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Abstract: Carbon peaking, carbon neutrality goals and food security are the basis of sustainable
development, and exploring the coordination relationship between China’s agricultural eco-efficiency
and food security system has a major significance for the implementation of relevant strategies.
This paper is based on collaboration research on the synergistic relationship between agricultural
eco-efficiency and food security systems using methods such as entropy weight method, coupling
coordination model, spatial autocorrelation model, etc., revealing the evolution-driven mechanism
of the coupling coordination degree. This study found that a higher level of coupling coordination
always occurs in those areas with high standard farmland construction and large grain production
scale, while economically developed areas appear to have a lower overall coordination level limited
by endowment constraints and division of labor in development planning. It shows a positive spatial
correlation in terms of geographical distance between agricultural eco-efficiency and food security,
and the positive spillover effect gradually increases but is not strong overall. China should combine
regional resource endowment and development planning, pay attention to the improvement of
large-scale and standardized agricultural production, continue to strengthen the development of
clean agricultural production, and achieve food security under the constraints of the carbon peaking
and carbon neutrality goals.

Keywords: agricultural eco-efficiency; food security; coupling coordination

1. Introduction

Balancing ecological environmental protection and sustainable economic and social
development is a hot topic in the world. The Sixth Assessment Report of the Intergovern-
mental Panel on Climate Change (IPCC) conducted a scientific assessment of sustainable
agricultural development and food security in the context of climate change, discovered
that man-made greenhouse gas emissions are important causes of global warming and
land use changes, which in turn affect sustainable agricultural development and food
security [1,2]. The Food and Agriculture Organization of the United Nations (FAO) re-
leased a report at the 26th United Nations Climate Change Conference, stating that carbon
emissions from the agrifood system accounted for 31% of global anthropogenic carbon
emissions in 2019 [3]. It can be seen that climate change has a profound impact on agricul-
tural development, and carbon emissions from the agro-food system are also one of the
factors affecting climate change.

Agriculture is a national basic industry, which not only undertakes the function of
natural ecological regulation, but also plays an important role in ensuring the food security
of the country and the world [4]. As a climate-sensitive region and a populous country,
China is facing increasing risks. In 2020, China’s total agricultural carbon emissions
accounted for 20%, of which the carbon emissions caused by agricultural energy utilization,
agricultural material input, and rice planting accounted for 14.21%, 26.38%, and 25.95%,
respectively [5]. It can be seen that China’s agricultural carbon emissions have huge
potential for emission reduction, and play an important role in the realization of China’s
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carbon peak and carbon neutral goals. Promoting green and low-carbon development in
agriculture is an issue that China has repeatedly emphasized. While ensuring food security,
China is committed to achieving green transformation in agriculture [6]. Therefore, the
focus of China’s agricultural low-carbon sustainable development is to explore the path of
food security on the basis of improving China’s agricultural eco-efficiency.

The purpose of this study is to investigate the relationship between agricultural eco-
efficiency and the food security system in China. The main contributions of this paper
are as follows. First, the international research is extremely limited on the relationship
between agricultural eco-efficiency and food security [7–9]; this study fills the gap in
this regard. At the same time, this study attempts to bring China’s agricultural eco-
efficiency and food security into the same framework, discusses the level of coupled and
coordinated development of them, clarifies the characteristics of the current situation,
and analyzes the spatial correlation. This study has practical significance for China’s
agricultural development and provides a theoretical reference for the green and sustainable
development of agriculture in other developing countries.

The remainder of this paper is organized as follows. The second section introduces
the research progress on agricultural eco-efficiency and its correlation. The third section
introduces the data sources and research methods of this paper. The fourth section presents
the results and discussion of the empirical research. The fifth section is the conclusion and
policy recommendations from the results.

2. Literature Review
2.1. Agricultural Eco-Efficiency and Its Estimation

Ecological efficiency refers to the ratio of the added value of activities to the increased
environmental impact, which was first proposed by German scholars Schaltegger and
Sturm in 1990 [10]. Since then, the World Business Council for Sustainable Development
(WBSCD), the Organization for Economic Co-operation and Development (OECD), and
the United Nations Conference on Trade and Development (UNCTAD) have successively
conducted in-depth research on eco-efficiency, and defined its concept from different
perspectives [11,12]. Agricultural eco-efficiency is the expansion and application of the
concept of eco-efficiency in the agricultural field. There is no clear definition yet. It usually
refers to the ratio of the ideal minimum carbon emission to the actual carbon emission
under the given input and output conditions. To a certain extent, it reflects the level of
agricultural productivity under the constraints of established carbon emissions, and it is
the embodiment of ecological concepts in the agricultural field [13,14].

At present, the methods for measuring agricultural eco-efficiency mainly include
ratio method, life cycle assessment method, ecological footprint analysis method, data
envelopment analysis method, etc. [15–17]. As an extension of the data envelopment
analysis (DEA) method, the undesirable output slacks-based measure (SBM) model not
only inherits the characteristics of the traditional DEA method to avoid the deviation and
influence of efficiency evaluation caused by differences in radial and angle selections, but
also takes into account the impact of undesired output factors, making the calculation of
eco-efficiency results more objective and comprehensive [18].

On the basis of considering the characteristics and connotations of agricultural eco-
efficiency, the undesirable output SBM model uses agricultural carbon emissions as an
undesired output to construct an input and output index system, and uses a non-radial
and non-angular model to measure and calculate the agricultural eco-efficiency, assess-
ing the characteristics of agricultural eco-efficiency by region and year [19,20]. It pro-
vides effective countermeasures for agricultural carbon sequestration and emission reduc-
tion by measuring the dynamic changes, spatial correlations, and influencing factors of
agricultural eco-efficiency [21].
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2.2. Agricultural Eco-Efficiency and Food Safety Studies

Since the 1990s, economic eco-efficiency has gradually become a research focus of schol-
ars with the concept of sustainable development. The research on agricultural eco-efficiency
mainly focuses on the evolution of spatial patterns and the quantitative description of
regional distribution, focusing on considering the negative external effects of pesticides
and fertilizers from the perspective of environmental pollution [22–24]. At present, the
academic circle mainly studies the agricultural eco-efficiency of China from two perspec-
tives. The first is to measure the changing trend of China’s agricultural eco-efficiency and
analyze the influencing factors. The approach is to calculate agricultural eco-efficiency by
region, province, and year [25,26], to evaluate the potential of agricultural carbon emission
reduction in each region, and explore the reasons for the loss of agricultural eco-efficiency
in different regions by combining redundant indicators. This includes the spatial spillover
effects and characterization of the spatial characteristics to explore the improvement path of
regional agricultural eco-efficiency [27–29]. The results show that in the past few decades,
China’s agricultural eco-efficiency has shown a fluctuating upward trend, with significant
regional differences and serious labor redundancy. Eco-efficiency values showed significant
spatial agglomeration characteristics, and the hotspots were mainly distributed in the
eastern region.

The second is to explore the effect of ecological agriculture on food security, and to
seek a healthy and long-term sustainable method for food production. For example, da
Silva JT et al. calculated the ecological footprint of food production activities through
an econometric model [30], judged the ecological sustainability based on the results, and
emphasized the importance of increasing food imports to alleviate the pressure on agricul-
tural resources and the environment [31]. Other studies focus on the impact of ecological
security issues such as water resource constraints and biodiversity loss on food security,
emphasizing farmland ecological governance, crop variety optimization, and improvement
of cultivated land fertility to achieve the dual goals of agricultural eco-efficiency and food
security [32,33]. At the same time, some studies have attributed the risk of China’s grain
production to the imperfect food ecological security system, indicating that the key to
ensuring food security lies in improving agricultural eco-efficiency [34,35].

However, relevant research focuses on exploring the ecological problems caused
by food production, focusing on the ecological perspective and the current situation of
agricultural ecological development. There are few studies on the relationship between agri-
cultural eco-efficiency and food security, and the empirical results are different. It mainly
focuses on the coupling and coordination between agricultural socio-economic factors and
food security, and analyzes the impact of water, soil, energy, and other utilization rates
on the sustainability of food security [36–38]. Some studies believe that in order to ensure
food security, China needs to appropriately reduce its food self-sufficiency rate, and ease
the pressure on agricultural resources and ecological environment by increasing imports
and reducing production [39]. Other studies have shown that the green transformation of
agricultural ecology under the goal of food security can be achieved through high standard
farmland assumptions, mechanization, and technological development, and the win–win
situation of improving agricultural eco-efficiency and food security can be promoted [40].

Although China is a large country in terms of carbon emissions and food demand, there
are few studies on the coordination relationship between agricultural eco-efficiency and
food security. With climate change in recent years leading to rising global temperatures and
heavy burdens on resources, preventing the ecological risks of food security, enhancing the
sustainable development of food production, and realizing the coordinated development
of ecological agriculture and food security should be important topics in current research.
In this regard, we first estimated the level of agricultural eco-efficiency and food security in
each province in China, and then measured the relationship between them.
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3. Methodology and Data
3.1. Methodology

Based on theoretical analysis, firstly, agricultural carbon emissions were calculated
through the emission factor method, and then the agricultural eco-efficiency was calculated
through the SBM-Undesirable model. Second, the comprehensive index evaluation method
was used to measure the level of food security. Finally, the coupling coordination degree of
agricultural eco-efficiency and food security was measured by the coupling coordination
degree model, and the spatial correlation model was used to explore the spatial correlation.
The specific steps are shown in Figure 1.
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3.1.1. Calculation of Agricultural Carbon Emissions

This paper draws on Li Z’s method [41] and uses the emission factor method to
measure agricultural carbon emissions. The emission factor method (Emission-Factor
Approach) is one of the carbon emission estimation methods proposed by IPCC, and it
is also a method widely used in academic circles. For each carbon emission source of
the research subject, its activity data and carbon emission factor are constructed, and
the product of the two is taken as the carbon emission estimate of the research subject.
Based on carbon sources, such as chemical fertilizers, pesticides, agricultural films, diesel
fuel, irrigation, and tillage, this paper constructs a calculation method for agricultural
carbon emissions:

E = ∑ Ei = ∑ Ti × δi (1)

In the formula, E is the total amount of agricultural carbon emissions, Ei is the i
carbon emission of type i carbon source. Ti means the i-th source. δi is the carbon emission
coefficient of type i carbon source. According to the comprehensive consideration of
relevant literature, the summary of agricultural carbon emission sources and coefficients is
shown in Table 1.

Table 1. Agricultural carbon emission sources, coefficients and reference sources.

Carbon Source Carbon Emission Factor Reference Source

fertilizer 0.896 kgC/kg Oak Ridge National Laboratory [42]
pesticide 4.934 kgC/kg Oak Ridge National Laboratory

agricultural film 5.180 kgC/kg Institute of Agricultural Resources and Ecological
Environment, Nanjing Agricultural University

diesel fuel 0.593 kgC/kg 2013 IPCC United Nations Intergovernmental
Committee of Experts on Climate Change [43]

irrigation 266.48 kgC/hm2 Reference related literature [44]
ploughing 312.6 kgC/km2 Reference related literature
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3.1.2. Estimating Agricultural Eco-Efficiency

The paper uses the undesirable output SBM model to measure the agricultural eco-
efficiency. The model is evolved based on the traditional DEA method, taking into account
the slackness of input and output and the efficiency level of “bad output”, effectively
reducing the result deviation caused by the difference in radial and angular selection [45].
Combined with the actual situation of agriculture, this paper first constructs a production
possibility set including input, expected output, and undesired output.

Suppose there are n decision-making units in the sample, each decision-making unit
has m input variables x, S kinds of outputs, which include S1 expected output yg, and
S2 expected outputs yb, the vector is expressed as ∈ Rm, the expected output yg ∈ Rs1 ,
the undesired output yb ∈ Rs2 . In a period t, the set vectors of input X and output Y are,
respectively, xt

m =
(

xt
1m, xt

2m, . . . , xt
nm
)T , yt

s =
(
yt

1s, yt
2s, . . . , yt

ns
)T . The specific model is

as follows:

ρ∗ = min
1− 1

m ∑m
i=1

si
xi0

1 + 1
s1+s2

(∑s1
r=1

sg
r

yg
r0
+ ∑s1

r=1
sg

r
yg

r0
+ ∑s2

i=1
sb

1
yb

i0
)

(2)

s.t.



x0 = Xλ + S−

yg
0 = Ygλ− Sg

yb
0 = Ybλ− Sb

n
∑

i=1
λj = 1, λ ≥ 0; S− ≥ 0, Sg ≥ 0, Sb ≥ 0

x ∈ Rm, yg ∈ Rs1 , yb ∈ Rs2

(3)

In the model, ρ∗ indicates the efficiency value of the research object, ρ∗ ∈ [0, 1],
x indicates the input variable, S−, S1, S2, respectively, indicate the existing input variable,
expected output, and undesired output. The slack variables of yg, yb denote desired
output and undesired output, respectively. Among them, if and only if ρ∗ = 1 and
S− = S1 = S2 = 0, the decision-making unit is efficient, otherwise, the decision-making
unit is inefficient.

3.1.3. Coupling Coordination Degree Model

Coupling coordination degree is usually used to indicate the degree of mutual in-
fluence and interaction between two or more systems [46]. Based on relevant research,
the coupling degree model of agricultural eco-efficiency and food security is established
as follows:

C = { A(x) ∗ T(y)
[A(x) + T(y)] ∗ [A(x) + T(y)]

}
1
2

(4)

In the Formula (4), C represents the coupling degree between the agricultural eco-
efficiency and the food security system, and the value is between 0 and 1.

The coupling coordination degree model helps to further understand the degree of
interaction and mutual influence between systems. The basic form of the model is:

D =
√

C ∗ T, where T= λA(x) ∗ µF(y) (5)

In the Formula (5), D is the coupling coordination degree, C is the coupling degree,
T is the comprehensive coordination index between the two systems, and λ, µ are the
undetermined coefficients. In this study, the importance of agricultural eco-efficiency and
food security to human livelihood are analyzed. Considering the actual situation and
research emphasis, we believe that there is no complete equivalence between agricultural
ecological efficiency and food security. Combining their contributions to human devel-
opment, they are assigned values of 0.3 and 0.7, respectively, and A(x) and F(y) are the
agricultural eco-efficiency index and food security index, respectively. According to the
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actual situation and the calculated D value, the coupling coordination degree between
systems can be divided into five levels [47], as shown in Table 2.

Table 2. Coupling coordination degree grading system.

D Grading Index

(0.0, 0.2] Severe maladjustment
(0.2, 0.4] Low coordination X < Y, Efficiency lagging type
(0.4, 0.6] Moderate coordination X = Y, Efficiency lagging type
(0.6, 0.8] High coordination X > Y, Lagging food security
(0.8, 1.0] Extreme coordination

3.1.4. Spatial Autocorrelation Model

(1) Global autocorrelation model. The coupling and coordination degree of agriculture
eco-efficiency in various provinces in China may have spatial dependence or autocorre-
lation at the regional level, which can be measured by the Moran index [48]. The specific
formula is:

I =
∑n

i=1 ∑n
j=1 wij

(
Di − D

)(
Dj − D

)
S2 ∑n

i=1 ∑n
j=1 wij

(6)

In the Formula (6), I is the Moran index value, Di is the attribute value of the ith spatial
unit, and D is the mean value of all attribute values of spatial units, wij is the spatial weight
value. S2 is the variance, ∑n

i=1 ∑n
j=1 wij is the sum of all spatial weights. The value of the

global Moran’s I index is between −1.0 and 1.0. If the value is less than 0, it means that
the space is negatively correlated, if it is equal to 0, it means that the space is randomly
distributed, and if it is greater than 0, it means that the space is positively correlated.

(2) Local autocorrelation model. In order to reflect the characteristics of the local state,
the local space Moran index is used for investigation, and the calculation formula is:

Ii =

(
Di − D

)
S2 ∑n

j=1 wij
(

Dj − D
)

(7)

Ii > 0 indicates positive correlation between zone i and surrounding areas, Ii < 0
indicates that area i is negatively correlated with the surrounding area.

3.2. Data
3.2.1. Data Sources

The data scale selected in this paper is from 2011 to 2020, involving 31 provinces in
China. Among the basic data involved in the measurement of agricultural eco-efficiency,
the data of agricultural labor input, crop sown area, and total output value of agriculture,
forestry, animal husbandry and fishery are all from the “China Statistical Yearbook” over
the years. The data on agricultural machinery input, effective irrigated area, chemical
fertilizers and pesticides and other agricultural inputs are all derived from the “China
Rural Statistical Yearbook” and the statistical yearbooks of various provinces. Among
the basic data involved in food security are included per capita grain possession, total
grain output, sown area of grain crops, proportion of disaster-affected area in total sown
area of crops, proportion of expenditure on agriculture, forestry and water affairs, and
classification index of grain retail price by region and unit. The data on the amount of
water resources used for grain production, the sown area used per unit of grain production,
and the basic data required for the calculation of related indicators are all from the “China
Statistical Yearbook” and “China Water Conservancy Statistical Yearbook” over the years.
Pesticide loss coefficient refers to the “Handbook of Pesticide Loss Coefficient in the First
National Survey of Pollution Sources”. The data of regional green food or certified products
come from the China Green Food Development Center. Relevant economic indicators
have been processed for deflation based on the year 2000. Some missing data were filled
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by interpolation. Due to differences in data statistics, the study area does not involve
Hong Kong, Macau, Taiwan, and other regions.

3.2.2. Measurement of Agricultural Eco-Efficiency and Food Security

The selection of measurement indicators for agricultural eco-efficiency is based on the
principle of the existence of input, expected output, and non-expected output, reflecting the
relationship between the input level of agricultural inputs and output in agriculture [49,50].
It means that the level of agricultural eco-efficiency is higher, and the selection of specific
indicator variables is shown in Table 3. Food security is different from the traditional
emphasis on quantity security. In recent years, with the changes in people’s living standards
and dietary choices, “food quality and safety” has gradually become one of the important
indicators of the new concept of food security [51], and related literature [52,53]; the
selection of specific indicator variables is shown in Table 4.

Table 3. The Undesirable Output SBM Model Index System for Measuring Agricultural Eco-Efficiency.

Index Category Variable Units Explanation

Input

Labor input Labor 104 Proportion of rural individual employment

Capital input Machinery 104 kw Agricultural machinery investment
Irrigation 104 hm2 Effective irrigation area

Land input Sown area 104 hm2 Crop sown area

Agricultural inputs

Chemical fertilizer 104 kg Fertilizer application amount
Pesticide 104 kg Pesticide application amount

Agricultural film 104 kg Amount of agricultural plastic film
Diesel 104 kg Application amount of agricultural diesel

Output Desirable output Total output value of agriculture,
forestry, animal husbandry and fishery 108 yuan Total grain output

Undesirable output Agricultural carbon emissions 104 kgc Total agricultural carbon emissions

Table 4. Index system for measuring food security.

Target Criterion Explanation Units Attribute

Food security

Quantity security

Per capita share of grain tons/per +
Total grain output 104 tons +

Sown area of grain crops 104 hm2 +
Proportion of disaster affected area in total planting area of crops % −

Quality safety Pesticide loss coefficient * pesticide usage/grain crop yield tons/tons −
Number of certified green food products by region in the year Unit +

Economic security
Agriculture, forestry and water affairs expenditure/local public

finance expenditure % +

Sub index of grain retail price by region − −

Resource security Water resources used per unit grain output m3/ton −
Sown area per unit grain yield hm2/ton −

4. Results
4.1. Analysis of Agricultural Eco-Efficiency

Based on the construction of the carbon emission index system, referring to the carbon emis-
sion coefficient of agricultural carbon emission sources [43], according to Formulas (1) and (2),
through the analysis of MATLAB software, the 31 provinces’ Malmquist index of agricultural
eco-efficiency in China from 2011 to 2020 were calculated. Due to space limitations, this paper
only lists the results for 2011 and 2020 (Table 5), and analyzes the rate of change.

According to Table 5, it can be seen that in 2020, the average agricultural eco-efficiency
in Beijing, Tianjin, Heilongjiang, Fujian, and Hunan was greater than or equal to 1, which
belongs to the effective state of agricultural eco-efficiency. The agricultural eco-efficiency
in Gansu, Jilin, Shanxi, Inner Mongolia, and other regions is low, and there is still a big
gap from efficient emissions. From the perspective of regional differentiation, in 2020,
the agricultural eco-efficiency index values in Tianjin, Heilongjiang, Fujian, Guangdong,
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Guizhou, Yunnan, Tibet, Qinghai, and other regions were significantly higher than those
in 2011, indicating that the relevant provinces have made significant progress in reducing
agricultural carbon emissions in recent years. It is worth noting that most of these areas
belong to provinces with vast terrain or rich ecological resources. With the implementation
of the large-scale agricultural land policy, the construction of high standard farmland in the
region has been increasing, the input and utilization of agricultural materials have become
more efficient, and the protection of ecological resources has achieved excellent results.

Table 5. Agricultural eco-efficiency and ranking of provinces in China.

Area
2011 2020

Rate%
Index Rank Index Rank

Beijing 1.186 2 1.076 9 −9.22
Tianjin 1.072 13 1.503 1 40.30
Hebei 0.573 25 0.413 25 −27.93
Shanxi 0.423 30 0.345 29 −18.25

Inner Mongolia 1.107 10 0.364 28 −67.11
Liaoning 1.068 14 0.537 20 −49.72

Jilin 0.628 21 0.289 30 −54.04
Heilongjiang 0.517 28 1.037 11 100.54

Shanghai 1.074 12 0.420 24 −60.93
Jiangsu 1.010 17 0.596 17 −41.00

Zhejiang 1.024 15 0.520 21 −49.24
Anhui 0.529 27 0.405 27 −23.43
Fujian 1.096 11 1.117 8 1.88
Jiangxi 0.578 24 0.557 18 −3.62

Shandong 0.608 22 0.412 26 −32.24
Henan 0.594 23 0.472 22 −20.44
Hubei 0.732 20 0.625 16 −14.58
Hunan 1.153 5 1.031 12 −10.61

Guangdong 1.139 8 1.152 7 1.16
Guangxi 1.123 9 1.051 10 −6.43
Hainan 1.401 1 1.289 3 −7.97

Chongqing 1.021 16 1.001 14 −1.93
Sichuan 1.140 7 0.860 15 −24.56
Guizhou 1.009 18 1.325 2 31.34
Yunnan 0.500 29 1.001 13 100.23

Tibet 1.001 19 1.200 4 19.88
Shaanxi 1.164 3 1.161 6 −0.25
Gansu 0.330 31 0.281 31 −14.86

Qinghai 1.146 6 1.199 5 4.60
Ningxia 0.544 26 0.436 23 −19.88
Xinjiang 1.157 4 0.551 19 −52.32

However, the agricultural eco-efficiency index has shown a significant downward
trend in Shanxi, Inner Mongolia, Liaoning, Jilin, Shanghai, Jiangsu, Zhejiang, Xinjiang, and
other provinces, mainly because the development direction of relevant regions is more
focused on industry. In the critical stage of transformation, these provinces should pay
attention to the improvement of the agricultural scale and standardized production while
developing industry and tourism.

4.2. Analysis of Food Security Characteristics in China’s Provinces

Based on the construction of the food security index system, the food security indexes
of 31 provinces in China from 2011 to 2020 are calculated, as shown in Table 6.

On the whole, the food security level in economically developed areas such as Beijing,
Tianjin, Shanghai, Guangdong, and Zhejiang is relatively low, which is mainly related to
the regional development strategy formulated by China. The urbanization level of relevant
areas is relatively high, focusing on the development of secondary and tertiary industries,
the ability to undertake food production is relatively weak. The food security level in Tibet,
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Guizhou, and Qinghai is relatively low, because the economic development in the relevant
areas is relatively backward, the mechanization and scale of agricultural production is low,
and the level of cultivated land development is low. Heilongjiang, as one of the important
bases of China’s grain production, has fertile soil, a high level of agricultural modernization,
and the highest food security index. Anhui, Shandong, Henan and other central regions
also undertake the function of ensuring China’s food security and have a relatively high
level of food security. It can be seen that the food security level is mainly related to regional
planning, and the level of food security in key areas of grain production is relatively high.

Table 6. Food security and ranking of provinces in China.

Area
2011 2020

Rate%
Index Rank Index Rank

Beijing 0.081 30 0.081 31 −0.14
Tianjin 0.089 29 0.103 30 15.58
Hebei 0.402 4 0.391 10 −2.61
Shanxi 0.184 21 0.283 18 53.94

Inner Mongolia 0.328 9 0.523 5 59.53
Liaoning 0.259 12 0.288 16 11.16

Jilin 0.360 7 0.483 7 34.24
Heilongjiang 0.598 1 0.925 1 54.73

Shanghai 0.077 31 0.161 25 108.86
Jiangsu 0.383 5 0.497 6 29.74

Zhejiang 0.187 19 0.210 22 12.32
Anhui 0.371 6 0.600 3 61.76
Fujian 0.154 25 0.159 26 3.33
Jiangxi 0.259 13 0.324 14 25.02

Shandong 0.512 2 0.661 2 29.07
Henan 0.461 3 0.599 4 29.95
Hubei 0.322 10 0.389 11 20.91
Hunan 0.318 11 0.469 8 47.41

Guangdong 0.183 22 0.175 24 −4.33
Guangxi 0.200 17 0.251 19 25.52
Hainan 0.089 28 0.110 29 23.93

Chongqing 0.187 20 0.359 12 91.91
Sichuan 0.354 8 0.419 9 18.49
Guizhou 0.158 23 0.227 20 43.42
Yunnan 0.252 14 0.339 13 34.61

Tibet 0.128 26 0.146 27 13.92
Shaanxi 0.192 18 0.223 21 15.94
Gansu 0.204 15 0.313 15 53.23

Qinghai 0.091 27 0.139 28 53.24
Ningxia 0.158 24 0.187 23 18.57
Xinjiang 0.203 16 0.287 17 41.57

4.3. Coupling Coordination Degree Analysis

According to Formulas (4) and (5), the coupling coordination degree of agricultural
eco-efficiency and food security in each province of China is comprehensively evaluated,
and the types of coupling coordination degree are divided at the same time. Due to space
limitations, this article only lists the calculation results for 2011 and 2020 (Table 7).

On the whole, most provinces were in a state of low or moderate coordination, and no
province was in a state of high coordination in 2011. By 2020, the coupling coordination
level in some provinces has been improved, and even a few provinces have reached a state
of high coordination. Overall, the degree of coupling coordination between agricultural
eco-efficiency and food security in 2020 is generally on the rise compared with 2011, and
the comprehensive coordination level has improved to a certain extent, with the average
level increasing from 0.413 to 0.440, an increase of 7%. This means that as China attaches
great importance to the carbon peaking and carbon neutrality goals and food security, the
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layout of the agricultural industry and the planning of farmland standards are gradually
optimized. While the efficiency of agricultural input and expected output is improved, the
effect of food security guarantees has also been improved to a certain extent.

Table 7. The coupling coordination degree and comprehensive evaluation of agricultural eco-
efficiency and food security in various provinces of China.

Area
2011 2020

Rate%
Index Rank Type Index Rank Type

Beijing 0.318 30 2© 0.311 31 2© −2.11
Tianjin 0.319 29 2© 0.358 27 2© 12.13
Hebei 0.472 8 4© 0.446 13 4© −5.58
Shanxi 0.343 24 2© 0.388 22 2© 13.11

Inner Mongolia 0.486 6 4© 0.484 9 3© −0.44
Liaoning 0.446 12 4© 0.416 19 4© −6.76

Jilin 0.460 9 4© 0.453 12 3© −1.50
Heilongjiang 0.535 1 3© 0.692 1 5© 29.31

Shanghai 0.307 31 2© 0.327 30 2© 6.39
Jiangsu 0.505 3 4© 0.512 6 4© 1.44

Zhejiang 0.398 18 2© 0.370 26 2© −7.00
Anhui 0.454 10 4© 0.515 5 3© 13.56
Fujian 0.379 21 2© 0.384 23 2© 1.30
Jiangxi 0.405 16 4© 0.436 16 4© 7.66

Shandong 0.519 2 4© 0.534 3 3© 2.84
Henan 0.499 5 4© 0.528 4 3© 5.87
Hubei 0.453 11 4© 0.473 11 4© 4.48
Hunan 0.484 7 4© 0.544 2 4© 12.37

Guangdong 0.403 17 4© 0.398 20 2© −1.17
Guangxi 0.413 14 4© 0.440 15 4© 6.56
Hainan 0.338 27 2© 0.354 28 2© 4.67

Chongqing 0.398 19 2© 0.493 8 4© 23.92
Sichuan 0.501 4 4© 0.509 7 4© 1.57
Guizhou 0.376 22 2© 0.443 14 4© 17.86
Yunnan 0.393 20 2© 0.484 10 4© 23.17

Tibet 0.352 23 2© 0.379 24 2© 7.69
Shaanxi 0.410 15 4© 0.430 17 4© 4.86
Gansu 0.343 25 2© 0.389 21 1© 13.54

Qinghai 0.326 28 2© 0.374 25 2© 14.71
Ningxia 0.338 26 2© 0.347 29 2© 2.49
Xinjiang 0.418 13 4© 0.417 18 4© −0.10
Average 0.413 — — 0.440 — — 7.00

According to the actual measurement results of different provinces, they can be divided into five types: 1© Low
coordination efficiency hysteresis; 2© Low Coordination Food Security Lag Type; 3© Moderate Coordination
Efficiency Lag Type; 4© Moderate coordinated food security lagging type; 5© Highly coordinated food security
lagging type.

From the perspective of geographical distribution (Table 8), in 2020, Heilongjiang has
the highest level of coordination, reaching a high level of coordination, and 11 regions
including Hunan, Shandong, Henan, Anhui, and Jiangsu have reached moderate coordina-
tion, while 12 regions including Beijing, Tianjin, Shanxi, Shanghai, and Zhejiang are still in
a state of low coordination. In general, the provinces with a higher coupling coordination
degree are mostly distributed in areas with relatively developed high standard farmland
construction and the central region with large grain production scale, while the coupling
coordination degree of Beijing, Shanghai, Guangzhou, and coastal economically developed
areas is limited by agricultural resources. The restriction of endowment is different from
the division of labor in the overall national planning, insufficient large-scale production,
and insufficient attention to food production, resulting in a low level of overall coordination
between agricultural eco-efficiency and food security.
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Table 8. Spatial distribution of the coupled and coordinated development of agricultural eco-efficiency
and food security in 31 provinces from 2011 to 2020.

Coupling Coordination Level 2011 2020

Severe disorder — —

Low coordination
Beijing, Tianjin, Shanxi, Shanghai, Zhejiang,

Fujian, Hainan, Chongqing, Guizhou,
Yunnan, Tibet, Gansu, Qinghai, Ningxia

Beijing, Tianjin, Shanxi, Shanghai, Zhejiang,
Fujian, Guangdong, Hainan, Tibet, Qinghai,

Gansu, Ningxia

Moderate coordination

Hebei, Inner Mongolia, Liaoning, Jilin,
Jiangsu, Anhui, Jiangxi, Shandong, Henan,

Hubei, Hunan, Guangdong, Guangxi,
Sichuan, Shaanxi, Xinjiang, Heilongjiang

Hebei, Inner Mongolia, Liaoning, Jilin, Jiangsu,
Anhui, Jiangxi, Shandong, Henan, Hubei,

Hunan, Guangxi, Chongqing, Sichuan,
Guizhou, Yunnan, Shaanxi, Xinjiang

High coordination — Heilongjiang
Extreme coordination — —

From the perspective of coupling coordination types, it can be divided into five cat-
egories: low coordination efficiency lag type, low coordination food security lag type,
moderate coordination efficiency lag type, moderate coordination food security lag type,
and high coordination food security lag type. The results are mainly moderately coor-
dinated. In 2020, the number of such provinces increased from 16 in 2011 to 19. This
shows that, although the overall coupling and coordination level of each province needs
to be improved, in recent years, with the shift of policy calls and development focus, the
agricultural eco-efficiency and food security system are gradually developing towards
a high level. The type of moderately coordinated food security lagging behind represents
the majority among the moderately coordinated provinces, accounting for an average
of 41.94% in 2020, but the number has decreased compared with 2011, a year-on-year
decrease of 9.67%.The second is the low coordination food security lagging type, which
will account for an average of 35.48% in 2020, a year-on-year decrease of 9.68% from 2011.
It shows that most provinces have achieved further stability in protecting cultivated land
area, building high standard farmland, and ensuring grain production, and the compre-
hensive grain production capacity under the guidance of food security and cultivated land
protection policies.

Focusing on each province, Gansu has changed from a low-level coordinated food
security lagging type in 2011 to a low-level coordination efficiency lagging type in 2020,
and food security efficiency and green and clean production still needs to be strengthened.
Eleven regions, including Beijing, Tianjin, Shanxi, Shanghai, and Zhejiang, belong to the
low-level coordinated food security lagging type, which may be related to the national
grain production development planning and division of labor. Some developed areas
and eastern coastal areas undertake important economic growth functions. The level of
industrialization is relatively high, and insufficient attention has been paid to food security.

Five regions including Jilin, Inner Mongolia, Anhui, Henan, and Shandong belong
to the moderate coordination efficiency lagging type, and the relevant regions belong
to the main grain-producing areas of the country, and mainly undertake the function of
ensuring food security. However, the mismatch between grain production and economic
development has led to the agricultural planting in many major grain-producing regions
still staying in traditional grain crops. New agricultural technologies and equipment have
yet to penetrate into various fields of agricultural production, and production capacity
urgently needs to leapfrog to a new level. Thirteen regions, including Liaoning, Xinjiang,
Shaanxi, Hebei, and Jiangxi, belong to the moderately coordinated food security lagging
type, which may be due to the close relationship between food planting and natural
conditions. In some areas, there are desertification and salinization phenomena, and the
cultivated land resources are limited, the facilities are relatively backward, and the planting
layout needs to be optimized. Heilongjiang belongs to the highly coordinated food security
lagging type. The high agriculture eco-efficiency is mainly due to the province’s high level
of land scale and intensification, but the grain production capacity still needs to be further
improved. To sum up, the main grain-producing areas in central China bear the effect



Int. J. Environ. Res. Public Health 2023, 20, 431 12 of 16

of guaranteeing food security, but the traditional extensive agricultural production mode
needs to be improved urgently. China should continue to strengthen the development of
agricultural clean production to achieve the goal of reducing agricultural carbon emissions.
The effect of food security in some economically backward areas needs to be improved.
Efforts should be made to improve the quality of cultivated land, increase agricultural
productivity, and strengthen the ability to ensure food security.

4.4. Spatial Effect Analysis
4.4.1. Global Spatial Autocorrelation Analysis

The paper uses Stata software to calculate the global Moran index of the coupling
coordination degree of agricultural eco-efficiency and food security in each province from
2011 to 2020, as shown in Table 9.

Table 9. Global spatial correlation.

Year Wg Year Wg

2011 0.143 *
(1.459) 2016 0.135 *

(1.443)

2012 0.153 *
(1.548) 2017 0.164 **

(1.710)

2013 0.155 *
(1.564) 2018 0.158 **

(1.705)

2014 0.154 *
(1.567) 2019 0.153 *

(1.606)

2015 0.111
(1.227) 2020 0.210 **

(2.113)
Note: **, and * indicate significance at the 5%, and 10% levels, respectively.

The measurement results of global spatial correlation under geographical matrix (Wg)
show that the Moran index of each province in China has a significant spatial positive
correlation in all years except 2015 under the Wg, and the significance level has increased
from 2017 to 2020, but the overall correlation level is not high, which means that the spatial
agglomeration effect of coupling coordination has increased in recent years, but the overall
level of interaction between provinces is weak. The reason may be due to the differences
in the factors of agricultural resource endowment and the degree of modern agricultural
development in different regions: On the one hand, according to the characteristics of
regional natural resources and endowments, some provinces have a higher level of high
standard basic farmland construction, a higher degree of scale and mechanization, and
a better development of agricultural eco-efficiency, leading to a large gap in development
levels among provinces. On the other hand, China’s provinces have positive spatial
dependence on adjacent regions, but the effect is relatively weak, which leads to a large
gap in the growth rate of the coupling coordination level.

4.4.2. Local Spatial Autocorrelation Analysis

In order to further illustrate the spatial correlation characteristics of the coupling
coordination degree of 31 provinces in China from 2011 to 2020, 2011, 2016, and 2020 were
selected as the research years to draw the local Moran index map of their coupling and
coordination development status (due to space constraints and scatter map, it is difficult
to identify each province, so the scatter map is not presented here); the results are shown
in Table 10.

It can be seen from the table that the high–high agglomeration areas in 2011, 2016, and
2020 included seven provinces: Heilongjiang, Shandong, Jilin, Liaoning, Henan, Anhui,
and Hubei. The agricultural resource endowment of these provinces is generally good,
especially in the northeastern region, where the soil is fertile, the terrain is flat, the level of
agricultural modernization is relatively high, and the synergy between agricultural eco-
efficiency and food security is strong. In 2020, Chongqing and Hunan joined the high–high
agglomeration area, which may be driven by the implementation of policies in recent years
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and the spillover effects of surrounding areas. In 2011, the low–low agglomeration area
included 13 provinces including Beijing, Tianjin, Qinghai, Hainan, Ningxia, Gansu, Tibet,
Fujian, Yunnan, Zhejiang, Guangdong, Guangxi, and Shaanxi.

Table 10. Local spatial clustering of coupling coordination levels in 31 provinces in main years.

Year High–High Low–High Low–Low High–Low

2011

Heilongjiang,
Shandong, Jilin,

Liaoning, Henan,
Anhui, Hubei

Shanghai, Shanxi, Guizhou,
Chongqing, Jiangxi

Beijing, Tianjin, Qinghai,
Hainan, Ningxia, Gansu, Tibet,

Fujian, Yunnan, Zhejiang,
Guangdong, Guangxi, Shaanxi

Sichuan, Xinjiang,
Hunan, Jiangsu, Inner

Mongolia, Hebei

2016

Heilongjiang,
Shandong, Jilin,

Liaoning, Henan,
Anhui, Hubei

Shanghai, Shanxi, Guizhou,
Chongqing, Jiangxi, Tibet,

Yunnan, Guangxi

Beijing, Tianjin, Qinghai,
Hainan, Ningxia, Gansu,

Fujian, Zhejiang,
Guangdong, Shaanxi

Sichuan, Xinjiang,
Hunan, Jiangsu, Inner

Mongolia, Hebei

2020

Heilongjiang,
Shandong, Jilin, Henan,

Anhui, Hubei,
Chongqing, Hunan

Shanxi, Guizhou, Jiangxi, Tibet,
Liaoning, Shaanxi, Guangxi

Beijing, Tianjin, Qinghai,
Hainan, Ningxia, Gansu,

Fujian, Zhejiang, Guangdong,
Shanghai, Xinjiang

Sichuan, Yunnan, Inner
Mongolia, Jiangsu, Hebei

From the perspective of regional development orientation, Beijing, Tianjin, Hainan,
Zhejiang, Guangdong, and other regions do not mainly undertake the function of food
security, and the level of food security is relatively low, but the economy is relatively
developed, the level of science and technology is high, and the agricultural eco-efficiency is
high. The level of coordination between agricultural eco-efficiency and food security is low.
The reason for Shanghai’s transition from a low–high agglomeration area to a low–low
agglomeration area is also the same in 2020. In the same year, Xinjiang changed from
a high–low agglomeration area to a low–low agglomeration area. The reason may be that
with the government’s emphasis on the overall ecological environment, the agricultural
eco-efficiency has been impacted in the short term, and may improve in the long term.

5. Conclusions

Based on the panel data of 31 provinces in China, firstly, the undesirable output SBM
model is used to comprehensively measure the agricultural eco-efficiency and food security
level of each province in China, and then the coupling coordination degree model is used
to measure the coupling coordination level of agricultural eco-efficiency and food security.
Finally, the spatial correlation between agricultural eco-efficiency and food security was
validated using a spatial econometric model. The results show that: first, on the whole,
most provinces were in a state of low coordination or moderate coordination in 2011, and no
province showed a high coordination state. By 2020, the level of coupling coordination in
some provinces has improved, and a few provinces have even reached a highly coordinated
state. Second, economically developed cities such as Beijing, Shanghai, and Tianjin, and
remote areas such as Tibet, Qinghai, and Ningxia are mostly of the lagging food security
type, and Jilin, Shandong, Henan and other major grain production areas are mostly of the
lagging agricultural eco-efficiency type. Third, the coupling coordination level between
agricultural eco-efficiency and food security shows a positive spatial correlation in terms of
geographical distance, and the positive spatial dependence gradually increases but is not
strong overall.

The research in this paper is of great significance for promoting the dual goals of
agricultural eco-efficiency and food security. Based on the main conclusions, the following
policy recommendations are put forward:

(1) Increase agricultural technology R&D and promotion, and provide high utilization
rates of agricultural resources such as chemical fertilizers and pesticides. First, we should
strengthen cooperation with scientific research institutes, coordinate the targeted training
of required professional and technical personnel, and provide reserve forces for agricultural
technology research and development and promotion. The second is to strengthen the
innovation of agricultural inputs, such as innovating the fermentation technology of organic
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fertilizers, and strengthening scientific research on acidified and salinized land caused by
excessive fertilization. Multiple measures should be taken for increasing the utilization
rate of investment in agricultural materials such as grain crops, fertilizers and pesticides,
reducing the residues of fertilizers and pesticides, and promoting the development of
ecological agriculture;

(2) Promote the construction of high standard farmland and innovate various forms
of production models. Agricultural production models should be actively explored that
can not only solve environmental problems, but also ensure food security. The importance
should be fully understood of high standard farmland construction to increase the yield
of cultivated land indicators, enrichment of production methods according to local con-
ditions, building a number of modern agricultural industrial parks for grain, extending
the industrial chain, focusing on building distinctive brands, continuously improving the
comprehensive benefits of farmland, and improving the efficiency of farmland utilization
and agricultural productivity. It is also important to avoid the waste of rural resources,
form a scientific and environmentally friendly cycle chain, and achieve multi-efficiency
win–win under the ecological background;

(3) Strengthen the inter-regional coordinated development mechanism and enhance
the spatial spillover effect. The main grain-producing areas such as the Northeast and
Central China are the backbone of grain production, while Beijing and the eastern coastal
areas are more developed in economy, have a higher level of science and technology,
and have higher agricultural eco-efficiency. We should actively break the barriers of
inter-regional development, give full play to the role of technological leadership and
demonstration in economically developed regions, raise the awareness of agricultural green
production in major grain-producing areas, comprehensively promote modern agricultural
production technologies, and promote green and low-carbon transformation of agriculture.
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