Impact of Environmental Regulation on Regional Innovative Ability: From the Perspective of Local Government Competition
Abstract
:1. Introduction
2. Literature Review
3. Model Construction
3.1. Spatial Econometric Model
3.2. Selection of Spatial Weight Matrix
3.3. Determination of Local Government’s Environmental Regulation Policy Competition Strategy
4. Data and Variables
4.1. Measurement of Variables
4.2. Descriptive Statistics of Variables
5. Empirical Results and Discussion
5.1. Spatial Correlation Test
5.2. Model Rationality Test
5.3. Empirical Results from the National Sample
5.4. Empirical Results from Regional Samples
5.5. Robustness Test
6. Conclusions and Limitations
6.1. Conclusions
6.2. Policy Suggestions
6.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Liu, X.; Ding, Y.; Wang, W. How does environmental regulation affect haze pollution governance?—An empirical test based on Chinese provincial panel data. Sci. Total Environ. 2019, 695, 13–39. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Li, B.; Cui, S.; Tao, S. Sulfur dioxide emissions from combustion in China: From 1990 to 2007. Environ. Sci. Technol. 2011, 45, 8403–8410. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Y.E.; Chang, C.P. The effects of environmental regulation and industrial structure on carbon dioxide emission: A non-linear investigation. Environ. Sci. Pollut. Res. 2019, 26, 30252–30267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xu, D.; Li, S. The impact of environmental regulation on environmental pollution in China: An empirical study based on the synergistic effects of industrial agglomeration. Environ. Sci. Pollut. Res. 2019, 26, 25775–25788. [Google Scholar] [CrossRef]
- Yang, R. Market competition, government behavior and regional innovation performance: An empirical study based on China’s provincial panel data. Res. Manag. 2016, 37, 73–81. [Google Scholar]
- Woods, N. Interstate competition and environmental regulation: A test of the race-to-the-bottom thesis. Soc. Sci. Q. 2006, 87, 174–189. [Google Scholar] [CrossRef]
- Ma, Y.; Cao, H.; Zhang, L.; Fu, Z. The relationship between Local Government Competition, Environmental Regulation and Water Pollutant Emissions: Analysis based on Mediating Effect and panel Threshold Model. J. Coast. Res. 2020, 103, 511–515. [Google Scholar] [CrossRef]
- Tian, G.; Miao, J.; Miao, C.; Wei, Y.D.; Yang, D. Interplay of Environmental Regulation and Local Protectionism in China. Int. J. Environ. Res. Public Health 2022, 19, 6351. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Hao, Y.; Ren, S.; Zhang, P. Environmental decentralization, local government competition, and regional green development: Evidence from China. Sci. Total Environ. 2020, 708, 135085. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, B. The influence of Chinese environmental regulation on corporation innovation and competitiveness. J. Clean. Prod. 2016, 112, 1528–1536. [Google Scholar] [CrossRef]
- Lai, Y.B. Environmental policy competition and heterogeneous capital endowments. Reg. Sci. Urban Econ. 2019, 75, 107–119. [Google Scholar] [CrossRef]
- Mu, X.; Zhan, Q.; Ameer, W.; Anser, M.K.; Zeng, X.; Amin, A. Effects of Environmental Regulation Competition and Public Participation on Enterprise Location Selection Under Climate Change in COVID-19 Pandemic Conditions: An Analysis Based on the Chinese Provincial Spatial Panel Model. Front. Environ. Sci. 2022, 10, 884401. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, N.; Ahmad, F.; Draz, M.U. Local government competition, environmental regulation intensity and regional innovation performance: An empirical investigation of Chinese provinces. Int. J. Environ. Res. Public Health 2019, 16, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambec, S.; Cohen, M.A.; Elgie, S. The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness? Rev. Environ. Econ. Policy 2013, 7, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Shen, N.; Ying, H.; Wang, Q. Can environmental regulation directly promote green innovation behavior?—Based on situation of industrial agglomeration. J. Clean. Prod. 2021, 314, 128044. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z. Study on Relationship between Environmental Regulation and Firm Independently Innovation—The Firm Competitiveness Design Based on Porter Hypothesis. China Ind. Econ. 2006, 3, 100. [Google Scholar]
- Zhang, K.; Xu, D.; Li, S.; Wu, T.; Cheng, J. Strategic interactions in environmental regulation enforcement: Evidence from Chinese cities. Environ. Sci. Pollut. Res. 2021, 28, 1992–2006. [Google Scholar] [CrossRef]
- Chen, Z.; Pan, M. Haze pollution and the strategic choice of local government’s environmental regulation competition. Collect. Essays Financ. Econ. 2018, 235, 106. [Google Scholar]
- Fan, W.L.; Wang, Y.X. Influence of environmental regulation intensity on regional technology innovation: An empirical research based on eastern and mid-china region. Ecol. Econ. 2016, 1, 43–51. [Google Scholar]
- Mbanyele, W.; Wang, F. Environmental regulation and technological innovation: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 12890–12910. [Google Scholar] [CrossRef]
- Lanoie, P.; Laurent-Lucchetti, J.; Johnstone, N.; Ambec, S. Environmental policy, innovation and performance: New insights on the Porter hypothesis. J. Econ. Manag. Strategy 2011, 20, 803–842. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zou, H. Study on the effect of wind power industry policy types on the innovation performance of different ownership enterprises: Evidence from China. Energy Policy. 2018, 122, 241–252. [Google Scholar] [CrossRef]
- Hamamoto, M. Environmental regulation and the productivity of Japanese manufacturing industries. Resour. Energy Econ. 2006, 28, 299–312. [Google Scholar] [CrossRef]
- Liu, J.; Yan, L. The impact of environmental regulation on regional technical innovation differences in China. Sci. Technol. Prog. Policy 2011, 28, 32–36. [Google Scholar]
- Shen, N. The threshold effect of environmental regulation on regional technological innovation. China Pollut. Resour. Environ. 2012, 22, 12–16. [Google Scholar]
- Ruttan, V.W. Induced Innovation, Evolutionary Theory and Path Dependence: Sources of Technical Change. Econ. J. 1997, 107, 1520–1529. [Google Scholar] [CrossRef]
- Zoia, M.G.; Barbieri, L.; Cortelezzi, F.; Marseguerra, G. The determinants of Italian firms’ technological competencies and capabilities. Eurasian Bus. Rev. 2018, 8, 453–476. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Palmer, K. Environmental regulation and innovation: A panel data study. Rev. Econ. Stat. 1997, 79, 610–619. [Google Scholar] [CrossRef]
- Rassier, D.G.; Earnhart, D. Does the Porter Hypothesis Explain Expected Future Financial Performance? The effect of clean water regulation on chemical manufacturing firms. Environ. Resour. Econ. 2010, 45, 353–377. [Google Scholar] [CrossRef]
- Walley, N.; Whitehead, B. It’s not easy being green. Harv. Bus. Rev. 1994, 72, 46–52. [Google Scholar]
- Shi, B.; Feng, C.; Qiu, M.; Ekeland, A. Innovation suppression and migration effect: The unintentional consequences of environmental regulation. China Econ. Rev. 2018, 49, 1–23. [Google Scholar] [CrossRef]
- Blackman, A.; Lahiri, B.; Pizer, W.; Planter, M.R.; Pina, C.M. Voluntary environmental regulation in developing countries: Mexico’s c lean industry program. J. Environ. Econ. Manag. 2010, 60, 182–192. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, X. The Identification Problem of Spatial Externalities. Stat. Res. 2013, 9, 94–100. [Google Scholar]
- Zhang, Z.; Zhang, G.; Li, L. The Spatial Impact of Atmospheric Environmental Policy on Public Health Based on the Mediation Effect of Air Pollution in China. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, G.; Song, S.; Su, B. Spatial Heterogeneity Influences of Environmental Control and Informal Regulation on Air Pollutant Emissions in China. Int. J. Environ. Res. Public Health 2020, 17, 4857. [Google Scholar] [CrossRef] [PubMed]
- Lanjouw, J.O.; Mody, A. Innovation and the International Diffusion of Environmentally Responsive Technology. Res. Policy 1996, 25, 549–571. [Google Scholar] [CrossRef]
- Xia, C.; Bing, Y. Strategic leadership, environmental optimization, and regional innovation performance with the regional innovation system coupling synergy degree: Evidence from China. Technol. Anal. Strateg. Manag. 2022, 14, 1–14. [Google Scholar]
- Chen, G.; Shu, L.I. The competition for fdi and environmental regulation under china’s decentralization of china. Collect. Essays Financ. Econ. 2009, 22, 409–420. [Google Scholar]
- Miao, Z.; Baležentis, T.; Tian, Z.; Shao, S.; Geng, Y.; Wu, R. Environmental performance and regulation effect of China’s atmospheric pollutant emissions: Evidence from “three regions and ten urban agglomerations”. Environ. Resour. Econ. 2019, 74, 211–242. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Du, W.; Wu, H.; Wang, J. Effects of environmental regulation and FDI on urban innovation in China: A spatial Durbin econometric analysis. J. Clean. Product. 2019, 235, 210–224. [Google Scholar] [CrossRef]
- Furman, J.L.; Porter, M.E.; Stern, S. The determinants of national innovative capacity. Res. Policy 2002, 31, 899–933. [Google Scholar] [CrossRef] [Green Version]
- Kneller, R.; Manderson, E. Environmental regulations and innovation activity in UK manufacturing industries. Res. Energy Econ. 2012, 34, 211–235. [Google Scholar] [CrossRef]
- Seya, H.; Yamagata, Y.; Tsutsumi, M. Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach. Reg. Sci. Urban Econ. 2013, 43, 429–444. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, N. Environmental regulation and environmental productivity: The case of China. Renew. Sustain. Energy Rev. 2016, 62, 758–766. [Google Scholar] [CrossRef]
- Tietenberg, T.H. Economic instruments for environmental regulation. Oxf. Rev. Econ. Policy 1990, 6, 17–33. [Google Scholar] [CrossRef]
- Jiang, Y. Local government competition, environmental regulation and employment effect—An analysis based on inter-provincial spatial durbin model. Collect. Essays Financ. Econ. 2017, 226, 104. [Google Scholar]
- Zhao, X.; Center, S.I. Inter-local government strategies of environmental regulation competition and its economic growth effect. Financ. Trade Econ. 2014, 35, 105–113. [Google Scholar]
- Li, X. China’s regional innovative ability in transition: An empirical approach. Res. Policy 2009, 38, 338–357. [Google Scholar] [CrossRef]
- Wang, Z.; He, Q.; Xia, S.; Sarpong, D.; Xiong, A.; Maas, G. Capacities of business incubator and regional innovation performance. Technol. Forecast. Soc. Chang. 2020, 158, 120–125. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Feng, Y. Assessment of the Carbon Emission Reduction Effect of the Air Pollution Prevention and Control Action Plan in China. Int. J. Environ. Res. Public Health 2021, 18, 13307. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Huang, Q.; Zhang, X. Environmental regulation intensity, foreign direct investment, and green technology spillover—an empirical study. Sustainability 2019, 11, 2718. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, G.; Su, B. The Spatial Impacts of Air Pollution and Socio-Economic Status on Public Health: Empirical Evidence from China. Socio-Econo. Plan. Sci. 2022, 83, 101167. [Google Scholar] [CrossRef]
- Santos, A.; Forte, R. Environmental regulation and FDI attraction: A bibliometric analysis of the literature. Environ. Sci. Pollut. Res. 2021, 28, 8873–8888. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, H.; Zhang, B.; Bu, M. Westward movement of new polluting firms in China: Pollution reduction mandates and location choice. J. Comp. Econ. 2017, 45, 119–138. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Spatial econometric Monte Carlo studies: Raising the bar. Empir. Econ. 2018, 55, 17–34. [Google Scholar] [CrossRef]
- Liu, C.; Xin, L.; Li, J. Environmental regulation and manufacturing carbon emissions in China: A new perspective on local government competition. Environ. Sci. Pollut. Res. 2022, 29, 36351–36375. [Google Scholar] [CrossRef]
- Porter, M.E.; van der Linde, C. Toward a New Conception of the Environment Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, Z.; Cui, Y.; Yuan, C. Game model of enterprises and government based on the tax preference policy for energy conservation and emission reduction. Filomat 2016, 30, 3963–3974. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Gong, J.; Zhao, X. FDI and environmental regulation: Pollution haven or a race to the top? J. Regul. Econ. 2012, 41, 216–237. [Google Scholar] [CrossRef]
- Kim, Y.; Rhee, D.E. Do stringent environmental regulations attract foreign direct investment in developing countries? Evidence on the “Race to the Top” from cross-country panel data. Emerg. Mark. Financ. Trade 2019, 55, 2796–2808. [Google Scholar] [CrossRef]
- Hille, E.; Althammer, W.; Diederich, H. Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter? Technol. Forecast. Soc. Chang. 2020, 153, 119921. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Wang, X.; Chen, X.; Cao, Y. The threshold effect of R&D investment on regional economic performance in China considering environmental regulation. Technol. Anal. Strateg. Manag. 2020, 32, 851–868. [Google Scholar]
- Walter, J.M.; Chang, Y.M. Environmental policies and political feasibility: Eco-labels versus emission taxes. Econ. Anal. Policy 2020, 66, 194–206. [Google Scholar] [CrossRef]
Coefficient | λ > 0 | λ < 0 |
---|---|---|
η > 0 | Yardstick competition | Differential competition (inhibitor) |
η < 0 | Differential competition (booster) | Race to bottom |
Name | Symbol | Max | Min | Mean | Standard Deviation |
---|---|---|---|---|---|
Regional innovative ability | In | 16.621 | 10.419 | 14.182 | 1.332 |
Environmental regulation | Er | 0.612 | 0.087 | 0.223 | 0.095 |
FDI | Fdi | 0.082 | 0.001 | 0.023 | 0.018 |
Education level | Edu | 12.028 | 6.764 | 8.763 | 0.920 |
General government expenditure | Gov | 0.612 | 0.087 | 0.223 | 0.095 |
Year | Moran I | Z | Year | Moran’s I | Z |
---|---|---|---|---|---|
2020 | 0.217 ** | 4.86 | 2015 | 0.190 ** | 3.87 |
2019 | 0.216 ** | 4.72 | 2014 | 0.171 ** | 3.42 |
2018 | 0.217 ** | 4.86 | 2013 | 0.170 ** | 3.33 |
2017 | 0.218 ** | 4.91 | 2012 | 0.167 * | 3.30 |
2016 | 0.219 ** | 4.94 | 2011 | 0.166 * | 3.27 |
Variable | Fixed Effect (FE) | Random Effect (RE) | ||
---|---|---|---|---|
Entity and Time Fixed | Entity Fixed | Time Fixed | ||
Log-Likelihood | 208.476 | 300.224 | 245.538 | 283.419 |
R2 | 0.967 | 0.930 | 0.956 | 0.910 |
LM test (lag) | 5.357 ** | |||
Robust-LM (lag) | 12.458 *** | |||
LM test (Error) | 180.437 *** | |||
Robust–LM (Error) | 187.538 *** | |||
LR lag | 15.024 *** | |||
LR Error | 9.857 *** | |||
Hausman | 84.020 *** |
(1) | (2) | (3) | |
---|---|---|---|
Variables | LR_Direct | LR_Indirect | LR_Total |
Int−1 | 0.327 *** | 0.121 | 0.448 |
(3.373) | (0.050) | (0.255) | |
Er | −0.604 ** | 0.462 * | −0.142 * |
(−6.430) | (1.830) | (−1.683) | |
Edu | 0.088 | 0.140 | 0.228 |
(0.036) | (0.069) | (0.084) | |
Gov | 0.167 *** | 0.215 *** | 0.382 *** |
(3.628) | (3.181) | (5.489) | |
FDI | −0.899 *** | −0.980 *** | −1.879 *** |
(−6.638) | (−9.970) | (−10.700) | |
Observations | 300 | 300 | 300 |
R-squared | 0.996 | 0.996 | 0.996 |
Number of id | 30 | 30 | 30 |
(1) | (2) | (3) | |
---|---|---|---|
Variable | LR_Direct | LR_Indirect | LR_Total |
Int−1 | 0.487 *** | 0.061 | 0.544 |
(3.056) | (0.016) | (0.116) | |
Er | 0.218 *** | 0.319 ** | 0.537 *** |
(2.043) | (2.688) | (5.773) | |
Edu | 0.037 | 0.005 | 0.042 |
(0.028) | (0.007) | (0.078) | |
Gov | 0.411 *** | 0.159 * | 0.570 *** |
(4.804) | (1.690) | (6.024) | |
FDI | −0.484 *** | −0.590 *** | −1.074 *** |
(−4.962) | (−6.289) | (−7.777) | |
Observations | 110 | 110 | 110 |
R-squared | 0.724 | 0.724 | 0.724 |
Number of id | 11 | 11 | 11 |
(1) | (2) | (3) | |
---|---|---|---|
Variable | LR_Direct | LR_Indirect | LR_Total |
Int−1 | 0.327 *** | 0.054 | 0.381 |
(4.375) | (0.077) | (0.034) | |
Er | −0.089 ** | 0.267 *** | 0.176 ** |
(−2.466) | (3.170) | (2.851) | |
Edu | 0.022 | 0.028 | 0.051 |
(0.033) | (0.039) | (0.018) | |
Gov | 0.071 ** | 0.381 *** | 0.352 *** |
(2.224) | (4.579) | (4.431) | |
FDI | −0.067 * | −0.610 *** | −0.677 *** |
(−1.679) | (−7.172) | (−7.834) | |
Observations | 80 | 80 | 80 |
R-squared | 0.832 | 0.832 | 0.832 |
Number of id | 8 | 8 | 8 |
(1) | (2) | (3) | |
---|---|---|---|
Variable | LR_Direct | LR_Indirect | LR_Total |
Int−1 | 0.649 *** | −0.153 | 0.496 |
(2.101) | (−0.007) | (0.170) | |
Er | −0.366 | −2.304 | −2.670 |
(−0.431) | (−0.629) | (−0.856) | |
Edu | 0.022 | 0.056 | 0.078 |
(0.050) | (0.063) | (0.047) | |
Gov | −0.243 ** | 0.535 ** | 0.292 * |
(−1.800) | (2.896) | (1.939) | |
FDI | −1.119 ** | −1.410 *** | −2.530 ** |
(−4.872) | (−6.217) | (−7.190) | |
Observations | 110 | 110 | 110 |
R-squared | 0.724 | 0.724 | 0.724 |
Number of id | 11 | 11 | 11 |
(1) | (2) | (3) | |
---|---|---|---|
Variables | LR_Direct | LR_Indirect | LR_Total |
Int−1 | 0.318 *** | 0.105 | 0.423 |
(2.716) | (0.088) | (0.102) | |
Er | −0.302 *** | 0.133 *** | −0.169 *** |
(−3.710) | (2.164) | (−2.269) | |
Edu | 0.033 | 0.066 | 0.200 |
(0.083) | (0.103) | (0.065) | |
Gov | 0.162 *** | 0.211 *** | 0.373 *** |
(2.253) | (2.732) | (3.582) | |
FDI | −1.005 *** | −1.201 *** | −2.506 *** |
(−4.787) | (−7.121) | (−9.051) | |
Observations | 300 | 300 | 300 |
R-squared | 0.602 | 0.602 | 0.602 |
Number of id | 30 | 30 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhang, Y.; Zhang, X. Impact of Environmental Regulation on Regional Innovative Ability: From the Perspective of Local Government Competition. Int. J. Environ. Res. Public Health 2023, 20, 418. https://doi.org/10.3390/ijerph20010418
Wang D, Zhang Y, Zhang X. Impact of Environmental Regulation on Regional Innovative Ability: From the Perspective of Local Government Competition. International Journal of Environmental Research and Public Health. 2023; 20(1):418. https://doi.org/10.3390/ijerph20010418
Chicago/Turabian StyleWang, Dongling, Yuming Zhang, and Xiaoyi Zhang. 2023. "Impact of Environmental Regulation on Regional Innovative Ability: From the Perspective of Local Government Competition" International Journal of Environmental Research and Public Health 20, no. 1: 418. https://doi.org/10.3390/ijerph20010418
APA StyleWang, D., Zhang, Y., & Zhang, X. (2023). Impact of Environmental Regulation on Regional Innovative Ability: From the Perspective of Local Government Competition. International Journal of Environmental Research and Public Health, 20(1), 418. https://doi.org/10.3390/ijerph20010418