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Abstract: Forests represent the greatest carbon reservoir in terrestrial ecosystems. Climate change
drives the changes in forest vegetation growth, which in turn influences carbon sequestration ca-
pability. Exploring the dynamic response of forest vegetation to climate change is thus one of the
most important scientific questions to be addressed in the precise monitoring of forest resources.
This paper explores the relationship between climate factors and vegetation growth in typical forest
ecosystems in China from 2007 to 2019 based on long-term meteorological monitoring data from six
forest field stations in different subtropical ecological zones in China. The time-varying parameter
vector autoregressive model (TVP-VAR) was used to analyze the temporal and spatial differences of
the time-lag effects of climate factors, and the impact of climate change on vegetation was predicted.
The enhanced vegetation index (EVI) was used to measure vegetation growth. Monthly meteo-
rological observations and solar radiation data, including precipitation, air temperature, relative
humidity, and photosynthetic effective radiation, were provided by the resource sharing service
platform of the national ecological research data center. It was revealed that the time-lag effect of
climate factors on the EVI vanished after a half year, and the lag accumulation tended to be steady
over time. The TVP-VAR model was found to be more suitable than the vector autoregressive model
(VAR). The predicted EVI values using the TVP-VAR model were close to the true values with the
root mean squares error (RMSE) < 0.05. On average, each site improved its prediction accuracy by
14.81%. Therefore, the TVP-VAR model can be used to analyze the relationship of climate factors
and forest EVI as well as the time-lag effect of climate factors on vegetation growth in subtropical
China. The results can be used to improve the predictability of the EVI for forests and to encourage
the development of intensive forest management.

Keywords: TVP-VAR model; time-varying impulse response; time-lag effect; enhanced vegetation
index; climate factors; forest ecological station

1. Introduction

In recent years, the greenhouse effect has intensified, and the frequency of extreme
weather has increased [1–3]. In the context of global climate change, the analysis of
vegetation dynamics and responses has become a hot research topic [4,5]. Forests respond
to climate change with high sensitivity [6]. Forest structure [7–9], vegetation cover [10],
and vegetation phenological period [11,12] are closely related to meteorological factors
such as temperature, precipitation, and solar radiation. In 1999, China established forest
ecological observation stations using the most representative forest ecosystem types and
regions. The research at these sites focuses on global climate change and sustainable forestry
development and aims to reveal the relationship between the structure and function of the
forest ecosystem and its modes of dynamic change. These sites are also an effective way to
study the forest ecosystem’s critical processes and to seek strategies for sustainable and
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rational management of forest resources [13,14]. There are differences in the characteristics
of climate change and differences in the way vegetation responds to the climate in various
ecological zones. Therefore, it is essential to conduct vegetation climate response studies at
field stations in different ecological zones in order to best manage forests. Forest managers
can formulate scientific and reasonable policies by monitoring and evaluating the dynamic
changes in forest vegetation. The ultimate goal of this work would be to improve the
adaptability of the forest ecosystem to climate change and to improve the resilience of
forests to disasters. At the same time, this work provides a basis for accurate measurement
and monitoring of forests as an effective carbon sink.

The vegetation index is one of the significant remote sensing parameters reflecting
vegetation growth status. The commonly used remote sensing vegetation indices include
the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index
(EVI). The NDVI can well reflect vegetation growth and ground vegetation coverage.
However, it is prone to saturation in areas with high vegetation coverage, and its ability to
resist atmospheric noise is weak. The EVI can reduce the influence of both atmospheric
and soil noise, overcome the shortcomings of NDVI, and provide a sound foundation for
quantitative remote sensing research in densely forested areas [15]. Using EVI data from an
experimental area in Guangdong from 2001 to 2018, Wang and Fan [16] analyzed the spatial
and temporal patterns of vegetation activity in the experimental area. They established a
perturbation lag model between the EVI and climate factors. Udelhoven et al. [17] used a
distributed lag model to assess the effect of 16 consecutive days of abnormal rainfall on the
EVI in the Okavango watershed and distinguished sensitive and non-sensitive areas of the
basin using an applied logistic regression model.

The association between climate conditions and the growth dynamics of vegetation
at various time and space scales has been analyzed using a number of techniques by
researchers from all over the world. Jin et al. [18] analyzed the correlation between the
NDVI and temperature and precipitation in August in Xi’an from 2004 to 2013. They found
that precipitation changes have a time-lag effect on vegetation in Xi’an. Ding et al. [19] used
multiple linear regression (MLR) methods to explore the time-lag and cumulative effects
of temperature and precipitation on vegetation growth and their combined effects on a
global scale. Neural network models are also widely used in the study of vegetation growth
changes. Lou et al. [20] analyzed the contributions of surface temperature, precipitation,
and soil moisture to the dynamic spatial and temporal variations of vegetation at different
elevations in the Qaidam Basin using an artificial neural network (ANN) model. Reddy
and Prasad [21] proposed a method for forecasting changes in vegetation based on NDVI
data and the long short-term memory neural network technique (LSTM). The above studies
show that climate has a significant impact on vegetation growth. In the future, this impact
will increase with the intensification of climate change. Linear regression methods and
neural network models tend to focus only on the numerical values themselves. It is difficult
to intuitively explain the intrinsic relationship between vegetation growth and climate
change.

A vector autoregressive model (VAR) is an unstructured model. It uses each endoge-
nous variable in the system as a function of the lagged values of all endogenous variables
in the system to construct a model [22]. Redlin and Gries [23] used this model to study
the impact of various components of the global carbon budget on climate change. Bruns
et al. [24] used this model to simulate the synergistic role of the ocean in global climate
change. Although some studies have used the VAR model to solve ecological problems,
the model is essentially a constant parameter model, and it is difficult to describe the time-
varying characteristics driven by endogenous variables. When the events that occur are not
within the historical data that the VAR model relies on, the accuracy of the model will be
greatly biased [25,26]. Unlike the VAR model with fixed parameters, the TVP-VAR model
can simulate the impulse response of different lag periods over time [27]. In summary,
the existing research results provide sufficient theoretical basis for the basic hypothesis
of this study. Changes in the EVI are mutually influenced by climate variables such as
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temperature and light, while climate variables are primarily governed by the seasons.
Existing research on the time-delay effect of climate factors is primarily limited to global
static analyses. The interaction between variables and the evolution of a process over time
cannot be reflected by simple moving average methods or linear models [28,29]. Therefore,
the study chooses the TVP-VAR model, which has the flexibility to analyze the dynamic
response characteristics of the EVI at different lead times and time points. This model is
also able to decompose the overall contribution of various factors that promote vegetation
growth into several different mechanisms, that is, accurately estimate the duration and
intensity of the time-lag effects of different meteorological factors.

The goals of this study were: (1) to quantify the time delay effect of climate change on
vegetation growth though establishing the TVP-VAR model; (2) to reveal the convergence
and divergence of vegetation growth in different growth seasons in field stations of typical
subtropical forest ecosystems through the empirical observation and quantitative analysis
of vegetation response to climate change; and (3) to predict the response of vegetation
change based on the VAR and TVP-VAR models, and compare the prediction results to
evaluate accuracy.

2. Materials and Methods
2.1. The Study Area

The national field stations were established in 1999, include 8 types, such as forest,
grassland, farmland, desert, swamp, lake, and bay ecosystems. There are 17 national
scientific observation and research stations for forest ecosystems [30]. According to the 11
temperature zones identified by Yang et al. [31], the 6 stations in this study are distributed
in the humid regions of the northern subtropics, middle subtropics, and south subtropics
(Figure 1). Basic information about the observation stations is provided in Table 1.
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Table 1. Basic information for the national field scientific observation and research station for the
forest ecosystem.

Ecoregion
Type

Eco
Station Abbreviation Longitude and

Latitude
Type of

Landform
Average

Elevation (m)
Annual

Rainfall (mm)

Northern subtropical
humid region Shennongjia SNF 110◦36′ E, 31◦68′ N Mountain 1700 1300~1722

Central subtropical
humid region

Minya
Konka GGF 101◦59′ E, 29◦34′ N Valley

Glacier 3000 1750~2175

Huitong HTF 109◦30′ E, 26◦48′ N Hilly 700 1200~1400

Southern subtropical
humid region

Ailao
Mountain ALF 101◦01′ E, 24◦32′ N Mountain 2450 1931

Dinghu
Mountain DHF 112◦31′ E, 23◦09′ N Hilly 600 1564

Heshan HSF 112◦54′ E, 22◦41′ N Hilly 80 1700

2.2. Data Source
2.2.1. Meteorological Data

The forest ecosystem field stations long-term meteorological monitoring data were
acquired from the National Ecological Science Data Center Resource Sharing Service Plat-
form (http://www.cnern.org.cn/, accessed on 12 April 2021). The monitoring data were
collected by the ground standard meteorological observation field for each forest field
station. According to the specifications for construction of long-term observation research
stations for the forest ecosystem (GB/T 40053–2021) in China, meteorological observation
sites are all set up in flat and open areas in the forest area around the key distribution
areas of the forest resources. The setup of all stations must ensure that the observation
instruments will not be disturbed by the shadows of surrounding obstacles. Collected
meteorological data include meteorological observations and monthly readings of solar
radiation, precipitation (PRE; mm), air temperature (TEM; ◦C), humidity (RHU; %), and
photosynthetically active radiation (PAR; mol/m2). The time range for the northern sub-
tropical humid region field station (SNF) data is 11 years; for the other stations’ data, the
time range is 13 years (Table 2).

Table 2. Long-term meteorological monitoring data for forest ecosystem field stations. The numerical
range of air temperature, air humidity, and photosynthetically active radiation is the numerical range
of the monthly mean value; the numerical range of the precipitation is the numerical range of the
monthly total value.

Eco Station Code Time Span Precipitation
Range (mm)

Air Temperature
Range (◦C)

Air Humidity
Range (%)

Photosynthetically
Active Radiation
Range (mol/m2)

SNF 2009/01~2019/12 2.3~536.6 −9.6~28.0 71.3~91.8 185.1~1431.3
GGF 2007/01~2019/12 5.2~490.1 −7.9~19.8 81.4~97.0 214.1~898.1
HTF 2007/01~2019/12 0.0~418.7 −1.8~33.3 69.8~95.3 138.6~1260.2
ALF 2007/01~2019/12 0.0~540.9 3.8~16.6 63.3~96.5 354.0~1259.7
DHF 2007/01~2019/12 0.0~547.8 9.2~35.3 62.9~90.0 261.1~1186.9
HSF 2007/01~2019/12 0.0~563.5 9.6~36.6 56.7~98.1 87.1~1290.9

2.2.2. Enhanced Vegetation Index (EVI) Data

EVI data were obtained from MOD13Q1 (Version 6), a resolution imaging spectrometer
product. Moreover, the data set was acquired in the same period as the field station
ecosystem meteorological monitoring data, 2007–2019, with a spatial resolution of 250 m
and a temporal resolution of 16 d. The data were downloaded from NASA’s website

http://www.cnern.org.cn/
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(https://earthdata.nasa.gov/, accessed on 12 April 2021), and then we used the MRT
(MODIS Reprojection Tools, National Center for Supercomputing Applications at the
University of Illinois at Urbana Champaign, Champaign-Urbana, USA) for projection
conversion, cutting and splicing, and other pre-processing. The Maximum Value Composite
(MVC) method was used to obtain monthly EVI data.

2.2.3. Data Set Partition

The time scale of data collection at the field station is in months. When exploring the
corresponding differences in vegetation growth in different periods of the growing season,
this study arranged the time series data by month and recorded it as Data set 1. This data
set was used to longitudinally compare the differences in the lag effect of climate factors in
different periods in the same region. In September 2018, China’s coastal areas were hit by
Typhoon Mangkhut. The weather caused by the typhoon severely damaged the vegetation
in the Dinghushan area [32]. In order to verify the ability of the model constructed in this
paper to capture emergencies, when studying the cumulative time lag of climate factors on
the EVI, this paper took 2018 as a time node on the basis of monthly time series data and
divided the time span into two periods. The data from 2007 to 2018 were recorded as Data
set 2, and the data after 2018 were recorded as Data set 3. Data set 2 was input into the
model and impulse response analysis was performed to compare the time lag cumulative
differences of climate factors in different regions in the same period. Data set 3 was used as
a predictive test set to verify the applicability of the model.

2.3. Data Processing and Analysis

Based on EVI data and meteorological monitoring data, this paper normalized the
collected time series data. For data that passed the Augmented Dickey-Fuller (ADF) test,
we first determined the order in which the variables enter the model. The order of the
model was then determined using the Akaike information criterion (AIC) and Schwartz
criterion (SC). According to the above parameters, the TVP-VAR model was initially
established. Considering the actual needs of data processing, we used the Markov Chain
Monte Carlo (MCMC) method and constructed a Markov chain containing 2000 iterations
for the Bayesian estimation. After the optimal parameter combination was obtained,
the time-varying impulse response analysis of the model was carried out. Finally, the
applicability of the model to forestry was evaluated through the prediction accuracy of the
model. The technical process is shown in Figure 2.

2.3.1. Data Pre-Processing

The subtropical region in China is continuously affected by clouds and rain. Unfortu-
nately, the EVI data synthesized by the maximum values can only eliminate the low value
noise. Therefore, it was difficult to recover the actual surface situation for this region. How-
ever, this was addressed by offsetting the date corresponding to the maximum value [33,34].
The SG-HANTS algorithm was used to smooth the EVI time series data in this study.

The SG filtering method (apart from HANTS) is a weighted average algorithm where
the weighted factor depends on the number of least-squares fits to a given higher-order
polynomial within the filter window [35] and the expression is as follows:

Yj =
i=m

∑
i=−m

CiYj+i

N
(1)

where Yj+i is the original EVI data; Yj is the value of the EVI time series fitted by the SG
filter; Ci is the filtering coefficient of the ith time series data; N is the data contained in the
sliding window; and m is the size of the filtering window controlling the smoothing effect.
The SG filtering method can remove most of the intense noise in the sequence based on
preserving the original curve information and is widely used in smoothing and de-noising

https://earthdata.nasa.gov/
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time-series data [36]. Therefore, harmonic analysis of time series (HANTS) was introduced
to reconstruct the original time series [37].
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HANTS uses the Fourier transform as the theoretical basis and adds the least-squares
method to fit the reconstruction of the original time series with the expression:

yi = A0 +
m

∑
j=1

Aj sin(wji + θj), i = 0, 1, . . . n (2)

wj = 2jπ/n (3)

where A0 is the residual term of the harmonic (i.e., the mean value of the series), Aj is the
amplitude of the harmonic, θj is the initial phase of the harmonic, n is the length of the
sequence, wj is the frequency of the harmonic, and m = n− 1 is the number of harmonics.

With repeated experiments, the optimal parameters of the HANTS algorithm are
determined as follows: the number of frequencies is 2, the fitting error (FET) is 500, and the
number of remaining points (DOD) is 8.

In this paper, the original EVI data were processed using the extended tool MRT in
ENVI and the MVC method. After that, the EVI monthly value sequence was smoothed
out and made less noisy with the SG filtering method. The de-noised EVI time-series data
is input into HANTS software to obtain the reconstructed EVI time-series data.

The dimensions of each factor involved in the modeling are different. In order to
reduce the influence of different dimensions between data, data normalization processing
is required. In this paper, the linear function normalization (Min-Max scaling) method
was used to convert the original data to the range of [0, 1]. The specific calculation
process is shown in Formula (4), where X and X′ represent the original-feature data and
the normalized-feature data, respectively. Xmax and Xmin represent the maximum and
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minimum values in the original-feature data, respectively. Raw-feature data include EVI,
TEM, RHU, PRE, and PAR data sets.

X′(EVI,TEM,RHU,PRE,PAR) =
X− Xmin

Xmax − Xmin
(4)

2.3.2. Bayesian TVP-VAR Model
TVP-VAR Model Setting

The TVP-VAR model was first applied in the analysis of monetary policy [38], and
the parameters in this model are set to vary over time. Changes in the EVI are affected by
multiple climate factors, and climate factors are mostly regulated by seasons. The TVP-VAR
model has the advantage of decomposing the overall contribution of the various factors
into several different mechanisms. In this paper, taking full advantage of the model, based
on the algorithm of Nakajima et al. [27], a five-variable TVP-VAR model consisting of TEM,
PRE, RHU, PAR, and EVI was constructed to reveal the influence of climate factors on
vegetation growth.

The measuring equation for the TVP-VAR model can be expressed as follows:

yt = B1yt−1 + · · ·+ Bpyt−p + A−1Σεt (5)

where the yt = (EVIt, TEMt, RHUt, PREt, PARt), Bp represents a time-varying coefficient
vector matrix, and A−1Σεt is a random error term. In addition to the measuring equation,
the TVP-VAR model also includes the spatial state equation used to determine the time-
varying parameters. The formulas are expressed as follows:

βt+1 = βt + µβt
at+1 = at + µβt
ht+1 = ht + µht

(6)


εt

µβt
µβt
µht

 ∼
0,


I 0 0 0
0 Σβ 0 0

0
0

0
0

Σa
0

0
Σh


 (7)

To note, Σβ, Σa, and Σh are diagonal matrices, and the parameters βt, βa, and βh are
not correlated with each other.

In this paper, we used R to build a TVP-VAR model. The order of variables entering the
model was finally determined as (TEM, RHU, PRE, PAR). The lag-order, p, was determined
to be 3, 4, 4, 2, 3, and 3 in the ALF, DHF, GGF, HSF, HTF, and SNF regions, respectively.

Time-Varying Impulse Response Function

δ(t) represents the change in climate factor per unit, and xδ(t) is the change in impact
on vegetation brought about by a unit climate factor shock at moment t. In the time-varying
impulse response analysis, when t→ ∞ , if lim

t→∞
xδ(t) = 0, the established model system has

some stability [39]. The lag accumulation also tends to be stable.
In this study, the time-varying impulse response function is used to examine the

time-lag effect of climate factors on the EVI from the perspective of the full-time series
interval and the time-varying impulse response function analysis of each climate factor on
the EVI considering the variability of climate factors on EVI under seasonal changes.

2.3.3. Prediction Model and Accuracy Estimation of the Model

In this paper, we used the monthly EVI data from 2007 to 2017 as the training set
and the monthly EVI data from 2018 to 2019 as the prediction set to analyze the dynamic
response of vegetation in the context of global climate change. Meanwhile, the root mean
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square error (RMSE) of the quantitative indicators was used to test and verify the reliability
of the TVP-VAR model.

RMSE refers to the sum of squares of the deviations between the predicted and true
values of the EVI and the sample size m. The root means the square of the ratio. The smaller
its value, the better the fit, and the expression is:

RMSE =

√
1
m

m

∑
t=1

(EVIt − ˆEVIt)
2 (8)

where EVIt denotes the predicted value of the EVI at time t and ˆEVIt denotes the actual
value of the EVI at time t.

3. Results
3.1. The Time-Lag Effect of Climate Factors on EVI

This section is based on Data set 1 and uses the TVP-VAR model in Section 2.3.2
to study the duration and intensity of climate factors on the EVI time-lag effect and lag
accumulation. Due to the spatial heterogeneity of climate conditions, climate factors such
as precipitation and temperature have different effects on vegetation growth. The results
are shown in Figure 3. Table 3 shows the time-lag effect values and accumulative lag values
of each lag period. It shows that the time-lag effect of each climate factor on EVI disappears
within six months, and the lag accumulation tends to be stable. However, due to the spatial
heterogeneity of climate conditions, climate factors such as precipitation and temperature
on vegetation growth are not the same.

Table 3. The time−lag effects of different climate factors on the EVI of each forest ecological field
station under different lag periods.

Value

Station The Lag-Period The
Lag-Accumulation1 2 3 4 5 6

PAR

SNF 0.04 0.01 −0.03 0.01 0.00 0.00 0.02
GGF −0.01 0.05 0.00 0.00 0.00 −0.01 0.04
HTF 0.04 −0.01 0.00 0.00 0.00 0.00 0.03
ALF 0.03 −0.01 0.00 0.03 0.00 0.01 0.05
DHF −0.08 0.09 0.00 0.02 0.01 0.00 0.04
HSF −0.02 0.05 0.03 0.01 0.01 0.00 0.09

PRE

SNF 0.03 −0.01 −0.01 0.00 0.00 0.00 0.02
GGF 0.01 0.01 0.00 0.00 0.00 0.00 0.02
HTF 0.07 −0.02 −0.01 0.00 0.00 0.00 0.05
ALF 0.04 −0.10 −0.04 0.02 0.01 0.00 −0.07
DHF 0.03 −0.08 −0.01 −0.02 −0.01 0.00 −0.09
HSF 0.03 −0.03 −0.03 0.00 0.00 0.00 −0.03

RHU

SNF 0.36 0.11 −0.04 −0.16 0.04 0.01 0.32
GGF 0.39 0.00 −0.03 −0.08 0.01 0.00 0.29
HTF 0.13 0.04 −0.06 0.01 0.00 0.00 0.12
ALF −0.07 −0.03 0.00 0.04 0.00 0.00 −0.07
DHF −0.34 0.08 −0.03 0.17 0.09 0.01 −0.02
HSF 0.39 −0.06 −0.12 0.02 0.00 0.00 0.16

TEM

SNF 0.13 0.07 −0.02 −0.04 −0.02 0.01 0.13
GGF 0.06 0.13 0.06 −0.21 0.01 0.00 0.05
HTF 0.17 0.00 0.03 −0.03 0.00 0.00 0.16
ALF −0.20 0.05 0.05 0.02 0.01 0.00 −0.07
DHF −0.02 −0.01 0.07 −0.09 −0.04 0.00 −0.10
HSF −0.12 0.14 0.07 −0.05 0.00 0.00 0.03
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TEM showed a time-lag effect of 5.17 ± 0.37 (mean ± standard deviation) months
at six field stations and was dominant in effect on vegetation. The time-lag effect of
RHU had an impact lasting 4.17 ± 0.69 months. For the SNF ecological stations in the
humid north subtropical region, the duration of the time-lag effect of TEM was the longest,
with a continuous positive effect of 6 months, and the strongest effect brought by the lag
accumulation on EVI (0.13 EVI per unit TEM, in the stable lag-accumulation period); the
time-lag effect of RHU was always positive on EVI, but the duration was short, and the
time lag disappeared within 4 months. The effect of lag accumulation was stronger than
that in the central subtropical region (0.32 EVI per unit RHU). The time-lag effect of TEM
on EVI at the ALF and DHF stations in the south subtropical region was a continuous
negative response with an average lag time of 4.45 ± 1.09 months, showing a trend of the
most decisive influence (median −0.11 EVI per unit TEM, in the first lag-period) to the
lowest influence (median −0.015 EVI per unit TEM, in the fifth lag-period). The effect
of RHU on EVI was gradually strengthened, showing a trend of the lowest influence
(median −0.21 EVI per unit RHU, in the first lag-period) to the strongest influence (median
−0.11 EVI per unit RHU, in the fourth lag-period). Differently from the above two ecological
stations located in the southern subtropical region, the response of EVI to TEM and RHU
changes at the HSF station is positive in the long term. HSF and DHF have similar
geographical locations, but the air temperature and humidity bring opposite effects on
EVI in the region. From the analysis of the reviewed data, it is known that the vegetation
in the HSF region mainly consists of artificial Horsetail pine sparse forest and barren
subtropical slope [40], and the vegetation community in the DHF region is subtropical
monsoonal evergreen broad-leaved forest [41]. The barren grassland and pine forest are
mostly light-loving and drought-tolerant. The ambient humidity is low, which is easier
to reduce and tolerate high temperature and humidity compared with the broad-leaved
forest environment. That means the accumulation of TEM can promote vegetation growth
in areas with lower temperatures. However, high TEM increases the atmospheric demand
for evapotranspiration in areas with persistently high temperatures due to vegetation
cover type, which inhibits vegetation growth. The accumulation of TEM shows a negative
correlation with vegetation growth, which is consistent with the findings of Bei et al. and
Lian et al. [42,43].

The mean lag time of the PRE time-lag effect was 5.17 ± 1.07 months. PRE’s lag accu-
mulation was generally weaker in the north and central subtropical region (0.02 EVI/unit
PRE and median 0.035 EVI/unit PRE) than in the south subtropical region (−0.063 EVI/unit
PRE). However, all study sites in the South Subtropical region showed a negative EVI re-
sponse to the previous year. Among them, the DHF region showed the strongest negative
(−0.09 EVI/unit PRE) and the HSF region showed the lowest negative (−0.03 EVI/unit PRE).
The EVI response to PRE is negative because of the high humidity in the regional environ-
ment and the large amount of precipitation at the sites in the southern subtropical, which
can suppress vegetation growth. Due to its vegetation conditions, the HSF station has weak
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water-holding capacity and infiltration capacity [44,45]. Even in a humid environment, the
HSF station can still maintain soil stability and reduce the influence of precipitation on
vegetation growth.

PAR is the energy source for vegetation life activities, affecting vegetation growth and
development and regulating vegetation photosynthesis [46]. The average lag time for the
time-lag effect of PAR was 5.50 ± 1.11 months. In the first phases of the time lag, PAR had
a negative effect on vegetation growth in the southern subtropical ecological stations, DHF
(−0.08 EVI/unit PAR) and HSF (−0.02 EVI/unit PAR), since vegetation in these regions
is affected by solar radiation for a more extended period during growth and the intensity
of solar radiation is higher than other regions. Vegetation under strong PAR will reach
light saturation, occur photoinhibition, and manifest as inhibition of photosynthesis and
stunted vegetation growth [47]. However, when the hysteresis accumulation brought by
PAR reached stability, it all played a role in promoting the growth of vegetation, and the
regional differences were slight.

In terms of duration, the time-lag effect of each climate factor on the EVI disappeared
within half a year. The difference in the duration of the time-lag effect between field stations
in different ecogeographic regions was small (within 1.47 months). From the intensity of
the time-lag effect, the responses of the EVI to different climate factors are significantly
different. RHU has the greatest impact on the EVI, and this was more obvious in the early
stage. In the first lag period, the mean of the absolute value of the lagged effect of each
unit of RHU, TEM, PAR, and PRE was 0.28, 0.117, 0.036, and 0.035, respectively. As time
goes by, the intensity of the time-lag effect continues to decrease in fluctuation, and the
accumulation of lag tends to be stable. From the perspective of spatial distribution, the
intensity of time-lag effects of climate factors varies by geographic region. At the SNF
station located in the northern subtropical region, the time-lag effects of various climate
factors on the EVI all changed from a strong positive effect in the early stage to a gradually
weakened negative effect. On the whole, however, the rising and fluctuation of climate
factors played a role in promoting the vegetation growth at sites in the northern subtropical
region (i.e., the lag-accumulation > 0). Compared with other sites, the vegetation of the
SNF site was more sensitive to changes in temperature and humidity (0.32 EVI per unit
TEM and 0.13 EVI per unit TEM in the stable lag-accumulation). Similar to the SNF station,
changes in climate factors ultimately promoted the growth of vegetation in HTF and GGF
stations. The ALF, DHF, and HSF stations are all located in the southern subtropics. Among
them, the forest vegetation at the DHF and ALF stations had relatively similar responses to
changes in climate factors. The effects of changes in RHU, TEM, and PRE on vegetation
were shown as growth inhibition. In contrast to the above two field stations, the responses
of the EVI at the HSF station to changes in TEM and RHU were positive in the long run.
The HSF and DHF stations are geographically similar, but the effects of air temperature
and humidity on the EVI within the region are diametrically opposite.

3.2. Sensitivity of Growing Season EVI to Changes in Climate Factor

The vegetation growth season refers to the period in which the biologically effective
temperature required for plant growth and development can be guaranteed. In recent
years, more and more scholars have started to focus on the relationship between the onset
of the vegetation growing season and the changes in climate factors [48,49]. Based on Data
set 2, this section uses the time-varying impulse response function to input the TEM, PRE,
RHU, and PAR at different stages of the growing season into the model. The response
mechanism of forest vegetation growth to climate change in different subtropical regions
was studied through the output responses (i.e., the time-delay effects of climate factors in
different growing seasons). When the impulse response of the EVI to a climate factor was a
positive impulse, it meant that the climate factor promoted vegetation growth; a negative
impulse meant that vegetation growth was suppressed. In addition, the magnitude of the
positive and negative impulses of the hysteresis effect can reflect the degree of vegetation-
growth promotion or suppression, then determine the growth season stage of vegetation,
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and provide information as to the response of the EVI to climate change under different
growth stages.

The law of lag effect in the northern subtropical and central subtropical regions is more
obvious. As shown in Figure 4, the changing trend of impulse response function in different
months is close, but there are differences in the intensity of impulse responses. With the
same lag phase, the positive impulse brought by each climate factor to vegetation EVI in
March and April was the strongest (i.e., the promotion effect of climate factor on vegetation
growth is the strongest in this phase). The intensity of the lag effect is more similar from
May to October, and the lag effect is weaker from November to February of the following
year. More similarly, the hysteresis effect is weaker from November to February. The
increase in warmth and precipitation at the start of the growing season caused vegetation
to grow swiftly, and vegetation coverage in the north and middle subtropical regions
increased dramatically. The lag effect of the EVI in the early growing season was higher
than that in the flourishing period, and it had more prolonged effects on plant growth.
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The EVI of vegetation in the south subtropical region showed no obvious lag. In
addition to climate conditions, vegetation cover types and regional topography also in-
fluenced the hysteresis effect in the south subtropical region. The latter’s effects are more
pronounced than those of other subtropical regions. At the initial stage of the lag effect,
the EVI exhibited a negative impulse response to the mean lag effect of climate factors
other than PRE in the south subtropical region. However, DHF exhibited positive impulse
responses during the first and the second time-lag effects in March and April. By com-
paring the HSF station, which is geographically similar to the DHF station, the time-lag
effect was not the same as the change at the beginning of the growing season in DHF.
Although the two geographical locations are similar, there is a significant difference in
altitude. The average altitude of DHF is 750 m, while HSF is 80 m. It can be inferred that the
temperature of DHF vegetation is closer to that of the subtropical forest system according
to the temperature decrease of 0.8 ◦C for every 100 m rise in altitude [50]. The increase
in temperature and precipitation in the spring promoted vegetation growth. With the
increase in altitude, the human disturbance factors decreased, and the vegetation growth
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environment tended to be better. For the southern subtropical region with high vegetation
cover and relatively small EVI changes, the higher EVI accelerates the water transpiration
of vegetation at the beginning of the growing season. Transpiration takes away part of the
heat, making the EVI in the southern subtropical region negatively correlated with TEM at
the beginning of the growing season. Although sufficient precipitation in summer ensures
the demand for vegetation growth, high summer temperature also affects air humidity,
which becomes a limiting factor for vegetation growth. Thus, the interannual distribution
of temperature and precipitation influences the vegetation growth at this site. However,
the high temperature and rainfall in summer and autumn inhibit vegetation growth. In
winter, when precipitation is low, the increase in temperature is usually accompanied by a
decrease in soil water content and air humidity, inhibiting vegetation growth.

At the start of the growing season for forest plants in subtropical areas, plant growth
was fast, and the weather had the most obvious effect on plant growth. The EVI was
most affected by TEM, followed by RHU. This phenomenon is consistent with the research
of Chu et al. [51]. Spring phenology changes are generally more responsive to rising
temperatures. Plant growth slowed down in the middle of the growing season, and RHU
had a bigger effect on the EVI than TEM. During the non-growing season and at the end
of the growing season, the correlation between the EVI of vegetation and climate change
was weakest, and each climate factor had a weak lag effect. The correlation between
vegetation EVI and climate change was the lowest at the end of the growing season and the
non-growing season, and the lagged effect of each factor was weak.

3.3. Model Performance for EVI Prediction among Different Field Stations

Compared with VAR models, TVP-VAR models can more effectively capture non-
linear relationships among variables [52]. This paper quantified the time-lag effect, lag
accumulation, and time-varying impulse responses of climate factors on the enhanced
vegetation index of forest ecological stations in humid subtropical regions of China using
the TVP-VAR model. Based on Data set 3, the comparison with the predicted results of the
VAR model is added to evaluate the applicability of the TVP-VAR model and explain the
necessity of time-varying coefficients in modeling. The prediction accuracy of the TVP-VAR
model is shown in Table 4. The comparison result with the VAR model is shown in Figure 5.

Table 4 showed that the TVP-VAR model has high prediction accuracy and small error
(RMSE ≤ 0.05). When time-varying parameters are added to a typical VAR model, the
model’s prediction accuracy improves by 14.81% on average. The fitting degree of the
TVP-VAR model and the real values obtained were substantially greater than for the VAR
model, especially in spring and summer when the climate changes (i.e., from March to
August; see Figure 5). As an extended VAR model, the TVP-VAR model retains the practical
advantages of the VAR model and provides a framework for overcoming the simultaneity
problem between variables, and it separates the dynamic impact of each variable on other
variables. Due to the addition of time-varying parameters, the relationship characteristics
between climate elements and the EVI in various climate backgrounds can be represented
with greater precision, hence enhancing the estimation performance of the model.

Table 4. Comparison of prediction accuracy between the VAR model and the TVP-VAR model.

Eco Station
RMSE of the Predicted Value Improvement of Prediction

Accuracy (%)VAR TVP-VAR

SNF 0.05631 0.04556 19.09
GGF 0.05219 0.04635 11.19
HTF 0.05366 0.04813 10.31
ALF 0.05903 0.05145 12.84
DHF 0.06516 0.04926 24.40
HSF 0.05055 0.04486 11.06

Average 0.05615 0.04760 14.81
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Figure 5. Comparison of prediction results between the VAR model and the TVP-VAR model in SNF
(a), GGF (b), HTF (c), DHF (d), HSF (e) and ALF (f).

3.4. Comparison of Model Accuracy under the Influence of Extreme Weather

The results in Section 3.3 showed that the TVP-VAR model has a better prediction
accuracy improvement effect in the DHF station. Our preliminary analysis suggested that
this was influenced by the extreme weather of Typhoon Mangkhut in September 2018.
Then Data sets 2 and 3 are used to forecast local EVI for 2017–2019 based on DHF station
data. The simulation results of TVP-VAR model are shown in Figure 6. The comparison
with the prediction results of VAR model is shown in Table 5.
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Table 5. Comparison of prediction accuracy between VAR model and TVP-VAR model.

Year
RMSE of the Predicted Value Improvement of Prediction

Accuracy (%)VAR TVP-VAR

2017 0.05952 0.05033 15.44
2018 0.08223 0.07405 9.94
2019 0.06516 0.04926 24.40

Average 0.06900 0.05788 16.11

In Table 5, it is showed that in 2019, the TVP-VAR model has the most obvious
improvement in the prediction accuracy compared with the traditional model. Compared
with 2017 and 2018, after adding time-varying parameters, the accuracy improvement of
the model is 58.0% and 145.5% higher, respectively. Without the support of other extreme
climate records, we preliminarily believe that the TVP-VAR model has a better performance
in the occurrence of extreme climate events.

4. Discussion

Prior studies that have noted the effect of climatic factors’ time lag on vegetation
growth and development. But these studies are usually conducted on large scales of space
and time [2,19]. Very little was found in the literature on the question of investigating the
impact of phenological changes and extreme climates on forest growth.

The present study was designed to determine the relationship between EVI and the
lag effect of climate factors at different field stations in subtropical regions. The TVP-VAR
model was established based on the meteorological monitoring data and EVI data of six
typical forest ecological stations in the subtropical region of China from 2007 to 2019.
Constrained by the principle of data integrity and considering the nature of the research
object, this paper chooses to discuss the time-lag effect of climate factors on vegetation
growth only on the monthly scale. Here, we need to make an additional note that the change
of time scale does not affect the working of the TVP-VAR model. To prove this point of view,
we have added experiments to explore the time-lag effect between air temperature and
ground temperature based on daily and monthly scales. Experiments show that the impulse
response function can be correctly acted on different time scales. When we determine the
time scale of the study, we need to consider the actual situation of the research object. If
the scale is too small, frequent changes of variables will affect the stability of the research
system, and it is easy to hide important information; if the time scale is too large, it is easy
to cause the loss of detailed information, and it is difficult to observe significant changes
in the process. As far as the current development of the TVP-VAR model is concerned,
there is no professional guidance or explanation for the forestry field. By combining the
action process of time-varying impulse response function, we further prove the advantages
and applicability of the model in the study of time lag. Impulse response is utilized to
analyze and investigate the effect of a shock on a variable during various time intervals.
In the initial phase of the model, a shock of one-unit standard deviation will be applied
to each climate element, followed by an examination of the EVI’s response to the shock.
When the effects of climate change diminish gradually, the response of plant growth to it
tends to stabilize. The interpretation of the time-varying pulse results in this paper is based
on the analysis of the relevant knowledge of forestry and the mechanism of the impulse
response function.

Based on the long-term monitoring data of six subtropical forest field stations in China,
our study shows that the hysteresis effect caused by temperature and humidity conditions
is the strongest and lasts relatively longer. The time-lag effect of precipitation is relatively
weak. Consistent with our conclusion, Wu et al. [53] analyzed the time-lag effect of climate
factors on a global scale and found that the time-lag effect of temperature is the most
obvious. The responses of vegetation EVI to climate factors in subtropical regions were
significantly different in space. Precipitation is closely related to vegetation greenness.
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Some scholars in Jiangle County, Fujian Province, found that the forest environment in
subtropical regions has high humidity, and when there is more precipitation, the growth of
vegetation is easily inhibited. This is consistent with our results. Affected by the regional
annual precipitation, the EVI of the field stations located in the southern subtropical region
showed a negative response to the PRE. In addition, the responses of vegetation EVI to
climate factors in subtropical regions also had significant differences in time. In subtropical
regions, the initial period of vegetation growth season is short, mostly in March-April. The
lag effect caused by climate factors at the beginning of the growing season was stronger
than that at the peak of the growing season. During the growing season, air temperature
and humidity are key factors affecting vegetation cover, and temperature changes in the
spring play a decisive role in the start of the forest growing season in subtropical regions.
In different growing season stages, the difference of the hysteresis effect of climate factors
is more obvious in the forest ecological station of north subtropical and central subtropical.
The changes of the impulse responses at different growth season stages in the field station
in the south subtropical region were small, with only a slight difference in numerical
value. Therefore, the change of the growth season of forest trees in the south subtropical
region was more stable than that in the northern subtropical and southern subtropical
regions. For areas with ecosystem degradation such as HSF, when forest managers carry
out large-scale vegetation restoration, they can consider the natural conditions that restrict
the growth and development of forest plant communities according to climate factors and
combine the local environmental carrying capacity to synchronize the growth season and
growth of vegetation. Adequate precipitation, improved water use efficiency, and selection
of a suitable environment for vegetation growth can all achieve the diversification and
reconstruction of forest ecosystems [47].

Compared with the traditional VAR model, the prediction accuracy of TVP-VAR in
DHF field station in Table 3 had a more obvious improvement. In response to this finding,
we set up supplementary experiments in Section 3.4. The TVP-VAR model has a higher
prediction accuracy improvement compared with the VAR model when forecasting the
2019 EVI numerical value compared with the years before the typhoon. This shows that
compared with the traditional model, the ability of the model to cope with sudden shocks is
enhanced after adding time-varying parameters. The TVP-VAR model is more sensitive to
capture short-term ecosystem changes. The finding could help predict forest growth trends
under extreme climatic conditions. In the future, supported by new data, we will add
other mutation-producing time points to the time-varying impulse response part to further
demonstrate the high applicability of the TVP-VAR model in community succession forest
systems. At the same time, it can also provide reference for the application of TVP-VAR
model in forestry and meteorological fields. TVP-VAR is an econometric model. Therefore,
there are also limitations inherent in general econometric models. That is, it is difficult to
deal with high-dimensional, complex and unstructured data. When faced with observation
data sets with increased dimensions and increased data volume, based on the TVP-VAR
model, clustering, dimensionality reduction, and other methods can be used to optimize
and improve the work efficiency of the model, or combine econometric models with neural
network models. In this way, the complexity of the model can be reduced on the basis of
ensuring the robustness of the model and further improve the reliability of the results and
the interpretability of the model.

5. Conclusions

In subtropical regions, air humidity and temperature are the factors that have the
greatest impact on vegetation growth. We found that the responses of vegetation EVI to
climate factors varied significantly in time and space even though all ecological stations
were located in subtropical regions. In addition, TEM and RHU are key factors affecting
vegetation growth. As far as forest vegetation phenology is concerned, TEM plays a
decisive role in the changes of vegetation growth season stages. Verified by the data set,
the TVP-VAR model has high accuracy. The impact of emergencies can be better captured.
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This shows that the TVP-VAR model can not only analyze the hysteresis effect brought
by climatic factors but also predict the vegetation growth status in subtropical regions of
China in combination with climate change analysis. In this case, it will provide technical
support with high applicability and reliable data for sustainable forest management and
estimation of potential carbon sinks. In addition, in the context of global climate change, if
the vegetation coverage is to be increased and the ecological environment is to be further
improved, specific human intervention measures need to be incorporated. For example,
storage devices could be installed at suitable locations within forest areas to collect water.
The use of rainwater accumulation technology to form forest microclimates can change the
spatial and temporal distribution of water in the forest area and ensure water for forest use
during the dry season in subtropical areas. The results can provide support for im-proving
the extensive forest management pattern.
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