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Abstract: Green innovation is imperative for the high-quality and sustainable development of the
modern logistics industry. It is also key for achieving the goals of peak emissions and carbon
neutrality. This study provides a way of thinking about the evaluation of the green innovation level
of the logistics industry. The variance inflation factor-variance coefficient method was employed to
construct an evaluation index system of the regional logistics green innovation level (RLGIL) from
three dimensions. Empirical data were collected from statistical yearbooks covering 30 provinces
in China from 2013 to 2017. Thereafter, the combination weighting-based GRA-TOPSIS method
was applied to evaluate the RLGIL, and the spatial distribution differences and spatiotemporal
evolution characteristics of inter-provincial green innovation levels were analyzed. The RLGILs in
the 30 provinces were found to be generally unbalanced, and the differences between the eastern and
western regions were significant. Guangdong, Jiangsu, and Zhejiang had stronger RLGILs, whereas
most other provinces did not reach the average level. The RLGIL of the 30 provinces had a high
positive spatial correlation and spatial aggregating effect. From a national perspective, the values for
the RLGIL were generally higher in the eastern and southern regions and lower in the western and
northern regions. Although significant differences were found in the RLGIL of these provinces, the
overall development trend was stable.

Keywords: logistics industry; green innovation level; index system; game theory; GRA-TOPSIS;
spatial distribution

1. Introduction

Environmental pollution has become a serious challenge for global economic de-
velopment. Under the framework of the Paris Climate Change Agreement, the Chinese
government has proposed that peak carbon dioxide emissions should be reached by 2030
and that carbon neutrality should be achieved by 2060. However, the extensive growth
of the logistics industry in China is accompanied by high energy expenditure, serious
waste of resources, and heavy environmental burden [1,2]. To achieve energy savings and
green economic development, the National 14th Five-Year Plan (2021–2025) emphasizes the
urgent need to establish a green, low-carbon, and circular economic system by promoting
modern logistics technology and green innovations.

Green innovation is to achieve coordinated development of economy, resources,
and environment while reducing environmental pollution and resource consumption [3].
At present, a large number of green innovative products and integrated application prac-
tices have emerged in the logistics industry, such as new energy distribution vehicles,
electronic sheets, shared express boxes, green warehousing, and network freight platforms,
which effectively reduce the consumption of resources and influence on the environment.
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Although some achievements have been made, there is still much room for the overall green
innovation level in China’s logistics industry, especially for a large number of small and
medium-sized logistics enterprises and regional differences [4]. Therefore, many scholars
have conducted a large number of studies on the influencing factors of green innovation,
green innovation efficiency, green innovation performance, green innovation ability, etc.
The scope of the studies includes regions, industries, enterprises, etc, [5,6]. However, most
of the research objects are manufacturing enterprises. Although the logistics industry
does not directly produce products, its impact on resources and the environment cannot
be ignored.

Many scholars have evaluated green innovation efficiency, performance, and ability
from different dimensions using single or combined evaluation methods. However, the con-
notative definitions of these terms, such as green innovation efficiency, green innovation
performance, and green innovation ability, are still ambiguous. In addition, the selection of
the evaluation index is highly subjective. A single evaluation method may lead to inconsis-
tent results with research objectives [4,7–12]. As a result, the conclusions have neither been
comparable nor stable. To better guide green innovation practices and decisions, this study
sought to discuss the use of the following terminology from the literature:

• Green Innovation Efficiency

Green innovation efficiency refers to the general term for the use of technological
innovation and related means to reduce resource consumption, improve the environment,
and protect the ecology to obtain the greatest possible economic, environmental, and ecolog-
ical benefits [13]. In contrast to traditional innovation efficiency, scholars have defined green
innovation efficiency as the integration of environmental outputs and economic benefits by
considering the inputs and outputs of innovation resources [14,15]. Regarding evaluation
methods to measure green innovation efficiency, the existing literature usually employs two
approaches. One approach is based on the enterprise’s microscopic data and uses principal
component analysis, factor analysis, and structural equation modeling. Fang et al. con-
structed a non-radial distance function-data envelopment analysis (DDF-DEA) three-stage
green innovation efficiency evaluation model to measure the green innovation efficiency of
China’s heavily polluting industries [16]. Long et al. evaluated the efficiency of green inno-
vation in 30 provinces of China by overcoming the shortcomings of the radial model and
slack-based metric (SBM) using the ε-based metric (EBM) global Malmquist–Luenberger
(ML) model [17]. The other approach is based on macroscopic statistical data and adopts a
single factor, integrated factors, and total factor productivity [7,9,10,18,19].

• Green Innovation Performance

Green innovation performance refers to the performance evaluation of the process of
adding value to the economic and social value of enterprises by developing or adopting
new technologies for green innovation activities [20]. According to Huang [21], green
innovation performance reflects changes in green processes and products/services in
business operations. Cheng [22] proposed that green innovation performance is an outcome
of the sustainability orientation possessed by diversifying green entrants. Focusing on
the perspectives of static efficiency and dynamic productivity, Yang et al. empirically
analyzed the impact of manufacturing intelligence on green innovation performance using
the dynamic spatial lag model (DSAR), mediation effect model, and moderation effect
model [23]. The relationship between green innovation and firm performance, which
includes economic performance, environmental performance, and competitive advantage,
was explored in existing literature [24–28]. These studies mainly focused on the static
perspective to measure green innovation performance and its influencing factors.

• Green Innovation Ability

Green innovation ability refers to the ability of an enterprise to introduce green tech-
nology into the whole process of technological innovation when promoting the coordinated
development of the economy and environment, and to achieve a certain standard for green
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technological innovation in a certain period of time in the future [29]. From a resource-based
view, some scholars believe that green innovation ability is the technical innovation ability
of enterprises or industries to implement energy conservation and emission reduction or
produce green products [30,31]. Xu and Zhai [6] selected 14 indices from the dimensions
of innovation environment, input, and output to construct an evaluation index system.
The cloud model, entropy method, and DEMATEL method are used to determine the
index weight to evaluate the green innovation ability of manufacturing enterprises in the
innovation network. Most relevant studies established an evaluation system to measure the
potential or capacity of green innovation from the perspective of input and output [32]. Yu
et al.’s study of dynamic capabilities and stakeholder theory examines the moderating role
of environmental dynamics and big data analytics capabilities in the link between green
dynamic capabilities and green innovation [33].

Although a unified standard does not exist for the measurement of the green inno-
vation level and the terminologies remain ambiguous, these existing results provide rich
and high-quality insights into the evaluation and spatial-temporal evolution characteristics
analysis of the green innovation level in the regional logistics industry.

This study aimed to take a further step by addressing the following research gaps: (1)
The research objects of green innovation evaluation are mainly manufacturing enterprises,
urban business districts, high-tech enterprises, etc., and studies on the green innovation
level of regional logistics have not garnered sufficient attention. (2) In the selection of
an evaluation index, some empirical studies have adopted a single index or redundant
index, and the strong subjectivity of index selection depends on experience and the neglect
of the influence of external environmental factors. (3) Existing index weighting methods
cannot deal with data attribute distortion and unreasonable index weights. Meanwhile,
current TOPSIS evaluation methods tend to ignore the correlation between indices. Further,
the evaluation object is often close to the positive/negative ideal solutions. (4) The green
innovation level is dynamically changing, and existing studies cannot reflect the spatial-
temporal dynamic and evolutionary characteristics of the RLGIL.

To fill the research gaps, this study sought to add the environmental level dimension
to the two traditional dimensions of input and output. In addition, an RLGIL evaluation
index system was established from the perspective of the basic elements supporting green
innovation. Thereafter, a methodological framework was built based on index screening,
comprehensive evaluation, and spatial-temporal evolution. First, the variance inflation
factor (VIF)-variation coefficient method was used to refine the index system to avoid
the blindness of index selection. Second, the combination weighting method based on
game theory was used to weigh the evaluation index, and the GRA-TOPSIS method was
applied to measure the green innovation level of logistics in 30 provinces of China. Third,
using the Jenks natural breaks classification method with the global and local Moran’s I
indices, the spatial distribution differences and spatial-temporal evolution characteristics of
inter-provincial green innovation levels were analyzed, and countermeasures to promote
the logistics industry’s green innovation level were finally proposed.

2. Construction of the Evaluation Index System of Green Innovation Level

To solve the problems of information redundancy, subjectivity, and neglect of external
environmental factors in existing research, this study proposed an index screening model
based on the VIF variation coefficient method by referring to the determination method
of the evaluation system in the literature [34–36]. The VIF in the model can test the
multicollinearity problem in the index, and the variation coefficient method can select an
index with large information content.

2.1. Primary Selection of the Evaluation Index

Based on the relevant achievements of green innovation and logistics innovation [25,
31,35], an evaluation index system comprising the green innovation input level (GIIL),
green innovation output level (GIOL), and green innovation environment level (GIEL) was
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constructed. Green innovation in the logistics industry is inseparable from human and
financial investment. The two inputs can promote the continuous improvement of the
logistics green innovation system in various regions. Similarly, the continuous improve-
ment of the logistics green innovation system will also drive employment and economic
development in various regions. Therefore, the GIIL includes two first-level indices of
human resource input and financial fund input. Secondly, there is a close relationship
between green innovation in the logistics industry and the desired output and non-expected
output, which is a key factor to test the level of innovation ability. The expected output of
the logistics industry is the continuous driving force for maintaining green innovation and
competition in the logistics industry, and the emission reduction of undesired output can
also improve the level of green innovation in the logistics industry. Therefore, The GIOL
includes two first-level indices: expected output and non-expected output. The external
environment of the region is the basic guarantee for the green innovation of the logistics
industry. The development of the social economy provides the driving force for the devel-
opment of green innovation in regional logistics. Good logistics infrastructure conditions
and informatization conditions can smoothly carry out the logistics green innovation activ-
ities. Therefore, the GIEL includes three first-level indices: social development, logistics
infrastructure, and informational development. A preliminary evaluation index system
was selected based on the above indices, as shown in Table 1.

Table 1. Regional logistics green innovation level evaluation index primary system.

Criterion Layer First-Level Index Second-Level Index

Green innovation input level (GIIL)

Human resources input

R&D personnel full-time equivalent
Logistics industry employees
Number of college students
Number of R&D personnel in colleges and universities
Number of R&D personnel in enterprises above scale
Full-time equivalent of R&D personnel in enterprises above scale
Number of scientific and technological personnel
Number of scientific and technological personnel in scientific research in-
stitutions

Financial funds input

R&D expenditure
S&T activities funding
R&D expenditure of colleges and universities
Local financial science and technology expenditure
R&D expenditure of scientific research institutions
Total expenditure on transport
Expenditure on developing new products for industrial enterprises above
scale
Proportion of fiscal expenditure on science and technology to GDP

Green innovation output level (GIOL)

Expected output

Value added of logistics industry
Total postal services
Total telecommunication services
Freight volume
Freight turnover
Passenger volume
Railway passenger volume
Highway passenger volume
Express volume
Number of green patents granted
Technology market turnover

Non-expected output

Carbon dioxide emissions
Industrial wastewater emissions
Sulfur dioxide emissions
Nitrogen oxide emissions
Flue dust emissions
Petroleum emissions
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Table 1. Cont.

Criterion Layer First-Level Index Second-Level Index

Green innovation environment level (GIEL)

Social development level

Regional GDP
GDP per capita
Number of permanent populations
Resident consumption level
Urban road area per capita
Park green area per capita
Retail sales of social consumer goods
Per capita disposable income
Urban green area, forest coverage
Greening coverage of built-up areas

Logistics infrastructure level

Highway mileage
Railroad mileage
High-speed grade highway mileage
Inland waterway mileage
Fixed asset investment in logistics industry
Port cargo throughput
Highway operating vehicle ownership

Informational development level

E-commerce sales
E-commerce purchase amount
Internet penetration rate
Mobile subscription
Number of internet users
Internet broadband access users
Number of computers per 100 people
Length of long-distance optical cable lines
Information technology services income

2.2. Index Screening Based on the VIF-Variance Coefficient Method
2.2.1. Index Screening Based on the Multicollinearity Test

First, in each index layer, regression was performed on index variable i and explanatory
variables besides i. The coefficient of determination R2

i of the index variable i was used to
reflect the correlation between the index variable i and other indices. A smaller R2

i value
indicates that the information reflected by index i is different from that of other indices
and should be retained; similarly, a larger R2

i value indicates that the information reflected
by index i can be replaced by that of other indices, and index i should be deleted. Finally,
the VIF of the index variable i (VIFi) was calculated to determine whether multicollinearity
exists between index i and other indices and eliminate redundant information between
indices. If VIFi > 10, a multicollinearity exists between index i and other indices, and the
index variable i should be deleted [37]. The formula for the coefficient of determination
and variance inflation factor of index i is expressed as follows:

R2
i =

∑n
j=1
(

x̂ij − x̄i
)2

∑n
j=1
(

xij − x̄i
)2 (1)

VIFi =
1

1− R2
i

(2)

where R2
i is the coefficient of determination of index i, x̄i is the mean value of index i, xij is

the original value of the i index in the j region, x̂ij is the regression fit value of index i in
region j, and VTFi is the variance inflation factor of index i.

2.2.2. Index Screening Based on the Variation Coefficient Method

The coefficient of variation vi of indicator i was calculated to reveal the amount of
information that can be represented by the indicator. A larger value of vi indicates that
indicator i contains more information and is more representative. Conversely, indicator i
contains less information.

The mean value of the coefficient of variation of all indices in the index layer was used
as the judgment criterion, and indices less than or equal to the mean value were deleted
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to filter out more representative indices. The formula for the coefficient of variation vi is
expressed as follows:

vi =

√
1
n ∑n

j=1
(
xij − x̄i

)2

x̄i
(3)

where n is the number of provinces evaluated, x̄i is the mean value of the data of the i-th
index of each province, and xij is the value of the ith indicator of the j-th province.

2.2.3. Rationality Judgment of Evaluation Index System after Screening

The information contribution rate of the selected index system was calculated. The judg-
ment criterion for evaluating the reasonableness of the index system was to reflect more
than 85% of the original information with less than 35% of the original indices [34], ulti-
mately screening out the final evaluation index system:

In = tr(Ss)/ tr(Sh) (4)

where S represents the covariance matrix of the index matrix, tr(Ss) represents the trace
of the covariance matrix, s represents the number of filtered indices, and h represents the
number of the original indices.

2.3. Establishment of the Evaluation Index System

The data of the index sets from 30 provinces in China were selected for index screening
based on the VIF-variance coefficient method. As the indices of the “non-expected output”
are few and not easy to measure for the logistics industry, carbon dioxide emissions that can
be measured in the logistics industry were selected as the representative for the calculation,
and 21 secondary indices were retained. The trace of the covariance of the screened GIOL
and trace of the initial index covariance were calculated, and the information contribution
rate was 91.51%. Similarly, the information contribution rates of the screened GIOL and
GIEL indices were 85.69% and 86.34%, respectively, which satisfied the judgment criteria for
evaluating the reasonableness of the index system. Table 2 presents the filtered evaluation
index system.

Table 2. Evaluation index system of regional logistics green innovation level.

Target Layer Criterion Layer First-Level Index Second-Level Index Unit

Regional logistics
green innovation level

(RLGIL)

Green
innovation
input level

(GIIL)

Human resources input
R&D personnel full-time equivalent (A1) Person year
Number of college students (A2) Million people
Logistics industry employees (A3) Million people

Financial funds input
R&D expenditure (A4) Million CNY
Local financial science and technology expenditure (A5) Billion CNY
Total expenditure on transport (A6) Billion CNY

Green
innovation

output level
(GIOL)

Expected output

Value added of logistics industry (A7) Billion CNY
Total postal business (A8) Billion CNY
Freight volume (A9) Million tons
Number of green patents granted (A10) Item

Non-expected output Carbon dioxide emissions (A11) 104 tn

Green
innovation

environment level
(GIEL)

Social development level

Regional GDP (A12) Billion CNY
Number of permanent population (A13) Million people
Resident consumption level (A14) Yuan
Urban road area per capita (A15) Square meter

Logistics infrastructure level

Highway mileage (A16) Kilometer
Railroad mileage (A17) Kilometer
Inland waterway mileage (A18) Kilometer
Fixed asset investment in logistics industry (A19) Billion CNY

Informational development level E-commerce sales (A20) Billion CNY
Internet penetration rate (A21) Percentage

3. Research Methods

This study combines the AHP method, entropy method, game theory, grey relational
degree method, and TOPSIS method to form the GRA-TOPSIS method [38,39] to rank
the RLGILs. Aiming at the problems of data attribute distortion and unreasonable index
weight in the existing index weighting methods, this paper uses game theory to carry
out combination weighting. For the limitations of the TOPSIS method, such as ignoring
the correlation between indicators and the occurrence of evaluation objects close to both
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positive and negative ideal points, a combined evaluation model based on GRA-TOPSIS is
used [40]. The model not only considers the actual Euclidean distance of the evaluation
object in the multidimensional space, but also fully considers the correlation degree among
the indicators. Firstly, the subjective weight is calculated by the AHP method, and the
objective weight is calculated by the entropy method. Finally, we use game theory to obtain
optimal weights based on subjective weights and objective weights and use the optimal
weights for the GRA-TOPSIS method. The flow chart is shown in Figure 1.

Figure 1. GRA-TOPSIS method flow chart.

3.1. Combination Weighting Method Based on the Game Theory
3.1.1. AHP Method

The most widely used method of subjective weight analysis is the analytic hierarchy
process (AHP). This method compares and scores the importance of each factor through
the willingness of decision makers. The higher the importance, the higher the comparison
score. By comparing each factor in pairs, scoring to determine the judgment matrix,
and by calculating the consistency factor CR of the matrix, we judge whether it passes the
consistency test [29]. The weight results that pass the consistency test can be considered
reasonable, otherwise, the judgment matrix needs to be readjusted until it passes the test.

3.1.2. Entropy Method

The entropy weight method is a method of objective assignment, which can reflect the
degree of variability in standard datasets. The greater the degree of variability, the higher
the weight of this criterion, and vice versa [41].

To determine the index weight by the entropy weight method, it is necessary to
normalize the original data of the index first.

(1) The normalization matrix X and the normalization formula are as follows:

X =
{

xij
}

m×n =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

(i = 1, 2, . . . , m, j = 1, 2, . . . , n), (5)

xij =
bij

∑m
i=1 bij

(i = 1, 2 . . . m, j = 1, 2, . . . , n) (6)
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where bij is the original value and xij is the normalized value.
(2) Calculate the entropy value of the jth index:

ej = −
1

ln n

m

∑
i=1

(
xij ln xij

)
(j = 1, 2, . . . , n) (7)

(3) Calculate the degree of divergence zj:

zj = 1− ej (8)

(4) Determine the weight Wj of each evaluation index:

Wj =
zj

∑n
j=1 zj

(j = 1, 2, . . . , n) (9)

3.1.3. The Game Theory

The principle of the combination weighting method under game theory [42,43] is to
treat the subjective weights of indicators determined by the hierarchical analysis method as
one side of the game, and the objective weights of indicators determined by the entropy
weighting [41] method as the other side of the game, then the optimal combination weight
is the combination weight in the equilibrium state reached by both sides of the game [44].
From the point of view of mathematical principles, both sides of the game should satisfy
the objective weight and subjective weight in the equilibrium state to achieve the minimum
sum of deviations between them and the combined weight, which is achieved as follows:

(1) A basic set of weight vectors W = {w1, w2, . . . , wn} consists of n weight vectors.
A possible set of weights consists of any linear combination of n vectors, expressed as:

W =
n

∑
k=1

λkwT
k (λk > 0) (10)

where w represents a possible weight vector in set W, and λ = (λ1, λ2, . . . , λn) is the
weight coefficient.

(2) The objective function was established to seek the optimal linear combination
coefficients λk to minimize the sum of the deviations between the combination weights w
and wk, at which time the combination weights are the optimal combination weights W∗.
The objective function is as follows:

min

∥∥∥∥∥ n

∑
k=1

λkwT
k − wT

i

∥∥∥∥∥
2

(i = 1, 2, . . . , n) (11)

(3) The optimal first-order derivative condition of Equation (11) is shown in Equa-
tion (12), based on the differentiation property of the matrix [39,42–45]:

n

∑
k=1

λkwiwT
k = wiwT

i (i = 1, 2, . . . , n) (12)

Equation (12) can be converted into a system of linear equations as shown in Equa-
tion (13). 

w1wT
1 w1wT

2 . . . w1wT
n

w2wT
1 w2wT

2 . . . w2wT
n

...
...

. . .
...

wnwT
1 wnwT

2 . . . wnwT
n




λ1
λ2
...

λn

 =


w1wT

1
w2wT

2
...

wnwT
n

 (13)
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The weight coefficients λ are calculated according to Equation (13), and normalized
by Equation (14) as:

λ∗k =
λk

∑n
k=1 λk

(14)

Finally, the optimal combination weight W∗ of the evaluation index is calculated as
follows:

W∗ =
n

∑
k=1

λ∗k · w
T
k (15)

3.2. Evaluation Model of RLGIL Based on GRA-TOPSIS

A GRA-TOPSIS-based evaluation model was constructed by considering a combina-
tion of the two evaluation methods, taking into account the distance and correlation of the
alternatives [39,40,46]. The specific implementation steps are as follows:

(1) Calculate the normalized weighted decision matrix A =
(

Aij
)

m×n, where the
weights required to construct the normalized matrix are the combination weights W∗

determined above:
A =

(
Aij
)

m×n = W∗Xm×n (16)

(2) Calculate the positive ideal solution A+ and negative ideal solution A− of the
determinant matrix:

A+ =
(

A+
1 , A+

2 , · · · , A+
n
)
, where A+

j = max
j

(
Aij
)
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (17)

A− =
(

A−1 , A−2 , · · · , A−n
)
, where A−j = max

j

(
Aij
)
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (18)

(3) Compute the Euclidean distances d+ and d− for the positive and negative ideal
solutions:

d+i =

√√√√ n

∑
j=1

(
A+

j − Aij

)2
(i = 1, 2, . . . , m) (19)

d−i =

√√√√ n

∑
j=1

(
A−j − Aij

)2
(i = 1, 2, . . . , m) (20)

(4) Calculate the gray correlation coefficient matrix R+ and R−:

R+ =
(

r+ij
)

m×n
, r+ij =

min
i

min
j

∣∣∣A+
j − Aij

∣∣∣+ ρ max
i

max
j

∣∣∣A+
j − Aij

∣∣∣∣∣∣A+
j − Aij

∣∣∣+ ρ max
i

max
j

∣∣∣A+
j − Aij

∣∣∣ (21)

R− =
(

r−ij
)

m×n
, r−ij =

min
i

min
j

∣∣∣A−j − Aij

∣∣∣+ ρ max
i

max
j

∣∣∣A−j − Aij

∣∣∣∣∣∣A−j − Aij

∣∣∣+ ρ max
i

max
j

∣∣∣A−j − Aij

∣∣∣ (22)

where ρ is the resolution coefficient, 0< ρ < 1. Generally, ρ = 0.5 is employed.
(5) Calculate the gray correlation r+i and r−i between the evaluation object and the

positive and negative ideal solutions:

r+i =
1
n

n

∑
j=1

r+ij (i = 1, 2, . . . , m) (23)

r−i =
1
n

n

∑
j=1

r−ij (i = 1, 2, . . . , m) (24)



Int. J. Environ. Res. Public Health 2023, 20, 735 10 of 20

(6) Calculate the proximity between the evaluation object and the ideal solution and
dimensionlessly process the Euclidean distance and correlation:

Ti =
ti

max(ti)
(i = 1, 2, . . . , m) (25)

when ti = d+i , d−i , r+i , r−i , Ti = D+
i , D−i , R+

i , R−i .
(7) Merge the Euclidean distance and correlation. When the values of D+

i and R−i
are larger, the evaluation object is farther away from the negative ideal solution and has a
greater correlation with the positive ideal solution. Further, the evaluation object is closer
to the ideal solution. When the values of D−i and R+

i are larger, the evaluation object is
farther away from the positive ideal solution and has a greater correlation with the negative
ideal solution. Moreover, the evaluation object deviates from the positive ideal solution:

S+
i = αD+

i + βR−i (i = 1, 2, . . . , m) (26)

S−i = αD−i + βR+
i (i = 1, 2, . . . , m) (27)

where α + β = 1. Generally, α = β = 0.5 is employed. S+
i and S−i represent the proximity

of the ith alternative to the positive and negative ideal solutions, respectively.
(8) Calculate the relative closeness ξ of the evaluation object, which can comprehen-

sively reflect the proximity of the evaluation object to the ideal solution, as follows:

ξ =
S−i

S−i + S+i
(i = 1, 2, . . . , m) (28)

(9) Calculate the ranking of the evaluation objects.
According to the calculation result of Equation (28), the magnitude of the relative close-

ness ξ is used as the comprehensive evaluation value of the scheme evaluation. The larger
the relative closeness ξ, the better the evaluation scheme.

4. Empirical Analysis
4.1. Data Source and Processing
4.1.1. Data Source

In this study, the data from 30 provinces in China were selected for evaluation (Tibet,
Taiwan, and other regions were not included, because data from these regions were not
available). Data were obtained from the China Statistical Yearbook, China Logistics Year-
book, China Energy Statistical Yearbook, and statistical yearbooks of the selected provinces.
Missing data were filled by linear interpolation, and data from the transportation, storage,
and postal industries were selected to represent the logistics industry, as it occupies more
than 85% of the output value.

4.1.2. Measurement of the Carbon Emission Indicator in the Logistics Industry

Green logistics innovation under the background of “emission peak and carbon neu-
trality” should consider the carbon dioxide emissions of each province. Therefore, carbon
emissions were introduced as a “non-expected output” index to measure the green and
low-carbon development status of each province. Based on the statistical data of the trans-
portation, storage, and postal industry from 2014–2018 China Energy Statistical Yearbook,
the carbon emissions of the provincial logistics industry were measured by combining
the carbon emission coefficient with eight types of energy consumption: raw coal, coking
coal, gasoline, kerosene, diesel fuel, fuel oil, liquefied petroleum gas, and natural gas.
The formula is expressed as follows:

C =
8

∑
i=1

EiKi (29)
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where C is the total carbon emissions, Ei is the consumption of energy source i, and Ki is the
carbon emission coefficient of energy source i. The formula for Ki is expressed as follows:

Ki = SCi × CFi × SFi ×
44
12

(30)

where SCi is the average low-heating value of the energy source i, CFi is the carbon content
per unit calorific value of the energy source i, SFi is the carbon oxidation rate of the energy
source i, and 44/12 is the molecular weight of CO2. In this study, SCi was retrieved from
Appendix 4 of the China Energy Statistical Yearbook, and CFi and SFi were retrieved from
the Provincial Greenhouse Gas Inventory Preparation Guidelines [47,48]. The relevant data
on the carbon emission coefficients are listed in Table 3.

Table 3. Carbon emission coefficient of the eight energy sources.

Energy Sources SCi (kJ/kg or m3) SFi(T/T J) SFi (%) Ki(kgCO2/kg or m3)

Raw coal 20,908 26.37 0.94 1.9002
Coking coal 28,435 29.5 0.93 2.8604

Gasoline 43,070 18.9 0.98 2.9251
Kerosene 43,070 19.6 0.98 3.0334

Diesel fuel 42,652 20.2 0.98 3.0959
Fuel oil 41,816 21.1 0.98 3.1705

Liquefied petroleum gas 50,179 17.2 0.98 3.1013
Natural gas 38,179 15.3 0.99 0.2162

4.2. Application of the Evaluation Methods Suggested
4.2.1. Application of the Combination Weighting Method Based on the Game Theory

The index data for 2017 were selected as an example to measure the subjective, ob-
jective, and combination weights. The calculated weighting coefficients for the subjective
and objective weights were 0.242 and 0.758, respectively, and were used to calculate the
combination weights. Thereafter, the main influencing factors on the RLGIL of the 30
provinces were comprehensively reflected by the combination weights.

As shown in Figure 2, each index has a different impact on RLGIL. From the perspec-
tive of each criterion layer, the GIEL was identified as the most important factor affecting
the RLGIL, followed by the GIIL and GIOL.

Figure 2. The subjective and objective index weights.

The GIEL was identified as the most important driving force in the logistics industry.
Among its first-level indices, the logistics infrastructure level, and social development level



Int. J. Environ. Res. Public Health 2023, 20, 735 12 of 20

were the most important, with weights of 0.1385 and 0.1745, respectively. A complete
logistics infrastructure can help the logistics industry carry out green innovation activities
to improve efficiency and reduce costs. Among the second-level indices, e-commerce
sales had a remarkable impact on GIEL, with a weight of 0.0734. The logistics industry
cannot be separated from the support of information technology to ensure service quality.
The development of e-commerce provides a more convenient carrier for the innovative
development of the logistics industry.

The GIIL had the second-highest impact on the RLGIL. Among its first-level indices,
the weight of financial investment reached 0.1870, which indicates that financial investment
is a necessary factor for the smooth development of logistics innovation activities. Human
resources also play a key role in logistics innovation activities, which subsequently play an
important role in the innovation process.

The GIOL had the lowest impact on the RLGIL. Among its first-level indices, the weight
of the expected output reached 0.2447, which shows that the logistics industry attaches
great importance to green innovation output. In the green innovation output, the impact
of total postal business and the number of green patents granted was relatively large,
with weights of 0.0863 and 0.0782, respectively. Technical patents provide an important
basis for the development of innovation in the logistics industry, which also promotes the
flow of innovation elements.

Among all second-level indices, the seven indices of R&D personnel full-time equiv-
alent, R&D expenditure, local financial science and technology expenditure, number of
green patents granted, total postal business, inland waterway mileage, and e-commerce
sales accounted for 51.29% of the total. Thus, these seven indices are the most important
basis for the RLGIL, which also triggers significant differences across regions.

4.2.2. Application of the Evaluation Method Based on GRA-TOPSIS

In this study, a comprehensive evaluation was performed by constructing the GRA-
TOPSIS model. First, a combination weighting method based on game theory was used to
calculate the weight of the index system. Thereafter, the RLGIL of the 30 provinces was
measured, where a higher value indicates a stronger green innovation level. Figure 2 shows
the comprehensive evaluation results of RLGIL for the 30 provinces from 2013 to 2017.

As shown in Figure 3, the top four provinces in the 2017 ranking were Guangdong,
Jiangsu, Zhejiang, and Shandong, whereas the four bottom provinces were Gansu, Hainan,
Ningxia, and Qinghai. Thus, Figure 3 shows a clear gap between the RLGIL of the eastern
and western regions. The Yangtze River Delta region, Beijing, and Guangzhou are relatively
advanced in terms of their economic development. In fact, these regions invest sufficient
funds in innovation and pay more attention to the green innovation environment. The rapid
development of the logistics industry is also more attractive to talent, together with the
inclination for financial investment, causing the RLGIL of these regions to be higher than
that of the other regions. The average value for the 2017 RLGIL of the 30 provinces was
0.3728, and only 12 exceeded this value. Such a finding indicates that the RLGIL of many
provinces still has room for improvement.
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Figure 3. Comparison of the RLGIL comprehensive evaluation results.

In terms of the time dimension, the ranking for the RLGIL from 2013 to 2017 did not
change significantly, as most of the rankings fluctuated within a small range. The five
provinces of Guangdong, Jiangsu, Zhejiang, Shandong, and Shanghai continuously occu-
pied the top five positions, whereas the other provinces had a large gap. The RLGIL of
Jiangsu has had a clear growth trend during the five years, gradually narrowing the gap
with Guangdong. Returning to the original indices, the Jiangsu government was recognized
to have increased investment in R&D, launched measures to accelerate the development
of the modern logistics industry, strengthened technical support and R&D in science and
technology, and promoted the development of green and low-carbon technologies. The RL-
GIL in Guangdong has a small decline, mainly because of high social logistics cost, low
logistics operational efficiency, uneven regional development, and constrains of resources
and environment.

Then, the three-criteria layer indices of the 30 provinces, GIIL, GIOL, and GIEL, were
evaluated based on the 2017 index data. Figure 4 shows the criterion layer evaluation
results for the 30 provinces in 2017.

As shown in Figure 4, large differences were found in the evaluation results of the
GIIL, GIOL and GIEL. Guangdong ranked first for the comparison of the GIIL, GIOL, and
GIEL, which highlights its unique advantage in all dimensions and a strong RLGIL. Jiangsu
ranked higher than Zhejiang in innovation input but lagged behind in innovation output,
indicating that Zhejiang has a higher output with lower input, which should be adopted
by all provinces. Shanghai was equal to Beijing in the GIEL but had advantages in the
GIIL and GIOL. As a result, Shanghai was generally ahead of Beijing. Jilin was slightly
ahead of Heilongjiang in terms of innovation input and output, whereas Heilongjiang
had a higher weight in GIEL. Therefore, Heilongjiang has an overall advantage over Jilin,
as confirmed by the comprehensive evaluation results. Ningxia, Qinghai, and Hainan
ranked the lowest for the three criterion layers. These provinces could take the following
measures to improve RLGIL in multiple dimensions: increasing financial investment in
green innovation R&D, enhancing the transformation rate of innovation achievements,
and strengthening the construction of logistics infrastructure.
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Figure 4. Comparison of the GIIL, GIOL, and GIEL.

4.3. Spatial Effect Analysis on the RLGIL
4.3.1. Spatial Distribution Characteristics of the RLGIL

In terms of spatial-temporal evolution analysis, two years, 2013 and 2017, were selected
for the comparative analysis. Using the ArcGIS10.8 software, the Jenks natural breaks
classification method was used to classify the evaluation value for the RLGILs of the
30 provinces. Thereafter, the RLGIL for each year was divided into five categories to
minimize the differences within each category and maximize the differences between
categories. Figures 5 and 6 show the spatial distribution maps.

Figure 5. Spatial distribution for the RLGILs of the 30 provinces in 2013.
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Figure 6. Spatial distribution for the RLGIL of the 30 provinces in 2017.

As shown in Figures 5 and 6, only four of the thirty provinces were listed in the first
and second categories in 2013, increasing to six by 2017. There were ten provinces in the
third category in 2013 and 2017. Nine of the thirty provinces were listed in the fourth
category in 2013, which decreased to six by 2017. Seven of the thirty provinces were listed
in the fifth category in 2013, which increased to eight by 2017.

The spatial distribution for the RLGIL of the 30 provinces exhibited the characteristics
of “high in the east and south, low in the west and north.” The RLGIL of the eastern region
was significantly higher than that of the midwest region, and the gap between the midwest
provinces was smaller. The spatial distribution decreased from east to west; however,
the overall development trend was smooth [49]. Moreover, the eastern region had a strong
economic foundation, advanced technology, and a good innovation culture; therefore, this
region had a better environment for green innovation.

The eastern provinces in the Yangtze River Delta and Pearl River Delta regions main-
tained high RLGILs. Guangdong and Jiangsu were among the provinces with extremely
high RLGILs. Moreover, Zhejiang successfully ranked first, owing to five years of com-
prehensive development, gradually narrowing the gap between Guangdong and Jiangsu.
Recalling the indices, the three provinces continued to increase their investment in R&D
and e-commerce, promoting RLGIL. As a pioneer in reform, Guangdong had inherent
advantages in talent attraction, policy, and financial fund inclination, which can provide
strong support for enterprises to implement green innovation. As the second largest
economic province in China, Jiangsu has always been at the forefront of green logistics
innovation. Zhejiang, Shandong, and Shanghai also maintained high RLGIL, relying on the
strong impetus of the Yangtze River Delta.

The midwest and northeast provinces had a lower level or even decreasing RLGIL,
which might be mainly due to the following reasons: special geographical location, slow
development of the logistics industry, low investment in infrastructure, lower technological
human resources, advanced production technology relative to that in the east, and insuffi-
cient vitality of logistics green innovation.

4.3.2. Global and Local Correlation Tests on the RLGIL

Using Geoda software, the spatial association characteristics for the RLGILs of the
30 Chinese provinces were analyzed by calculating the spatial weight matrix with rook
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adjacency and measuring the global Moran’s I index [50]. The statistical test results of
Moran’s I Index for the RLGIL of the 30 provinces from 2013 to 2017 were obtained using
999 random permutations, as shown in Table 4.

Table 4. Moran’s I index for the RLGILs of the 30 provinces.

Year Moran E(I) Sd(I) Z-Value p-Value

2013 0.1120 −0.0345 0.1133 1.3540 0.0840
2014 0.1250 −0.0345 0.1094 1.5358 0.0750
2015 0.1340 −0.0345 0.1087 1.6207 0.0680
2016 0.1040 −0.0345 0.1087 1.3111 0.0950
2017 0.1030 −0.0345 0.1051 1.3736 0.0900

As shown in Table 4, Moran’s I index for the RLGIL was significantly greater than 0,
with all P values greater than 0.0824. This result indicates a significance at the 0.1 confidence
level and a high positive spatial correlation in the study area, ultimately demonstrating
that provinces with similar RLGILs show a certain agglomeration situation.

A local Moran’s I index scatter analysis was conducted to further examine the spatial
dependence of the RLGIL. Moran’s I index scatter charts of RLGIL in 2013 and 2017 are
shown in Figure 7. The horizontal axis represents logistics green innovation, and the
vertical axis represents the spatial lag of logistics green innovation.

Figure 7. Moran’s I index scatter charts of the RLGIL in 2013 and 2017.

As depicted in Figures 7, the provinces in the first quadrant (H−H) in 2013 were
Jiangsu, Zhejiang, Shanghai, Shandong, Anhui, Hunan, Hebei, and Henan (i.e., a total of
eight provinces), accounting for 26.6% of the examined provinces. There were 12 provinces
in the third quadrant (L−L), accounting for 40% of the total. The provinces in the second
quadrant (L−H) were Hainan, Fujian, Jiangxi, Guangxi, and Tianjin (i.e., a total of five
provinces), accounting for 16.6%. The provinces in the fourth quadrant (H−L) were
Guangdong, Beijing, Hubei, Liaoning, and Sichuan (i.e., a total of five provinces).

In 2017, the number of provinces located in the first and third quadrants showed little
change, 8 and 13, respectively, accounting for 70% of all provinces examined. In particular,
Fujian jumped from the second quadrant (L−H) to the first quadrant (H−H), Liaoning
moved from the fourth quadrant (H−L) to the third quadrant (L−L), and the remaining
provinces located in the second and fourth quadrants remained unchanged.

In summary, the spatial pattern for the RLGIL of the 30 provinces was relatively stable,
and the positions of most provinces remained unchanged. The provinces in the high-value
agglomeration area (H−H) were few and were mainly concentrated in the eastern coastal
region. The provinces in the low-value agglomeration area (L−L) were most concentrated
in the midwest and northeast regions. The unbalanced distribution for RLGIL in the 30
provinces was serious, thereby aligning with the results from the previous section. Such
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results also show that a spatial agglomeration effect of logistics green innovation exists in
the 30 provinces; however, the difference in the RLGIL between provinces still exists in the
five years, and narrowing the gap is difficult to achieve in a short time.

5. Conclusions

The development level of regional logistics green innovation is an important standard
for measuring the competitive strength of the regional logistics industry and an important
factor in promoting regional economic green development. In this study, a comprehensive
evaluation index system was constructed for the RLGIL using the VIF variance coefficient
method to evaluate 30 provinces in China from 2013 to 2017. In addition, a combination
weighting method based on the game theory was adopted to assign weights to the indices.
Thereafter, the GRA-TOPSIS method was employed to perform a comprehensive evaluation,
and a spatial effect analysis was conducted based on the Jenks natural breaks classification
method and Moran’s I index. The following conclusions were drawn from the obtained
results:

(1) The seven indices of R&D personnel full-time equivalent, R&D expenditure, local
financial science and technology expenditure, number of green patents granted, total postal
business, inland waterway mileage, and e-commerce sales were the most important factors
affecting the RLGIL, and were significant reasons for the differences across regions.

(2) The RLGIL of the 30 provinces of China was clearly differentiated between east and
west, where uneven development was identified. Provinces such as Guangdong, Jiangsu,
and Zhejiang, had stronger RLGILs, whereas others had a large gap. The RLGIL of Jiangsu
displayed a significant growth trend over the five years, gradually narrowing the gap with
that of Guangdong. Most of the remaining provinces fluctuated within the stable range
of the rankings. Differences were found between the evaluation results for each criterion
layer. Relatively low innovation input should be used to obtain high innovation output,
and the RLGIL should be improved from multiple dimensions.

(3) In terms of spatial distribution, the results revealed a high positive spatial cor-
relation among the RLGIL of the 30 provinces. Further, the overall spatial distribution
displayed a characteristic of “high in the east and south, and low in the west and north”.
The RLGIL significantly varied among provinces, but displayed an overall trend of steady
development. Regarding spatial agglomeration, a spatial agglomeration effect was iden-
tified in the RLGIL of the 30 provinces. The high-value aggregation areas were mainly
concentrated in the eastern coastal region, and the low-value aggregation areas were in the
midwest and northeast regions. Such a finding indicates a serious imbalance in the RLGIL
in China’s regions.

6. Promotion Strategies

Based on the findings of this study, several promotion strategies were proposed:
(1) The government should improve the logistics green innovation input system and

enhance the level of green innovation inputs. Further, talents and funds are necessary to
ensure the stable development of logistics enterprises. Accordingly, logistics enterprises
need to attract more talent by increasing their investments. Simultaneously, logistics
enterprises can conduct co-cultivation with universities, and universities can train talent
according to their actual needs; technological achievements can be applied to innovation in
the logistics industry in reverse. In addition, the government can introduce corresponding
policies and financial support to reduce pressure on enterprise financing and encourage
green technological innovation. The government has the responsibility and ability to
enact stricter environmental regulations and guide logistics enterprises to implement green
innovation and increase tax preferences and financial subsidies.

(2) The government should establish a complete green innovation output system and
improve the level of green innovation output. The boundaries of green logistics innovation
between departments, industries, and regions should be removed by formulating regula-
tions and strengthening the participation of capital investment from all walks of life. Mean-
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while, logistics enterprises should respond to the government’s call to actively invest in
innovative logistics construction, improve the conversion rate of innovation achievements,
and transform various innovation resources into innovation outputs. The government
could also encourage enterprises to use energy-saving and environmentally friendly tech-
nologies to reduce the overall energy consumption and pollutant emissions of the logistics
industry. Active research on low-carbon green technologies can effectively reduce carbon
emissions, enhance enterprises’ core competitiveness, and improve the contribution of
logistics enterprises to regional green innovation.

(3) The government should accelerate the construction of logistics infrastructure; help
the logistics industry transform into green innovation and achieve a green innovation
environment; improve the accuracy of investment in logistics infrastructure construction;
improve the efficiency of infrastructure operation; compensate for economic shortcom-
ings; and reduce logistics costs by ultimately increasing research on green innovation
support policy; improving the environmental protection governance regulatory system;
continuously increasing financial expenditure on regional infrastructure development,
energy conservation, governance, and construction; building a fair and balanced policy
environment for green innovation; promoting a balanced development; completing the
construction of an information-sharing platform for the logistics industry; improving in-
formatization construction; strengthening investment in logistics infrastructure; optimizing
resource allocation; and fully playing its key role.

7. Research Limits and Further Directions of Investigation

Investigating regional logistics levels in 30 provinces in China is a complex research
activity that requires multiple approaches from the perspective of the designed evaluation
index system and the statistical data used to design the research model. The authors
acknowledge that there are some study limitations determined by the methods employed
and the datasets used. For the future, it is possible to expand the dataset used, pick a
different evaluation model, and improve the method by adding new components, poten-
tially improving results and reducing limitations. At the same time, we can choose a micro
perspective to study the green innovation level of logistics enterprises.
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