What Is the Role of Psychological Factors in Long COVID Syndrome? Latent Class Analysis in a Sample of Patients Recovered from COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures
2.1.1. Personality Inventory for DSM-5 Brief Form (PID-5-BF)
2.1.2. Impact of Event Scale-Revised (IES-R)
2.1.3. Toronto Alexithymia Scale-20 (TAS-20)
2.2. Statistical Analyses
3. Results
3.1. Sample
3.2. Latent Class Analysis
3.3. Demographic, Clinical and Psychological Characteristics
3.4. Multinomial Logistic Regression
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=Cj0KCQjwhIP6BRCMARIsALu9Lfnbx3ahXR8sSvIS65OyGIzjUfvucEyuf6mqVIHlN4tY9itTDGwlOxIaAgkgEALw_wcB (accessed on 13 May 2022).
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [PubMed]
- Statista COVID-19/Coronavirus. Facts and Figures. Available online: https://www.statista.com/page/covid-19-coronavirus (accessed on 8 April 2022).
- Statista Number of Coronavirus (COVID-19) Cases Worldwide as of 20 July 2022, by Country. Available online: https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/ (accessed on 20 July 2022).
- Statista Cumulative Number of Coronavirus (COVID-19) Recoveries in Italy since 24 February 2020 (as of 20 July 2022). Available online: https://www.statista.com/statistics/1105004/coronavirus-recoveries-since-february-italy/ (accessed on 20 July 2022).
- National Institutes of Health Clinical Spectrum of SARS-CoV-2 Infection. Available online: https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/ (accessed on 23 July 2022).
- Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Qiu, S.; Ma, K. A systematic review of asymptomatic infections with COVID-19. J. Microbiol. Immunol. Infect. 2021, 54, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. 2020, 92, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. TLC Study Group, Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef]
- Li, L.Q.; Huang, T.; Wang, Y.Q.; Wang, Z.P.; Liang, Y.; Huang, T.B.; Zhang, H.Y.; Sun, W.; Wang, Y. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J. Med. Virol. 2020, 92, 577–583. [Google Scholar] [CrossRef]
- Islam, M.S.; Ferdous, M.Z.; Islam, U.S.; Mosaddek, A.S.M.; Potenza, M.N.; Pardhan, S. Treatment, Persistent Symptoms, and Depression in People Infected with COVID-19 in Bangladesh. Int. J. Environ. Res. Public Health 2021, 18, 1453. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, L.G.; Gourna Paleoudis, E.; Lesky-Di Bari, D.; Nyirenda, T.; Friedman, T.; Gupta, A.; Rasouli, L.; Zetkulic, M.; Balani, B.; Ogedegbe, C.; et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS ONE 2020, 15, e0243882. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Righi, E.; Mirandola, M.; Mazzaferri, F.; Dossi, G.; Razzaboni, E.; Zaffagnini, A.; Ivaldi, F.; Visentin, A.; Lambertenghi, L.; Arena, C.; et al. Determinants of persistence of symptoms and impact on physical and mental wellbeing in Long COVID: A prospective cohort study. J. Infect. 2022, 84, 566–572. [Google Scholar] [CrossRef]
- Daher, A.; Balfanz, P.; Cornelissen, C.; Muller, A.; Bergs, I.; Marx, N.; Muller-Wieland, D.; Hartmann, B.; Dreher, M.; Muller, T. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir. Med. 2020, 174, 106197. [Google Scholar] [CrossRef]
- Office for National Statistics the Prevalence of Long COVID Symptoms and COVID-19 Complications. Available online: https://www.ons.gov.uk/news/statementsandletters/theprevalenceoflongcovidsymptomsandcovid19complications (accessed on 8 April 2022).
- Carfi, A.; Bernabei, R.; Landi, F. Gemelli Against COVID-19 Post-Acute Care Study Group, Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Thye, A.Y.; Law, J.W.; Tan, L.T.; Pusparajah, P.; Ser, H.L.; Thurairajasingam, S.; Letchumanan, V.; Lee, L.H. Psychological Symptoms in COVID-19 Patients: Insights into Pathophysiology and Risk Factors of Long COVID-19. Biology 2022, 11, 61. [Google Scholar] [CrossRef]
- Munblit, D.; Nicholson, T.R.; Needham, D.M.; Seylanova, N.; Parr, C.; Chen, J.; Kokorina, A.; Sigfrid, L.; Buonsenso, D.; Bhatnagar, S.; et al. Studying the post-COVID-19 condition: Research challenges, strategies, and importance of Core Outcome Set development. BMC Med. 2022, 20, 50. [Google Scholar] [CrossRef] [PubMed]
- Perego, E.; Callard, F.; Stras, L.; Melville-Jóhannesson, B.; Pope, R.; Alwan, N.A. Why we need to keep using the patient made term “Long COVID”. BMJ Opin. 2020, 2022. Available online: https://blogs.bmj.com/bmj/2020/10/01/why-we-need-to-keep-using-the-patient-made-term-long-covid/ (accessed on 20 July 2022).
- Callard, F.; Perego, E. How and why patients made Long COVID. Soc. Sci. Med. 2021, 268, 113426. [Google Scholar] [CrossRef]
- Long COVID: Let patients help define long-lasting COVID symptoms. Nature 2020, 586, 170. [CrossRef]
- Venkatesan, P. NICE guideline on long COVID. Lancet Respir. Med. 2021, 9, 129. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19. Available online: https://www.nice.org.uk/guidance/ng188 (accessed on 8 April 2022).
- Moreno, C.; Wykes, T.; Galderisi, S.; Nordentoft, M.; Crossley, N.; Jones, N.; Cannon, M.; Correll, C.U.; Byrne, L.; Carr, S.; et al. How mental health care should change as a consequence of the COVID-19 pandemic. Lancet Psychiatr. 2020, 7, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Poyraz, B.C.; Poyraz, C.A.; Olgun, Y.; Gurel, O.; Alkan, S.; Ozdemir, Y.E.; Balkan, I.I.; Karaali, R. Psychiatric morbidity and protracted symptoms after COVID-19. Psychiatr. Res. 2021, 295, 113604. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychiatr. 2020, 52, 102066. [Google Scholar] [CrossRef]
- Tsamakis, K.; Tsiptsios, D.; Ouranidis, A.; Mueller, C.; Schizas, D.; Terniotis, C.; Nikolakakis, N.; Tyros, G.; Kympouropoulos, S.; Lazaris, A.; et al. COVID-19 and its consequences on mental health (Review). Exp. Ther. Med. 2021, 21, 244. [Google Scholar] [CrossRef]
- Chamberlain, S.R.; Grant, J.E.; Trender, W.; Hellyer, P.; Hampshire, A. Post-traumatic stress disorder symptoms in COVID-19 survivors: Online population survey. BJPsych. Open 2021, 7, e47. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, N.; Rafferty, L. Post-traumatic stress disorder in the aftermath of COVID-19 pandemic. World Psychiatr. 2021, 20, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Craparo, G.; La Rosa, V.L.; Marino, G.; Vezzoli, M.; Cina, G.S.; Colombi, M.; Arcoleo, G.; Severino, M.; Costanzo, G.; Mangiapane, E. Risk of post-traumatic stress symptoms in hospitalized and non-hospitalized COVID-19 recovered patients. A cross-sectional study. Psychiatr. Res. 2022, 308, 114353. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM-5, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Ashton, M.C.; Lee, K.; de Vries, R.E.; Hendrickse, J.; Born, M.P. The Maladaptive Personality Traits of the Personality Inventory forDSM-5(PID-5) in Relation to the HEXACO Personality Factors and Schizotypy/Dissociation. J. Personal. Disord. 2012, 26, 641–659. [Google Scholar] [CrossRef]
- Skodol, A.E.; Morey, L.C.; Bender, D.S.; Oldham, J.M. The Alternative DSM-5 Model for Personality Disorders: A Clinical Application. Am. J. Psychiatr. 2015, 172, 606–613. [Google Scholar] [CrossRef] [Green Version]
- Krueger, R.F.; Derringer, J.; Markon, K.E.; Watson, D.; Skodol, A.V. The Personality Inventory for DSM-5—Brief form (PID-5-BF)-Adult; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- American Psychiatric Association. Inventario di personalità per il DSM-5—Versione breve (PID-5-BF)—Adulto. In Scale di Valutazione PID-5 ADULTI; Fossati, A., Borroni, S., Eds.; Raffaello Cortina Editore: Milano, Italy, 2015. [Google Scholar]
- Creamer, M.; Bell, R.; Failla, S. Psychometric properties of the Impact of Event Scale—Revised. Behav. Res. Ther. 2003, 41, 1489–1496. [Google Scholar] [CrossRef]
- Sundin, E.C.; Horowitz, M.J. Impact of Event Scale: Psychometric properties. Br. J. Psychiatr. 2002, 180, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Sundin, E.C.; Horowitz, M.J. Horowitz’s Impact of Event Scale evaluation of 20 years of use. Psychosom. Med. 2003, 65, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Craparo, G.; Faraci, P.; Rotondo, G.; Gori, A. The Impact of Event Scale—Revised: Psychometric properties of the Italian version in a sample of flood victims. Neuropsychiatr. Dis. Treat. 2013, 9, 1427–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagby, R.M.; Parker, J.D.; Taylor, G.J. The twenty-item Toronto Alexithymia Scale—I. Item selection and cross-validation of the factor structure. J. Psychosom. Res. 1994, 38, 23–32. [Google Scholar] [CrossRef]
- Craparo, G.; Gagliano, O.; Costanzo, G.; La Rosa, V.L.; Gori, A.; Mendolicchio, L. Boredom, alexithymia, and desire thinking in eating disorders: A cross-sectional study. Mediterr. J. Clin. Psychol. 2020, 8, 1–15. [Google Scholar]
- Bressi, C.; Taylor, G.; Parker, J.; Bressi, S.; Brambilla, V.; Aguglia, E.; Allegranti, I.; Bongiorno, A.; Giberti, F.; Bucca, M.; et al. Cross validation of the factor structure of the 20-item Toronto Alexithymia Scale: An Italian multicenter study. J. Psychosom. Res. 1996, 41, 551–559. [Google Scholar] [CrossRef]
- Caretti, V.; La Barbera, D. Alessitimia. Valutazione e Trattamento; Astrolabio Ubaldini: Rome, Italy, 2005. [Google Scholar]
- McCutcheon, A.L. Latent Class Analysis; Sage Publications: Newbury Park, CA, USA, 1987; p. 96. [Google Scholar]
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transition Analysis: With Applications in the Social Behavioral, and Health Sciences; Wiley: Hoboken, NJ, USA, 2010; 285p. [Google Scholar]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Struct. Equ. Model. Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing (4.0.5); R Development Core Team: Vienna, Austria, 2021. [Google Scholar]
- Linzer, D.A.; Lewis, J.B. poLCA: AnRPackage for Polytomous Variable Latent Class Analysis. J. Stat. Softw. 2011, 42, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Fernández-de-las-Peñas, C.; Martín-Guerrero, J.D.; Pellicer-Valero, Ó.J.; Navarro-Pardo, E.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Arias-Navalón, J.A.; Cigarán-Méndez, M.; Hernández-Barrera, V.; Arendt-Nielsen, L. Female Sex Is a Risk Factor Associated with Long-Term Post-COVID Related-Symptoms but Not with COVID-19 Symptoms: The LONG-COVID-EXP-CM Multicenter Study. J. Clin. Med. 2022, 11, 413. [Google Scholar] [CrossRef]
- Arnold, D.T.; Hamilton, F.W.; Milne, A.; Morley, A.J.; Viner, J.; Attwood, M.; Noel, A.; Gunning, S.; Hatrick, J.; Hamilton, S.; et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: Results from a prospective UK cohort. Thorax 2021, 76, 399–401. [Google Scholar] [CrossRef]
- Lumley, M.A.; Stettner, L.; Wehmer, F. How are alexithymia and physical illness linked? A review and critique of pathways. J. Psychosom. Res. 1996, 41, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.J.; Bagby, R.M.; Parker, J.D.A.; Grotstein, J. Disorders of Affect Regulation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Kojima, M. Alexithymia as a prognostic risk factor for health problems: A brief review of epidemiological studies. BioPsychoSocial Med. 2012, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Craparo, G. Internet addiction, dissociation, and alexithymia. Procedia Soc. Behav. Sci. 2011, 30, 1051–1056. [Google Scholar] [CrossRef] [Green Version]
- La Rosa, V.L.; Gori, A.; Faraci, P.; Vicario, C.M.; Craparo, G. Traumatic Distress, Alexithymia, Dissociation, and Risk of Addiction During the First Wave of COVID-19 in Italy: Results from a Cross-sectional Online Survey on a Non-clinical Adult Sample. Int. J. Ment. Health Addict. 2022, 20, 3128–3144. [Google Scholar] [CrossRef]
- Stanescu, S.; Kirby, S.E.; Thomas, M.; Yardley, L.; Ainsworth, B. A systematic review of psychological, physical health factors, and quality of life in adult asthma. NPJ Prim. Care Respir. Med. 2019, 29, 37. [Google Scholar] [CrossRef] [Green Version]
- von Kanel, R.; Baumert, J.; Kolb, C.; Cho, E.Y.; Ladwig, K.H. Chronic posttraumatic stress and its predictors in patients living with an implantable cardioverter defibrillator. J. Affect Disord. 2011, 131, 344–352. [Google Scholar] [CrossRef]
- Porcelli, P.; Affatati, V.; Bellomo, A.; De Carne, M.; Todarello, O.; Taylor, G.J. Alexithymia and psychopathology in patients with psychiatric and functional gastrointestinal disorders. Psychother. Psychosom. 2004, 73, 84–91. [Google Scholar] [CrossRef]
- De Vries, A.M.; Forni, V.; Voellinger, R.; Stiefel, F. Alexithymia in cancer patients: Review of the literature. Psychother. Psychosom. 2012, 81, 79–86. [Google Scholar] [CrossRef]
- Williamson, J.B.; Heilman, K.M.; Porges, E.C.; Lamb, D.G.; Porges, S.W. A possible mechanism for PTSD symptoms in patients with traumatic brain injury: Central autonomic network disruption. Front. Neuroeng. 2013, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Porges, S.W. The polyvagal theory: Phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 2001, 42, 123–146. [Google Scholar] [CrossRef]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.B.; Porges, E.C.; Lamb, D.G.; Porges, S.W. Maladaptive autonomic regulation in PTSD accelerates physiological aging. Front. Psychol. 2015, 5, 1571. [Google Scholar] [CrossRef] [PubMed]
- Miller-Archie, S.A.; Jordan, H.T.; Ruff, R.R.; Chamany, S.; Cone, J.E.; Brackbill, R.M.; Kong, J.; Ortega, F.; Stellman, S.D. Posttraumatic stress disorder and new-onset diabetes among adult survivors of the World Trade Center disaster. Prev. Med. 2014, 66, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, H.T.; Stellman, S.D.; Morabia, A.; Miller-Archie, S.A.; Alper, H.; Laskaris, Z.; Brackbill, R.M.; Cone, J.E. Cardiovascular Disease Hospitalizations in Relation to Exposure to the September 11, 2001 World Trade Center Disaster and Posttraumatic Stress Disorder. J. Am. Heart Assoc. 2013, 2, e000431. [Google Scholar] [CrossRef] [Green Version]
- Miguel, F.K.; Machado, G.M.; Pianowski, G.; Carvalho, L.D.F. Compliance with containment measures to the COVID-19 pandemic over time: Do antisocial traits matter? Personal. Individ. Differ. 2021, 168, 110346. [Google Scholar] [CrossRef] [PubMed]
- Verona, E.; O’Connell, K.; Berluti, K.; Rhoads, S.A.; Marsh, A.A. Reduced social distancing early in the COVID-19 pandemic is associated with antisocial behaviors in an online United States sample. PLoS ONE 2021, 16, e0244974. [Google Scholar]
- Blais, J.; Chen, P.G.; Pruysers, S. Who Complies and Who Defies? Personality and Public Health Compliance. Front. Political Sci. 2021, 3, 59. [Google Scholar] [CrossRef]
- Konc, I.; Petrović, K.; Dinić, B.M. Dark Tetrad and COVID-19 protective measures: Mediating effects of risk-taking tendencies. Personal. Individ. Differ. 2022, 186, 111341. [Google Scholar] [CrossRef]
Variable | Value | |
---|---|---|
Gender | Female (%) | 435 (86.0) |
Male (%) | 71 (14.0) | |
Marital status | Single (%) | 85 (16.8) |
Married (%) | 289 (57.1) | |
Live-in-partner (%) | 57 (11.3) | |
Separated (%) | 31 (6.1) | |
Divorced (%) | 36 (7.1) | |
Widowed (%) | 8 (1.6) | |
Highest educational level | Primary school (%) | 6 (1.2) |
Middle school (%) | 70 (13.8) | |
High school (%) | 242 (47.8) | |
Bachelor degree (%) | 53 (10.5) | |
Master degree (%) | 89 (17.6) | |
Post-graduate degree (%) | 46 (9.1) | |
Employment | Unemployed (%) | 44 (8.7) |
Seeking first employment (%) | 3 (0.6) | |
Student (%) | 6 (1.2) | |
Armed forces (%) | 5 (1.0) | |
Craftsman (%) | 7 (1.4) | |
Employee (%) | 192 (37.9) | |
Entrepreneur (%) | 10 (2.0) | |
Freelancer (%) | 39 (7.7) | |
Healthcare personnel (%) | 86 (17.0) | |
Housekeeper (%) | 35 (6.9) | |
Merchant (%) | 10 (2.0) | |
Religious (%) | 1 (0.2) | |
School personnel (%) | 43 (8.5) | |
Retired (%) | 25 (4.9) | |
COVID-19 therapy | Asymptomatic (%) | 34 (6.7) |
Domiciliary (%) | 366 (72.3) | |
Ordinary hospitalization (%) | 62 (12.3) | |
Sub-intensive care (%) | 32 (6.3) | |
Intensive care (%) | 12 (2.4) | |
Family members affected by COVID-19 | Yes (%) | 342 (67.5) |
No (%) | 164 (32.5) | |
Family deaths due to COVID-19 | Yes (%) | 54 (10.7) |
No (%) | 452 (89.3) | |
Days of hospitalization (range: 1–118) | M ± SD | 4.52 ± 12.20 |
Days of home isolation (range: 0–120) | M ± SD | 32.22 ± 18.53 |
Model | LL | BIC | ABIC | CAIC | LR |
---|---|---|---|---|---|
1 Class | −4054.05 | 8232.63 | 8169.14 | 8252.63 | 2742.23 |
2 Classes | −3856.62 | 7968.52 | 7838.39 | 8009.52 | 2347.37 |
3 Classes | −3750.52 | 7887.09 | 7690.29 | 7949.09 | 2135.18 |
4 Classes | −3690.95 | 7898.70 | 7635.25 | 7981.70 | 2016.03 |
5 Classes | −3657.95 | 7963.47 | 7633.37 | 8067.47 | 1950.05 |
6 Classes | −3635.54 | 8049.40 | 7652.64 | 8174.40 | 1905.22 |
No Symptoms n = 106 | Brain Fog n = 161 | Breath Impaired n = 89 | Sensory Disorders n = 95 | Multiple Disorders n = 55 | |
---|---|---|---|---|---|
Gender | |||||
Male n (%) | 24 (34%) | 24 (34%) | 5 (7%) | 15 (21%) | 3 (4%) |
Female n (%) | 82 (19%) | 137 (32%) | 84 (19%) | 80 (18%) | 52 (12%) |
Mean Age (SD) | 46.04 (12.70) | 47.55 (10.79) | 48.12 (9.91) | 47.90 (10.33) | 45.47 (10.19) |
Type of treatment | |||||
Asymptomatic n (%) | 17 (50%) | 11 (32%) | 2 (6%) | 2 (6%) | 2 (6%) |
Home treatment n (%) | 78 (21%) | 116 (32%) | 56 (15%) | 75 (21%) | 41 (11%) |
Ordinary hospitalization n (%) | 7 (11%) | 20 (32%) | 18 (29%) | 11 (18%) | 6 (10%) |
Sub-intensive care n (%) | 3 (9%) | 10 (31%) | 10 (31%) | 4 (12%) | 5 (16%) |
Intensive care n (%) | 1 (8%) | 4 (33%) | 3 (25%) | 3 (25%) | 1 (8%) |
Mean Days of hospitalization (SD) | 2.86 (10.75) | 3.86 (9.32) | 8.12 (16.53) | 3.37 (8.40) | 5.84 (17.61) |
No Symptoms | Brain Fog | Breath Impaired | Sensory Disorders | Multiple Disorders | ANOVA One-Way Test | |
---|---|---|---|---|---|---|
M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | ||
Personality traits | ||||||
PID-5-BF NA | 1.33 (0.68) | 1.63 (0.67) | 1.63 (0.66) | 1.59 (0.70) | 1.55 (0.56) | F(4, 501) = 3.99, p = 0.004, η2 = 0.034 |
PID-5-BF DE | 0.83 (0.59) | 1.10 (0.65) | 1.02 (0.67) | 1.05 (0.65) | 0.85 (0.67) | F(4, 501) = 3.64, p = 0.006, η2 = 0.028 |
PID-5-BF AN | 0.56 (0.47) | 0.55 (0.49) | 0.53 (0.49) | 0.59 (0.51) | 0.50 (0.57) | F(4, 501) = 0.33, p = 0.857, η2 = 0.003 |
PID-5-BF DI | 0.74 (0.62) | 0.83 (0.64) | 0.77 (0.55) | 0.87 (0.67) | 0.77 (0.62) | F(4, 501) = 0.74, p = 0.564, η2 = 0.006 |
PID-5-BF PS | 0.63 (0.58) | 0.82 (0.59) | 0.89 (0.67) | 0.92 (0.66) | 0.78 (0.61) | F(4, 501) = 3.40, p = 0.009, η2 = 0.026 |
Alexithymia | ||||||
TAS-20 DIF | 2.31 (1.00) | 3.03 (1.03) | 3.34 (1.01) | 2.98 (1.08) | 3.07 (0.85) | F(4, 501) = 14.14, p < 0.001, η2 = 0.101 |
TAS-20 DDF | 2.47 (0.97) | 2.64 (0.94) | 2.77 (0.85) | 2.67 (0.93) | 2.52 (0.98) | F(4, 501) = 1.56, p = 0.184, η2 = 0.012 |
TAS-20 EOT | 2.61 (0.94) | 2.72 (0.96) | 2.85 (1.04) | 2.69 (0.95) | 2.34 (0.74) | F(4, 501) = 2.68, p = 0.031, η2 = 0.021 |
Post-Traumatic Stress | ||||||
IES-R Avoidance | 1.37 (0.89) | 1.99 (0.92) | 2.17 (0.98) | 1.94 (1.01) | 1.75 (0.80) | F(4, 501) = 10.66, p < 0.001, η2 = 0.078 |
IES-R Intrusion | 1.62 (0.95) | 2.46 (0.90) | 2.68 (1.00) | 2.32 (1.08) | 2.23 (0.95) | F(4, 501) = 17.29, p < 0.001, η2 = 0.121 |
IES-R Hyperarousal | 1.72 (1.05) | 2.68 (0.90) | 2.85 (0.92) | 2.54 (1.01) | 2.42 (0.88) | F(4, 501) = 21.95, p < 0.001, η2 = 0.149 |
Brain Fog OR [95%CI] | Breath Impairment OR [95%CI] | Sensory Disorders OR [95%CI] | Multiple Disorders OR [95%CI] | |
---|---|---|---|---|
(Intercept) | 2.25 | 1.11 | 1.35 | 0.68 |
PID-5-BF NA | 0.93 [0.64; 1.36] | 0.79 [0.52; 1.2186] | 0.85 [0.57; 1.29] | 0.98 [0.60; 1.55] |
PID-5-BF DE | 1.43 [0.94; 2.09] | 1.00 [0.63; 1.5602] | 1.15 [0.72; 1.74] | 0.84 [0.47; 1.32] |
PID-5-BF AN | 0.64 * [0.46; 0.92] | 0.65 * [0.44; 0.9849] | 0.66 * [0.45; 0.96] | 0.68 [0.42; 1.04] |
PID-5-BF DI | 1.07 [0.77; 1.46] | 0.86 [0.59; 1.2470] | 1.06 [0.74; 1.49] | 0.98 [0.64; 1.47] |
PID-5-BF PS | 0.94 [0.60; 1.46] | 1.11 [0.68; 1.8353] | 1.40 [0.88; 2.27] | 1.16 [0.65; 1.98] |
TAS-20 DIF | 2.05 ** [1.23; 2.99] | 3.17 ** [1.79; 5.1122] | 1.90 ** [1.07; 2.84] | 3.87 ** [1.91; 6.17] |
TAS-20 DDF | 0.69 [0.47; 1.02] | 0.72 [0.46; 1.14] | 0.76 [0.50; 1.17] | 0.75 * [0.45; 1.25] |
TAS-20 EOT | 0.74 [0.52; 1.05] | 0.79 [0.53; 1.17] | 0.70 [0.48; 1.02] | 0.44 * [0.28; 0.71] |
IES-R Avoidance | 0.88 [0.51; 1.35] | 0.88 [0.49; 1.46] | 1.04 [0.58; 1.64] | 0.85 [0.41; 1.37] |
IES-R Intrusion | 1.05 [0.62; 1.97] | 1.32 [0.70; 2.70] | 0.88 [0.49; 1.76] | 0.98 [0.51; 2.22] |
IES-R Hyperarousal | 2.54 ** [1.45; 4.39] | 2.33 * [1.19; 4.44] | 2.16 * [1.17; 3.94] | 1.74 [0.86; 3.54] |
Nagelkerke’s Pseudo-R2 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craparo, G.; La Rosa, V.L.; Commodari, E.; Marino, G.; Vezzoli, M.; Faraci, P.; Vicario, C.M.; Cinà, G.S.; Colombi, M.; Arcoleo, G.; et al. What Is the Role of Psychological Factors in Long COVID Syndrome? Latent Class Analysis in a Sample of Patients Recovered from COVID-19. Int. J. Environ. Res. Public Health 2023, 20, 494. https://doi.org/10.3390/ijerph20010494
Craparo G, La Rosa VL, Commodari E, Marino G, Vezzoli M, Faraci P, Vicario CM, Cinà GS, Colombi M, Arcoleo G, et al. What Is the Role of Psychological Factors in Long COVID Syndrome? Latent Class Analysis in a Sample of Patients Recovered from COVID-19. International Journal of Environmental Research and Public Health. 2023; 20(1):494. https://doi.org/10.3390/ijerph20010494
Chicago/Turabian StyleCraparo, Giuseppe, Valentina Lucia La Rosa, Elena Commodari, Graziella Marino, Michela Vezzoli, Palmira Faraci, Carmelo Mario Vicario, Gabriella Serena Cinà, Morena Colombi, Giuseppe Arcoleo, and et al. 2023. "What Is the Role of Psychological Factors in Long COVID Syndrome? Latent Class Analysis in a Sample of Patients Recovered from COVID-19" International Journal of Environmental Research and Public Health 20, no. 1: 494. https://doi.org/10.3390/ijerph20010494
APA StyleCraparo, G., La Rosa, V. L., Commodari, E., Marino, G., Vezzoli, M., Faraci, P., Vicario, C. M., Cinà, G. S., Colombi, M., Arcoleo, G., Severino, M., Costanzo, G., Gori, A., & Mangiapane, E. (2023). What Is the Role of Psychological Factors in Long COVID Syndrome? Latent Class Analysis in a Sample of Patients Recovered from COVID-19. International Journal of Environmental Research and Public Health, 20(1), 494. https://doi.org/10.3390/ijerph20010494