Distinct Effects of Anxiety and Depression on Updating Emotional Information in Working Memory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Self-Report Measures
2.2.1. Symptoms of Anxiety
2.2.2. Symptoms of Depression
2.3. Materials and Apparatus
2.4. Data Analysis
2.4.1. Data Preparation
2.4.2. Statistical Analysis
3. Results
3.1. Descriptive Results
3.2. WM Updating Accuracy
3.3. WM Updating RT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Shah, P. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Alloway, T.P.; Alloway, R.G. Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child. Psychol. 2010, 106, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daneman, M.; Merikle, P.M. Working memory and language comprehension: A meta-analysis. Psychon. Bull. Rev. 1996, 3, 422–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engle, R.W. Working Memory Capacity as Executive Attention. Curr. Dir. Psychol. Sci. 2002, 11, 19–23. [Google Scholar] [CrossRef]
- Eysenck, M.W.; Derakshan, N.; Santos, R.; Calvo, M.G. Anxiety and cognitive performance: Attentional control theory. Emotion 2007, 7, 336–353. [Google Scholar] [CrossRef] [Green Version]
- Moran, T.P. Anxiety and working memory capacity: A meta-analysis and narrative review. Psychol. Bull. 2016, 142, 831–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition: DSM-V; APA: Washington, DC, USA, 2013. [Google Scholar]
- LeMoult, J.; Gotlib, I.H. Depression: A cognitive perspective. Clin. Psychol. Rev. 2019, 69, 51–66. [Google Scholar] [CrossRef]
- Snyder, H.R. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychol. Bull. 2013, 139, 81–132. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.J.; Li, X. Processing of emotional information in working memory in major depressive disorder. Adv. Psychol. Sci. 2020, 29, 252–267. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.L.; Zhang, Y.T.; Li, R.T.; Bai, H.P.; Lui, S.S.Y.; Chan, R.C.K. Deficits in maintenance and interference control of working memory in major depression: Evidence from the visuospatial change detection task. Cogn. Neuropsychiatry 2021, 26, 122–135. [Google Scholar] [CrossRef]
- Li, F.F.; Chen, X.L.; Zhang, Y.T.; Li, R.T.; Li, X. The role of prepotent response inhibition and interference control in depression. Cognitive Neuropsychiatry 2021, 26, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Rose, E.J.; Ebmeier, K.P. Pattern of impaired working memory during major depression. J. Affect. Disord. 2006, 90, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Owens, M.; Koster, E.H.; Derakshan, N. Impaired filtering of irrelevant information in dysphoria: An ERP study. Soc. Cogn. Affect. Neurosci. 2012, 7, 752–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semkovska, M.; Quinlivan, L.; O’Grady, T.; Johnson, R.; Collins, A.; O’Connor, J.; Knittle, H.; Ahern, E.; Gload, T. Cognitive function following a major depressive episode: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 851–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stout, D.M.; Shackman, A.J.; Larson, C.L. Failure to filter: Anxious individuals show inefficient gating of threat from working memory. Front. Hum. Neurosci. 2013, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, C.M.; Hudziak, J.J.; Gaffrey, M.S.; Barch, D.M.; Luby, J.L. Stimulus-Driven Attention, Threat Bias, and Sad Bias in Youth with a History of an Anxiety Disorder or Depression. J. Abnorm. Child. Psychol. 2016, 44, 219–231. [Google Scholar] [CrossRef]
- Duque, A.; Vázquez, C. Double attention bias for positive and negative emotional faces in clinical depression: Evidence from an eye-tracking study. J. Behav. Ther. Exp. Psychiatry 2015, 46, 107–114. [Google Scholar] [CrossRef]
- Levens, S.M.; Gotlib, I.H. Updating positive and negative stimuli in working memory in depression. J. Exp. Psychol. Gen. 2010, 139, 654–664. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, S.; Satpute, A.B.; Atzil, S.; Field, A.P.; Hitchcock, C.; Black, M.; Barrett, L.F.; Dalgleish, T. The impact of affective information on working memory: A pair of meta-analytic reviews of behavioral and neuroimaging evidence. Psychol. Bull. 2019, 145, 566–609. [Google Scholar] [CrossRef]
- Amir, N.; Bomyea, J. Working memory capacity in generalized social phobia. J. Abnorm. Psychol. 2011, 120, 504–509. [Google Scholar] [CrossRef]
- Segal, A.; Kessler, Y.; Anholt, G.E. Updating the emotional content of working memory in social anxiety. J. Behav. Ther. Exp. Psychiatry 2015, 48, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.L.; LeMoult, J.; Joormann, J. Updating emotional content in working memory: A depression-specific deficit? J. Behav. Ther. Exp. Psychiatry 2014, 45, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Goodin, P.; Lamp, G.; Hughes, M.E.; Rossell, S.L.; Ciorciari, J. Decreased Response to Positive Facial Affect in a Depressed Cohort in the Dorsal Striatum During a Working Memory Task-A Preliminary fMRI Study. Front. Psychiatry 2019, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foland-Ross, L.C.; Gotlib, I.H. Cognitive and neural aspects of information processing in major depressive disorder: An integrative perspective. Front. Psychol. 2012, 3, 489. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, S.; Navrady, L.; Breakwell, L.; Howard, R.M.; Golden, A.M.; Werner-Seidler, A.; Dalgleish, T. Affective enhancement of working memory is maintained in depression. Emotion 2018, 18, 127–137. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.A.; Watson, D. Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. J. Abnorm. Psychol. 1991, 100, 316–336. [Google Scholar] [CrossRef]
- Lamers, F.; van Oppen, P.; Comijs, H.C.; Smit, J.H.; Spinhoven, P.; van Balkom, A.J.; Nolen, W.A.; Zitman, F.G.; Beekman, A.T.; Penninx, B.W. Comorbidity patterns of anxiety and depressive disorders in a large cohort study: The Netherlands Study of Depression and Anxiety (NESDA). J. Clin. Psychiatry 2011, 72, 341–348. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, Z.; Yang, M.; Xi, X.; Guo, Y.; Fang, M.; Cheng, L.; Du, Y. Comorbid generalized anxiety disorder and its association with quality of life in patients with major depressive disorder. Sci. Rep. 2017, 7, 40511. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.M.Y.; Cheng, J.; Dai, D.W.T.; Tam, T.; Hui, O. The effect of positive and negative memory bias on anxiety and depression symptoms among adolescents. J. Clin. Psychol. 2018, 74, 1509–1525. [Google Scholar] [CrossRef]
- Solmi, M.; Radua, J.; Olivola, M.; Croce, E.; Soardo, L.; Salazar de Pablo, G.; Il Shin, J.; Kirkbride, J.B.; Jones, P.; Kim, J.H.; et al. Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry 2022, 27, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.; Cuthbert, B.; Garvey, M.; Heinssen, R.; Pine, D.S.; Quinn, K.; Sanislow, C.; Wang, P. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am. J. Psychiatry 2010, 167, 748–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traxler, M.J. Working memory contributions to relative clause attachment processing: A hierarchical linear modeling analysis. Mem. Cogn. 2007, 35, 1107–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristjansson, S.D.; Kircher, J.C.; Webb, A.K. Multilevel models for repeated measures research designs in psychophysiology: An introduction to growth curve modeling. Psychophysiology 2007, 44, 728–736. [Google Scholar] [CrossRef]
- Hur, J.; Iordan, A.D.; Dolcos, F.; Berenbaum, H. Emotional influences on perception and working memory. Cogn. Emot. 2017, 31, 1294–1302. [Google Scholar] [CrossRef]
- Yoon, K.L.; Kutz, A.M.; LeMoult, J.; Joormann, J. Working memory in social anxiety disorder: Better manipulation of emotional versus neutral material in working memory. Cogn. Emot. 2017, 31, 1733–1740. [Google Scholar] [CrossRef]
- Rottenberg, J.; Gross, J.J.; Gotlib, I.H. Emotion context insensitivity in major depressive disorder. J. Abnorm. Psychol. 2005, 114, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Royuela-Colomer, E.; Wante, L.; Orue, I.; Braet, C.; Mueller, S.C. Comparing emotional working memory in adolescents and young adults with and without depressive symptoms: Developmental and psychopathological differences. BMC Psychol. 2022, 10, 134. [Google Scholar] [CrossRef]
- Pelegrina, S.; Justicia-Galiano, M.J.; Martín-Puga, M.E.; Linares, R. Math Anxiety and Working Memory Updating: Difficulties in Retrieving Numerical Information From Working Memory. Front. Psychol. 2020, 11, 669. [Google Scholar] [CrossRef]
- Li, W.L.; Qian, M.Y. Revision of the State-Trait Anxiety Inventory with sample of Chinese college students. Acta Sci. Nat. Univ. Pekin. 1995, 31, 108–114. [Google Scholar] [CrossRef]
- Spielberger, C.D. Manual for the State-Trait Anxiety Inventory STAI (Form Y); Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Kanuri, N.; Taylor, C.B.; Cohen, J.M.; Newman, M.G. Classification models for subthreshold generalized anxiety disorder in a college population: Implications for prevention. J. Anxiety Disord. 2015, 34, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Pan, D.N.; Hoid, D.; van Winkel, R.; Li, X. When the approaching threat is uncertain: Dynamics of defensive motivation and attention in trait anxiety. Psychophysiology 2022, 59, e14049. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Ball, R.; Ranieri, W. Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. J. Pers. Assess. 1996, 67, 588–597. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, C.; Huang, J. Reliability and validity of the Chinese version of Beck Depression Inventory-II among depression patients. Chin. Ment. Health J. 2011, 25, 476–480. [Google Scholar]
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual; Technical Report A-8; University of Florida: Gainesville, FL, USA, 1997. [Google Scholar]
- Kensinger, E.A.; Schacter, D.L. Processing emotional pictures and words: Effects of valence and arousal. Cogn. Affect. Behav. Neurosci. 2006, 6, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Scharinger, C.; Soutschek, A.; Schubert, T.; Gerjets, P. When flanker meets the n-back: What EEG and pupil dilation data reveal about the interplay between the two central-executive working memory functions inhibition and updating. Psychophysiology 2015, 52, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Franke, G.R. Multicollinearity. In Wiley International Encyclopedia of Marketing; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Jackson, M.C.; Wu, C.Y.; Linden, D.E.; Raymond, J.E. Enhanced visual short-term memory for angry faces. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 363–374. [Google Scholar] [CrossRef]
- Kessel, D.; García-Rubio, M.J.; González, E.K.; Tapia, M.; López-Martín, S.; Román, F.J.; Capilla, A.; Martínez, K.; Colom, R.; Carretié, L. Working memory of emotional stimuli: Electrophysiological characterization. Biol. Psychol. 2016, 119, 190–199. [Google Scholar] [CrossRef]
- Lee, H.J.; Cho, Y.S. Memory facilitation for emotional faces: Visual working memory trade-offs resulting from attentional preference for emotional facial expressions. Mem. Cognit. 2019, 47, 1231–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, B.R.; Bohlin, G. Emotion processing facilitates working memory performance. Cogn. Emot. 2011, 25, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Sessa, P.; Luria, R.; Gotler, A.; Jolicœur, P.; Dell’acqua, R. Interhemispheric ERP asymmetries over inferior parietal cortex reveal differential visual working memory maintenance for fearful versus neutral facial identities. Psychophysiology 2011, 48, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, L.; Zhang, Y.; Su, H.; Zhang, Y.; Yang, Y. Updating Emotional Stimuli in Heroin Abstainers’ Working Memory: An Event-Related Potential Investigation. Subst. Use. Misuse. 2021, 56, 801–807. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Q.; Chen, A.; Li, H.; Wang, Q.; Zhuang, Z.; Jia, S. Are we sensitive to valence differences in emotionally negative stimuli? Electrophysiological evidence from an ERP study. Neuropsychologia 2007, 45, 2764–2771. [Google Scholar] [CrossRef]
- Berggren, N.; Curtis, H.M.; Derakshan, N. Interactions of emotion and anxiety on visual working memory performance. Psychon. Bull. Rev. 2017, 24, 1274–1281. [Google Scholar] [CrossRef] [Green Version]
- Stout, D.M.; Shackman, A.J.; Pedersen, W.S.; Miskovich, T.A.; Larson, C.L. Neural circuitry governing anxious individuals’ mis-allocation of working memory to threat. Sci. Rep. 2017, 7, 8742. [Google Scholar] [CrossRef] [Green Version]
- Yeung, R.C.; Fernandes, M.A. Altered working memory capacity for social threat words in high versus low social anxiety. Anxiety Stress Coping 2019, 32, 505–521. [Google Scholar] [CrossRef]
- Lewis-Peacock, J.A.; Kessler, Y.; Oberauer, K. The removal of information from working memory. Ann. N. Y. Acad. Sci. 2018, 1424, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Berggren, N.; Derakshan, N. Attentional control deficits in trait anxiety: Why you see them and why you don’t. Biol. Psychol. 2013, 92, 440–446. [Google Scholar] [CrossRef]
- Salahub, C.; Emrich, S.M. Fear not! Anxiety biases attentional enhancement of threat without impairing working memory filtering. Cogn. Affect. Behav. Neurosci. 2020, 20, 1248–1260. [Google Scholar] [CrossRef] [PubMed]
- Fales, C.L.; Becerril, K.E.; Luking, K.R.; Barch, D.M. Emotional-stimulus processing in trait anxiety is modulated by stimulus valence during neuroimaging of a working-memory task. Cogn. Emot. 2010, 24, 200–222. [Google Scholar] [CrossRef]
- Ansari, T.L.; Derakshan, N. The neural correlates of impaired inhibitory control in anxiety. Neuropsychologia 2011, 49, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Dolcos, S. Trait anxiety mediates the link between inferior frontal cortex volume and negative affective bias in healthy adults. Soc. Cogn. Affect. Neurosci. 2017, 12, 775–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamm, G.; Kreegipuu, K.; Harro, J. Updating facial emotional expressions in working memory: Differentiating trait anxiety and depressiveness. Acta Psychol. 2020, 209, 103117. [Google Scholar] [CrossRef] [PubMed]
- Ronold, E.H.; Joormann, J.; Hammar, Å. Facing recovery: Emotional bias in working memory, rumination, relapse, and recurrence of major depression; an experimental paradigm conducted five years after first episode of major depression. Appl. Neuropsychol. Adult 2020, 27, 299–310. [Google Scholar] [CrossRef]
- Wante, L.; Mueller, S.C.; Cromheeke, S.; Braet, C. The impact of happy and angry faces on working memory in depressed adolescents. J. Exp. Child. Psychol. 2018, 169, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Xie, H.; He, Z.; Wei, Z.; Gu, R. Impaired Working Memory Updating for Emotional Stimuli in Depressed Patients. Front. Behav. Neurosci. 2018, 12, 65. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, T.; Olatunji, B.O. Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clin. Psychol. Rev. 2012, 32, 704–723. [Google Scholar] [CrossRef] [Green Version]
- Nishiguchi, Y.; Tanno, Y. Decreased attentional allocation to centrally presented positive stimuli in individuals with depressive symptoms. Curr. Psychol. 2021. [Google Scholar] [CrossRef]
- Messerotti Benvenuti, S.; Mennella, R.; Buodo, G.; Palomba, D. Dysphoria is associated with reduced cardiac vagal withdrawal during the imagery of pleasant scripts: Evidence for the positive attenuation hypothesis. Biol. Psychol. 2015, 106, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Bylsma, L.M.; Morris, B.H.; Rottenberg, J. A meta-analysis of emotional reactivity in major depressive disorder. Clin. Psychol. Rev. 2008, 28, 676–691. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.L.; Holmes, E.A.; MacLeod, C.; Murphy, F.C. Spontaneous cognition in dysphoria: Reduced positive bias in imagining the future. Psychol. Res. 2019, 83, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Kring, A.M.; Caponigro, J.M. Emotion in Schizophrenia: Where Feeling Meets Thinking. Curr. Dir. Psychol. Sci. 2010, 19, 255–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barch, D.M.; Pagliaccio, D.; Luking, K. Mechanisms Underlying Motivational Deficits in Psychopathology: Similarities and Differences in Depression and Schizophrenia. Curr. Top. Behav. Neurosci. 2016, 27, 411–449. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Rahman, S.; Lau, B.; Sook Kim, H.; Deldin, P. The influence of self-relevant materials on working memory in dysphoric undergraduates. Psychiatry Res. 2015, 229, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Sass, S.M.; Heller, W.; Fisher, J.E.; Silton, R.L.; Stewart, J.L.; Crocker, L.D.; Edgar, J.C.; Mimnaugh, K.J.; Miller, G.A. Electrophysiological evidence of the time course of attentional bias in non-patients reporting symptoms of depression with and without co-occurring anxiety. Front. Psychol. 2014, 5, 301. [Google Scholar] [CrossRef] [Green Version]
- Paulus, M.P. Cognitive control in depression and anxiety: Out of control? Curr. Opin. Behav. Sci. 2015, 1, 113–120. [Google Scholar] [CrossRef]
- Fodor, L.A.; Georgescu, R.; Cuijpers, P.; Szamoskozi, Ş.; David, D.; Furukawa, T.A.; Cristea, I.A. Efficacy of cognitive bias modification interventions in anxiety and depressive disorders: A systematic review and network meta-analysis. Lancet Psychiatry 2020, 7, 506–514. [Google Scholar] [CrossRef]
- Williams, A.D.; O’Moore, K.; Blackwell, S.E.; Smith, J.; Holmes, E.A.; Andrews, G. Positive imagery cognitive bias modification (CBM) and internet-based cognitive behavioral therapy (iCBT): A randomized controlled trial. J. Affect. Disord. 2015, 178, 131–141. [Google Scholar] [CrossRef]
- Boland, J.; Riggs, K.J.; Anderson, R.J. A brighter future: The effect of positive episodic simulation on future predictions in non-depressed, moderately dysphoric & highly dysphoric individuals. Behav. Res. Ther. 2018, 100, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Eysenck, M.W.; Fajkowska, M. Anxiety and depression: Toward overlapping and distinctive features. Cogn. Emot. 2018, 32, 1391–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.J.; Li, F.F.; Zhang, Y.T.; Li, X. Interaction between working memory load and the ability to resist interference from negative distractors in dysphoria. Psych. J. 2022, 11, 285–295. [Google Scholar] [CrossRef] [PubMed]
Condition | Accuracy (%) M (SD) | RT (ms) M (SD) |
---|---|---|
Positive stimuli | 75.56 (9.10) | 1411 (244) |
Negative stimuli | 85.30 (8.99) | 1419 (235) |
Neutral stimuli | 80.26 (9.29) | 1387 (238) |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Β (SE) | z | p | Β (SE) | z | p | Β (SE) | z | p | |
Intercept | 1.39 (0.08) | 16.68 | <0.001 | 1.39 (0.08) | 16.61 | <0.001 | 1.39 (0.08) | 16.48 | <0.001 |
Age | −0.01 (0.04) | −0.32 | 0.752 | −0.02 (0.04) | −0.46 | 0.646 | −0.02 (0.04) | −0.55 | 0.585 |
Gender (female) | 0.13 (0.11) | 1.20 | 0.231 | 0.14 (0.11) | 1.29 | 0.199 | 0.14 (0.11) | 1.32 | 0.187 |
D1 (positive vs. neutral) | −0.23 (0.04) | −5.62 | <0.001 | −0.23 (0.04) | −5.59 | <0.001 | −0.23 (0.04) | −5.53 | <0.001 |
D2 (negative vs. neutral) | 0.4 (0.06) | 7.22 | <0.001 | 0.4 (0.06) | 7.21 | <0.001 | 0.4 (0.06) | 7.01 | <0.001 |
Anxiety | −0.01 (0.01) | −0.93 | 0.351 | −0.003 (0.01) | −0.41 | 0.679 | - | - | - |
Anxiety × D1 | −0.01 (0.01) | −1.04 | 0.300 | −0.01 (0.05) | −2.31 | 0.021 | - | - | - |
Anxiety × D2 | −0.02 (0.01) | −2.55 | 0.011 | −0.02 (0.01) | −2.82 | 0.005 | - | - | - |
Depression | 0.01 (0.01) | 0.91 | 0.363 | - | - | - | 0.003 (0.01) | 0.35 | 0.727 |
Depression × D1 | −0.01 (0.01) | −0.86 | 0.391 | - | - | - | −0.01 (0.01) | −2.20 | 0.028 |
Depression × D2 | 0.01 (0.01) | 0.76 | 0.447 | - | - | - | −0.01 (0.01) | −1.43 | 0.154 |
Model 1 | Model 2 | Model 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Β (SE) | z | p | Β (SE) | z | p | Β (SE) | z | p | |
Intercept | 1409.1 (38.55) | 36.55 | <0.001 | 1408.82 (38.28) | 36.81 | <0.001 | 1409.54 (38.38) | 36.73 | <0.001 |
Age | −11.78 (19.80) | −0.60 | 0.554 | −12.05 (19.42) | −0.62 | 0.537 | −9.77 (19.49) | −0.50 | 0.617 |
Gender (female) | −36.67 (50.67) | −0.72 | 0.471 | −36.34 (50.22) | −0.72 | 0.471 | −37.44 (50.48) | −0.74 | 0.460 |
D1 (positive vs. neutral) | 21.91 (8.94) | 2.45 | 0.015 | 22.07 (8.93) | 2.47 | 0.014 | 21.99 (8.94) | 2.46 | 0.014 |
D2 (negative vs. neutral) | 30.84 (10.99) | 2.81 | 0.006 | 30.88 (10.94) | 2.82 | 0.006 | 30.71 (10.99) | 2.79 | 0.006 |
Anxiety | 1.75 (4.28) | 0.41 | 0.684 | 1.09 (3.03) | 0.36 | 0.720 | - | - | - |
Anxiety × D1 | −0.11 (1.47) | −0.08 | 0.940 | 1.97 (1.06) | 1.86 | 0.064 | - | - | - |
Anxiety × D2 | 1.79 (1.81) | 0.99 | 0.327 | 2.35 (1.3) | 1.81 | 0.073 | - | - | - |
Depression | −1.05 (4.76) | −0.22 | 0.826 | - | - | - | 0.33 (3.36) | 0.10 | 0.923 |
Depression × D1 | 3.32 (1.63) | 2.04 | 0.042 | - | - | - | 3.24 (1.17) | 2.76 | 0.006 |
Depression × D2 | 0.89 (2.01) | 0.44 | 0.659 | - | - | - | 2.27 (1.44) | 1.57 | 0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Boemo, T.; Qiao, Z.; Tan, Y.; Li, X. Distinct Effects of Anxiety and Depression on Updating Emotional Information in Working Memory. Int. J. Environ. Res. Public Health 2023, 20, 544. https://doi.org/10.3390/ijerph20010544
Zhang Y, Boemo T, Qiao Z, Tan Y, Li X. Distinct Effects of Anxiety and Depression on Updating Emotional Information in Working Memory. International Journal of Environmental Research and Public Health. 2023; 20(1):544. https://doi.org/10.3390/ijerph20010544
Chicago/Turabian StyleZhang, Yuting, Teresa Boemo, Zhiling Qiao, Yafei Tan, and Xu Li. 2023. "Distinct Effects of Anxiety and Depression on Updating Emotional Information in Working Memory" International Journal of Environmental Research and Public Health 20, no. 1: 544. https://doi.org/10.3390/ijerph20010544
APA StyleZhang, Y., Boemo, T., Qiao, Z., Tan, Y., & Li, X. (2023). Distinct Effects of Anxiety and Depression on Updating Emotional Information in Working Memory. International Journal of Environmental Research and Public Health, 20(1), 544. https://doi.org/10.3390/ijerph20010544