Effects of Ground Subsidence on Vegetation Chlorophyll Content in Semi-Arid Mining Area: From Leaf Scale to Canopy Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.2.1. The Quadrats
2.2.2. Leaf Chlorophyll Content
2.2.3. Ground Subsidence Monitoring
2.2.4. UAV Images
2.3. Data Processing
2.3.1. UAV Image Processing
2.3.2. Canopy Chlorophyll Content
2.3.3. Vegetation Degradation Coefficient
2.3.4. Subsidence Parameters
3. Results
3.1. Time Series Monitoring Results of Ground Subsidence
3.1.1. The Fixed Monitoring Points
3.1.2. The DEM Generated from UAV Images
3.2. Time Series Monitoring Results of Chlorophyll Content
3.2.1. The Leaf Scale
3.2.2. The Canopy Scale
3.3. The Correlation between Degradation Coefficient and Subsidence Parameters
3.4. The Relationship between Degradation Coefficient and Cumulative Subsidence
4. Discussion
4.1. The Degradation Coefficient
4.2. The Similarities between the Leaf Scale and the Canopy Scale
4.3. The Differences between Leaf Scale and Canopy Scale
4.4. The Shortcomings and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.M. Changes Unseen in a Century, High-Quality Development, and the Construction of a New Development Pattern. J. Manag. World 2020, 36, 1–13. (In Chinese) [Google Scholar]
- Wang, S.M. Thoughts about the main energy status of coal and green mining in China. China Coal. 2020, 46, 11–16. (In Chinese) [Google Scholar]
- Lv, X.J.; Xiao, W.; Zhao, Y.L.; Zhang, W.K.; Li, S.C.; Sun, H.X. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecol. Indic. 2019, 106, 105475. [Google Scholar] [CrossRef]
- Cheng, L.S.; Lei, S.G.; Bian, Z.F. Effect of Coal Mining on Soil Moisture Content in Semi-Arid Areas. J. Ecol. Rural Environ. 2016, 32, 219–223. (In Chinese) [Google Scholar]
- Wang, X.; Sun, Y.J.; Xu, Z.M.; Zheng, J.M.; Zhang, C.H. Feasibility prediction analysis of groundwater reservoir construction based on GMS and Monte Carlo analyses: A case study from the Dadougou Coal Mine, Shanxi Province, China. Arab. J. Geosci. 2020, 13, 18. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.X.; Wang, W.B. Effects of Mining Subsidence on Physical and Chemical Properties of Soil in Slope Land in Hilly-gully Region of Loess Plateau. Chin. J. Soil Sci. 2010, 41, 1237–1240. (In Chinese) [Google Scholar]
- Wang, Y.C.; Bian, Z.F.; Lei, S.G.; Zhang, Y. Investigating spatial and temporal variations of soil moisture content in an arid mining area using an improved thermal inertia model. J. Arid Land 2017, 9, 712–726. [Google Scholar] [CrossRef]
- Liu, Y. Study on Guided Restoration of Damaged Vegetation in Semi-Arid Coal Mine Area; China University of Mining and Technology: Xuzhou, China, 2020. [Google Scholar]
- Pandey, B.; Agrawal, M.; Singh, S. Coal mining activities change plant community structure due to air pollution and soil degradation. Ecotoxicology 2014, 23, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.X. Study on Long-Term Effects of Ground Deformation on Vegetation in Semi-Arid Underground Mines; China University of Mining and Technology: Xuzhou, China, 2021. [Google Scholar]
- Hui, J.W.; Bai, Z.K.; Ye, B.Y.; Wang, Z.H. Remote Sensing Monitoring and Evaluation of Vegetation Restoration in Grassland Mining Areas-A Case Study of the Shengli Mining Area in Xilinhot City, China. Land 2021, 10, 743. [Google Scholar] [CrossRef]
- Li, J.; Qin, T.T.; Zhang, C.Y.; Zheng, H.Y.; Guo, J.T.; Xie, H.Z.; Zhang, C.Y.; Zhang, Y.C. A New Method for Quantitative Analysis of Driving Factors for Vegetation Coverage Change in Mining Areas: GWDF-ANN. Remote Sens. 2022, 14, 1579. [Google Scholar] [CrossRef]
- Ren, H.; Xiao, W.; Zhao, Y.L.; Hu, Z.Q. Land damage assessment using maize aboveground biomass estimated from unmanned aerial vehicle in high groundwater level regions affected by underground coal mining. Environ. Sci. Pollut. R. 2020, 27, 21666–21679. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lei, S.G.; Chen, X.Y.; Chen, M.; Zhang, X.Y.; Long, L.L. Disturbance mechanism of coal mining subsidence to typical plants in a semiarid area using O-J-I-P chlorophyll a fluorescence analysis. Photosynthetica 2020, 58, 1178–1187. [Google Scholar] [CrossRef]
- Peng, Y.; Fan, M.; Wang, Q.H.; Lan, W.J.; Long, Y.T. Best hyperspectral indices for assessing leaf chlorophyll content in a degraded temperate vegetation. Ecol. Evol. 2018, 8, 7068–7078. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Niu, B.B.; Li, X.J.; Min, X.Y. Unmanned aerial vehicle (UAV) remote sensing estimation of wheat chlorophyll in subsidence area of coal mine with high phreatic level. Earth Sci. Inform. 2021, 14, 2171–2181. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Yan, C.H.; Lu, S.; Wang, P.; Qiu, G.Y.; Li, R.L. Estimation of chlorophyll content in intertidal mangrove leaves with different thicknesses using hyperspectral data. Ecol. Indic. 2019, 106, 105511. [Google Scholar] [CrossRef]
- Tezcan, A.; Aslan, G.E.; Kaman, H. Evaluation of drought stress on the chlorophyll content of the plants: A review of the solanaceae family. Fresen. Environ. Bull. 2019, 28, 4636–4641. [Google Scholar]
- Chen, Y.; Tong, Y.X.; Tan, K. Coal Mining Deformation Monitoring Using SBAS-InSAR and Offset Tracking: A Case Study of Yu County, China. IEEE J.-Stars. 2020, 13, 6077–6087. [Google Scholar] [CrossRef]
- Cwiakala, P.; Gruszczynski, W.; Stoch, T.; Puniach, E.; Mrochen, D.; Matwij, W.; Matwij, K.; Nedzka, M.; Sopata, P.; Wojcik, A. UAV Applications for Determination of Land Deformations Caused by Underground Mining. Remote Sens. 2020, 12, 1733. [Google Scholar] [CrossRef]
- Ma, D.; Zhao, S.M. Quantitative Analysis of Land Subsidence and Its Effect on Vegetation in Xishan Coalfield of Shanxi Province. ISPRS Int. J. Geo-Inf. 2022, 11, 154. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wang, G.C.; Wang, C.S.; Wang, X.H.; Li, M.L.; Ren, T.Y. Effect of Environmental Factors on Soil Nutrient Loss under Conditions of Mining Disturbance in a Coalfield. Forests 2021, 12, 1370. [Google Scholar] [CrossRef]
- Zhou, S.H.; Liu, T.X.; Duan, L.M. Ecological Impact Prediction of Groundwater Change in Phreatic Aquifer under Multi-Mining Conditions. ISPRS Int. J. Geo-Inf. 2022, 11, 359. [Google Scholar] [CrossRef]
- Przezdziecki, K.; Zawadzki, J.; Miatkowski, Z. Use of the temperature-vegetation dryness index for remote sensing grassland moisture conditions in the vicinity of a lignite open-cast mine. Environ. Earth Sci. 2018, 77, 623. [Google Scholar] [CrossRef]
- Vergara-Diaz, O.; Zaman-Allah, M.A.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Front. Plant Sci. 2016, 7, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Liu, M.; Fan, W.Y.; Wei, T.T.; Cheng, T.H.; Jiang, B.; Zhang, Y. Scale conversion of photochemical reflectance index based on PROSPECT and 4-scale models. J. Beijing For. Univ. 2020, 42, 27–35. (In Chinese) [Google Scholar]
- Liu, Y.; Lei, S.G.; Gong, C.G.; Bian, Z.F. Effects of soil water content change on the chlorophyll fluorescence response of Caragana korshinski leaves under the influence of coal mining subsidence cracks. Acta Ecol. Sin. 2019, 39, 3267–3276. (In Chinese) [Google Scholar]
- Wang, L.; Lei, S.G.; Bian, Z.F. Damage Characteristics of Caragana korshinskii Microphylla Photosynthetic System at Different Slope Positions in the Underground Coal Mining of Western China. Acta Bot. Boreali-Occident. Sin. 2018, 38, 332–342. (In Chinese) [Google Scholar]
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS Int. J. Geo-Inf. 2017, 6, 401. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.D.; Yang, X.R.; Yu, Y.J.; Shu, Y.; Che, D.F. Investigation of Vegetation Changes in Different Mining Areas in Liaoning Province, China, Using Multisource Remote Sensing Data. Remote Sens. 2021, 13, 5168. [Google Scholar] [CrossRef]
- Wang, L.; Lei, S.G.; Bian, Z.F.; Wang, K.; Peng, J.; Wu, J. Hyperspectral Features of Typical Plants in Different Mining Disturbance Zones Caused by Coal Mining Collapse in Semi-Arid Areas. Spectrosc. Spect. Anal. 2019, 39, 216–222. [Google Scholar]
- Li, P.F.; Wang, S.G.; Liu, W. Study on the change law of soil in subsidence area of horizontal coal seam. In Proceedings of the 2017 3rd International Conference on Energy, Environment and Materials Science (EEMS 2017), Singapore, 28–30 July 2017; Volume 94, p. 012038. [Google Scholar]
- Kumar, P.; Sharma, R.K. Development of SPAD value-based linear models for non-destructive estimation of photosynthetic pigments in wheat (Triticum aestivum L.). Indian J. Genet. Pl. Br. 2019, 79, 96–99. [Google Scholar] [CrossRef]
- Madeira, A.C.; Ferreira, A.; de Varennes, A.; Vieira, M.I. SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Commun. Soil Sci. Plan Anal. 2003, 34, 2461–2470. [Google Scholar] [CrossRef]
- Leon, A.P.; Vina, S.Z.; Frezza, D.; Chaves, A.; Chiesa, A. Estimation of chlorophyll contents by correlations between SPAD-502 meter and chroma meter in butterhead lettuce. Commun. Soil Sci. Plan Anal. 2007, 38, 2877–2885. [Google Scholar] [CrossRef]
- Jesus, S.V.D.; Marenco, R.A. O SPAD-502 como alternativa para a determinação dos teores de clorofila em espécies frutíferas. Acta Amaz. 2008, 38, 815–818. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, T.S.; Gardiner, E.S.; Comer, G.S. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. J. Nat. Conserv. 2009, 17, 123–127. [Google Scholar] [CrossRef]
- Qiu, Z.J.; Song, H.Y.; He, Y.; Fang, H. Variation rules of the nitrogen content of the oilseed rape at growth stage using SPAD and visible-NIR. Trans. Chin. Soc. Agric. Eng. 2007, 23, 150–154. (In Chinese) [Google Scholar]
- Kawashima, S.; Nakatani, M. An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, S.; Galal, H.; Allam, A.; Schmidhalter, U. Passive reflectance sensing and digital image analysis for assessing quality parameters of mango fruits. Sci. Hortic. 2016, 212, 136–147. [Google Scholar] [CrossRef]
- He, Y.; Deng, L.; Mao, Z.H.; Sun, J. Remote Sensing Estimation of Canopy SPAD Value for Maize Based on Digital Camera. Sci. Agric. Sin. 2018, 51, 66–77. (In Chinese) [Google Scholar]
- Qu, Y.L.; Tang, Y.; Zhou, Z.S.; Yan, F.; Wang, J.Z.; Xu, H.X.; Hu, L.L.; Xu, X.J. Study on Model Simulation of Relative Chlorophyll Content of Moso Bamboo Based on UAV Visible Light lmage. Acta Agric. Univ. Jiangxiensis 2022, 44, 139–150. (In Chinese) [Google Scholar]
- Niu, Q.L.; Feng, H.K.; Zhou, X.G.; Zhu, J.Q.; Yong, B.B.; Li, H.Z. Combining UAV Visible Light and Multispectral Vegetation Indices for Estimating SPAD Value of Winter Wheat. Trans. Chin. Soc. Agric. Mach. 2021, 52, 183–194. [Google Scholar]
- Fernandez, E.; Gorchs, G.; Serrano, L. Use of consumer-grade cameras to assess wheat N status and grain yield. PLoS ONE 2019, 14, e0211889. [Google Scholar] [CrossRef] [Green Version]
- Tajdus, K. Mining-induced surface horizontal displacement: The case of bw prosper haniel mine. Arch. Min. Sci. 2013, 58, 1037–1055. [Google Scholar]
- Dong, L.K.; Wang, C.; Tang, Y.X.; Tang, F.Q.; Zhang, H.; Wang, J.; Duan, W. Time Series InSAR Three-Dimensional Displacement Inversion Model of Coal Mining Areas Based on Symmetrical Features of Mining Subsidence. Remote Sens. 2021, 13, 2143. [Google Scholar] [CrossRef]
- Mi, J.X.; Yang, Y.J.; Hou, H.P.; Zhang, S.L.; Ding, Z.Y.; Hua, Y.F. Impacts of Ground Fissures on Soil Properties in an Underground Mining Area on the Loess Plateau, China. Land 2022, 11, 162. [Google Scholar] [CrossRef]
- Tan, J. Selection of Shrub Species and Relative Abundance Ratio of Vegetation Restoration Community in Coalmining Base in Wuhai City; Beijing Forestry University: Beijing, China, 2019. [Google Scholar]
- Hu, Z.Q.; Xiao, W.; Wang, P.J.; Zhao, Y.L. Concurrent mining and reclamation for underground coal mining. J. China Coal Soc. 2013, 38, 301–307. (In Chinese) [Google Scholar]
- Hu, Z.Q.; Xiao, W.; Zhao, Y.L. Re-discussion on coal mine eco-environment concurrent mining and reclamation. J. China Coal Soc. 2020, 45, 351–359. (In Chinese) [Google Scholar]
- Chugh, Y.P. Concurrent mining and reclamation for underground coal mining subsidence impacts in China. In Proceedings of the 2nd International Symposium on Land Reclamation and Ecological Restoration (LRER), Beijing, China, 20–23 October 2017; pp. 315–332. [Google Scholar]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.L.; Deng, L.C.; Zhang, L.; Qin, J.L.; Liu, M.; Jia, M.M.; He, H.C.; Deng, T.F.; Gao, E.T.; Fan, D.L. Estimation of mangrove canopy chlorophyll content using hyperspectral image and stacking ensemble regression algorithm. Natl. Remote Sens. Bull. 2022, 26, 1182–1205. (In Chinese) [Google Scholar]
- Saatchi, S.; Asefi-Najafabady, S.; Malhi, Y.; Aragao, L.E.O.C.; Anderson, L.O.; Myneni, R.B.; Nemani, R. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl. Acad. Sci. USA 2013, 110, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.P.; Fang, W.; Zhou, T.; Li, H.; Zhao, X.; Berman, S.; Zhang, T.; Yi, C.X. Satellite evidence of canopy-height dependence of forest drought resistance in southwestern China. Environ. Res. Lett. 2022, 17, 025005. [Google Scholar] [CrossRef]
- Smith, M.N.; Stark, S.C.; Taylor, T.C.; Ferreira, M.L.; de Oliveira, E.; Restrepo-Coupe, N.; Chen, S.; Woodcock, T.; dos Santos, D.B.; Alves, L.F.; et al. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytol. 2019, 222, 1284–1297. [Google Scholar] [CrossRef]
- Wu, C.Y.; Han, X.Z.; Niu, Z.; Dong, J.J. An evaluation of EO-1 hyperspectral Hyperion data for chlorophyll content and leaf area index estimation. Int. J. Remote Sens. 2010, 31, 1079–1086. [Google Scholar] [CrossRef]
- Liao, Q.H.; Zhang, D.Y.; Wang, J.H.; Yang, G.Y.; Yang, H.; Craig, C.; Wong, Z.J.; Wang, D.C. Assessment of Chlorophyll Content Using a New Vegetation Index Based on Multi-Angular Hyperspectral Image Data. Spectrosc. Spect. Anal. 2014, 34, 1599–1604. [Google Scholar]
- Zhang, J.; Tian, H.Q.; Wang, D.; Li, H.; Mouazen, A.M. A novel spectral index for estimation of relative chlorophyll content of sugar beet. Comput. Electron. Agr. 2021, 184, 106088. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.M.; Li, S.J. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015. J. Clean. Prod. 2019, 232, 940–952. [Google Scholar] [CrossRef]
- Murguia, D.I.; Bringezu, S.; Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation. J. Environ. Manag. 2016, 180, 409–420. [Google Scholar] [CrossRef] [PubMed]
- van der Tol, C.; Berry, J.A.; Campbell, P.K.E.; Rascher, U. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res. Biogeosci. 2014, 119, 2312–2327. [Google Scholar] [PubMed] [Green Version]
- Yang, H.L.; Yang, X.; Zhang, Y.G.; Heskel, M.A.; Lu, X.L.; Munger, J.W.; Sun, S.C.; Tang, J.W. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Glob. Change Biol. 2017, 23, 2874–2886. [Google Scholar] [CrossRef]
- Daumard, F.; Goulas, Y.; Champagne, S.; Fournier, A.; Ounis, A.; Olioso, A.; Moya, I. Continuous Monitoring of Canopy Level Sun-Induced Chlorophyll Fluorescence During the Growth of a Sorghum Field. IEEE T. Geosci. Remote 2012, 50, 4292–4300. [Google Scholar] [CrossRef]
- Obata, K.; Huete, A.R. Scaling effects on area-averaged fraction of vegetation cover derived using a linear mixture model with two-band spectral vegetation index constraints. J. Appl. Remote Sens. 2014, 8, 083629. [Google Scholar] [CrossRef]
- He, C.Q.; Fang, L.Q.; Xiong, X.Y.; Fan, F.; Li, Y.G.; He, L.S.; Shen, X.L.; Li, S.; Ji, C.J.; Zhu, J.L. Environmental heterogeneity regulates species-area relationships through the spatial distribution of species. For. Ecosyst. 2022, 9, 100033. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
length of working face | 2600 m |
width of working face | 600 m |
coal seam dip angle | 0–3° |
mining depth | 122–266 m |
mining height | 4.7–4.9 m |
mining rate | 8 m/d |
Investigation Content | Investigation Frequency |
---|---|
Chlorophyll content at leaf scale | Transect 1: a total of 11 sets of measurements. |
Transect 2: a total of 11 sets of measurements. | |
Transect 3: a total of 11 sets of measurements. | |
Ground subsidence | a total of 40 sets of measurements. |
UAV images | a total of 11 sets of images. |
Cumulative Subsidence | Subsidence Rate | |
---|---|---|
Neutral area-Sb | −0.642 ** | −0.298 |
Compression area-Sb | −0.597 ** | −0.244 |
Extension area-Sb | −0.451 * | −0.148 |
Neutral area-Ck | −0.831 ** | −0.354 |
Compression area-Ck | −0.784 ** | −0.262 |
Extension area-Ck | −0.723 ** | −0.211 |
Cumulative Subsidence | Subsidence Rate | |
---|---|---|
Neutral area-Sb | −0.717 ** | −0.312 |
Compression area-Sb | −0.651 ** | −0.267 |
Extension area-Sb | −0.629 ** | −0.178 |
Neutral area-Ck | −0.835 ** | −0.332 |
Compression area-Ck | −0.619 * | −0.234 |
Extension area-Ck | −0.674 ** | −0.219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Lei, S.; Shi, Y.; Wang, W. Effects of Ground Subsidence on Vegetation Chlorophyll Content in Semi-Arid Mining Area: From Leaf Scale to Canopy Scale. Int. J. Environ. Res. Public Health 2023, 20, 493. https://doi.org/10.3390/ijerph20010493
Yang X, Lei S, Shi Y, Wang W. Effects of Ground Subsidence on Vegetation Chlorophyll Content in Semi-Arid Mining Area: From Leaf Scale to Canopy Scale. International Journal of Environmental Research and Public Health. 2023; 20(1):493. https://doi.org/10.3390/ijerph20010493
Chicago/Turabian StyleYang, Xingchen, Shaogang Lei, Yunxi Shi, and Weizhong Wang. 2023. "Effects of Ground Subsidence on Vegetation Chlorophyll Content in Semi-Arid Mining Area: From Leaf Scale to Canopy Scale" International Journal of Environmental Research and Public Health 20, no. 1: 493. https://doi.org/10.3390/ijerph20010493
APA StyleYang, X., Lei, S., Shi, Y., & Wang, W. (2023). Effects of Ground Subsidence on Vegetation Chlorophyll Content in Semi-Arid Mining Area: From Leaf Scale to Canopy Scale. International Journal of Environmental Research and Public Health, 20(1), 493. https://doi.org/10.3390/ijerph20010493