kg | 13.1 ± 3.7 bc | 13.5 ± 0.0 c | 37.8 ± 9.5 b | 31.3 ± 7.0 c | 13.3 ± 6.1 b | 11.4 ± 0.7 b | 45.2 ± 2.4 ab | 34.8 ± 2.7 b |
1.5 g/kg | 18.1 ± 1.9 bc | 20.5 ± 4.4 c | 52.3 ± 0.9 ab | 46.4 ± 1.5 abc | 19.2 ± 3.4 ab | 18.2 ±1.2 ab | 48.6 ± 5.9 ab | 40.8 ± 3.5 ab |
2.0 g/kg | 31.9 ± 6.7 a | 36.3 ± 2.0 ab | 57.1 ± 24 ab | 52.3 ± 18 ab | 30.4 ±7.6 a | 23.2 ± 1.4 a | 60.5 ± 14.6 a | 53.2 ± 12 a |
2.5 g/kg | 28.7 ± 4.4 ab | 30.3 ± 5.0 b | 74.0 ± 0.4 a | 66.0 ± 1.0 a | 26.1 ± 3.7 ab | 24.9 ± 5.1 a | 59.7 ± 1.3 a | 52.1 ± 0.03 a |
3.0 g/kg | 38.2 ± 8.3 a | 41.9 ± 2.5 a | 73.2 ± 5.4 a | 66.6 ± 3.9 a | 16.7 ± 8.3 ab | 16.9 ± 7.2 ab | 55.2 ± 5.5 a | 47.1 ± 5.4 ab |
Ca Treatment | 12 mg/kg Tl(I) Treatment | 8 mg/kg Tl(III) Treatment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TCStems | TCLeaves | BFRoots | BFStems | BFLeaves | BFWhole plants | TCStems | TCLeaves | BFRoots | BFStems | BFLeaves | BFWhole plants | |
control | 1.2 ± 0.1 a | 1.3 ± 0.1 a | 2.3 ± 0.3 ab | 2.6 ± 0.2 b | 2.8 ± 0.2 b | 2.8 ± 0.2 cd | 0.9 ± 0.2 a | 1.5 ± 0 a | 2.8 ± 0.4 ab | 2.6 ± 0.8 a | 4.3 ± 0.5 b | 3.8 ± 0.5 b |
1 g/kg | 1.1 ± 0.3 a | 3.1 ± 1.6 a | 1.0 ± 0.3 c | 1.1 ± 0.0 c | 3.0 ± 0.7 b | 2.4 ± 0.5 d | 1.0 ± 0.5 a | 3.7 ± 1.5 a | 1.5 ± 0.7 b | 1.3 ± 0.1 b | 5.1 ± 0.3 ab | 4.0 ± 0.3 b |
1.5 g/kg | 1.1 ± 0.4 a | 2.9 ± 0.4 a | 1.4 ± 0.1 bc | 1.6 ± 0.3 c | 4.1 ± 0.1 ab | 3.6 ± 0.1 bcd | 1.0 ± 0.1 a | 2.6 ± 0.8 a | 2.2 ± 0.4 ab | 2.1 ± 0.1 ab | 5.5 ± 0.7 ab | 4.6 ± 0.4 ab |
2 g/kg | 1.2 ± 0.2 a | 1.9 ± 1.1 a | 2.5 ± 0.5 a | 2.8 ± 0.2 ab | 4.5 ± 1.9 ab | 4.1 ± 1.4 abc | 0.8 ± 0.2 a | 2.1 ± 1.0 a | 3.5 ± 0.9 a | 2.6 ± 0.2 a | 6.9 ± 1.7 a | 6.0 ± 1.3 a |
2.5 g/kg | 1.1 ± 0.0 a | 2.6 ± 0.4 a | 2.2 ± 0.3 ab | 2.4 ± 0.4 b | 5.8 ± 0.0 a | 5.2 ± 0.1 ab | 1.0 ± 0.1 a | 2.3 ± 0.4 a | 3.0 ±0.4 ab | 2.8 ± 0.6 a | 6.8 ± 0.1 a | 5.9 ± 0.0 a |
3 g/kg | 1.1 ± 0.2 a | 2.0 ± 0.6 a | 3.0 ± 0.6 a | 3.3 ± 0.2 a | 5.7 ± 0.4 a | 5.2 ± 0.3 a | 1.0 ± 0.1 a | 3.7 ± 1.5 a | 1.9 ± 0.9 ab | 1.9 ± 0.8 ab | 6.3 ± 0.6 a | 5.4 ± 0.6 ab |
mean | 1.1 | 2.3 | 2.1 | 2.3 | 4.3 | 3.9 | 0.9 | 2.7 | 2.5 | 2.2 | 5.8 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Xiao, T.; Sun, J.; Ning, Z.; Xiao, E.; Lan, X.; Chen, Y. Calcium Enhances Thallium Uptake in Green Cabbage (Brassica oleracea var. capitata L.). Int. J. Environ. Res. Public Health 2023, 20, 4. https://doi.org/10.3390/ijerph20010004
Jia Y, Xiao T, Sun J, Ning Z, Xiao E, Lan X, Chen Y. Calcium Enhances Thallium Uptake in Green Cabbage (Brassica oleracea var. capitata L.). International Journal of Environmental Research and Public Health. 2023; 20(1):4. https://doi.org/10.3390/ijerph20010004
Chicago/Turabian StyleJia, Yanlong, Tangfu Xiao, Jialong Sun, Zengping Ning, Enzong Xiao, Xiaolong Lan, and Yuxiao Chen. 2023. "Calcium Enhances Thallium Uptake in Green Cabbage (Brassica oleracea var. capitata L.)" International Journal of Environmental Research and Public Health 20, no. 1: 4. https://doi.org/10.3390/ijerph20010004
APA StyleJia, Y., Xiao, T., Sun, J., Ning, Z., Xiao, E., Lan, X., & Chen, Y. (2023). Calcium Enhances Thallium Uptake in Green Cabbage (Brassica oleracea var. capitata L.). International Journal of Environmental Research and Public Health, 20(1), 4. https://doi.org/10.3390/ijerph20010004