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Abstract: This paper constructs a county-level carbon emission inversion model in Northeast China.
We first fit the nighttime light data of the Visible Infrared Imaging Radiometer Suite (VIIRS) with
local energy consumption statistics and carbon emissions data. We analyze the temporal and spatial
characteristics of county-level energy-related carbon emissions in Northeast China from 2012 to 2020.
At the same time, we use the geographic detector method to analyze the impact of various socio-
economic factors on county carbon emissions under the single effect and interaction. The main results
are as follows: (1) The county-level carbon emission model in Northeast China is relatively more
accurate. The regression coefficient is 0.1217 and the determination coefficient R2 of the regression
equation is 0.7722. More than 80% of the provinces have an error of less than 25%, meeting the
estimation accuracy requirements. (2) From 2012 to 2020, the carbon emissions of county-level towns
in Northeast China showed a trend of increasing first and then decreasing from 461.1159 million tons
in 2012 to 405.752 million tons in 2020. It reached a peak of 486.325 million tons in 2014. (3) The
regions with higher carbon emission growth rates are concentrated in the northern and coastal areas
of Northeast China. The areas with low carbon emission growth rates are mainly distributed in some
underdeveloped areas in the south and north in Northeast China. (4) Under the effect of the single
factor urbanization rate, the added values of the secondary industry and public finance income have
higher explanatory power to regional emissions. These factors promote the increase of county carbon
emissions. When fiscal revenue and expenditure and the added value of the secondary industry
and per capita GDP interact with the urbanization rate, respectively, the explanatory power of these
factors on regional carbon emissions will be enhanced and the promotion of carbon emissions will
be strengthened. The research results are helpful for exploring the changing rules and influencing
factors of county carbon emissions in Northeast China and for providing data support for low-carbon
development and decision making in Northeast China.

Keywords: nighttime light data; low-carbon planning; county-level carbon emissions; Northeast
China

1. Introduction

To actively respond to the global climate change issue, our government pledged
at the Paris Climate Conference to reduce carbon emission intensity by 60~65% by 2030
compared with 2005 [1,2]. Carbon emission reduction targets and limits must be distributed
among provincial, municipal, and county levels; thus, an investigation of the spatial and
temporal distribution patterns of carbon emissions in counties can provide a basis for more
accurate emission reduction policies. However, the unique natural resource and historical
development conditions in Northeast China (the three provincial administrative regions in
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Northeast China; the three northeastern provinces are divided into Liaoning Province, Jilin
Province, and Heilongjiang Province) have formed many unique town-system structures
built around the farming, forestry, coal, and oil systems [3]. The spatial pattern of these
towns could be more manageable, with many problems such as small scale and inadequate
infrastructure and living facilities making it difficult to form a reasonable town system.
The inability to achieve agglomeration and scale effect seriously restricts residents’ low-
carbon travel and development of villages and towns. With the overall shrinkage of towns
due to population loss in recent years, the above problems are especially prominent [4,5].
To achieve regional carbon emission reduction targets in Northeast China, high-quality
development of counties and coordinated urban–rural development need to be promoted.
Implementing carbon emission reduction policies with clearer and more detailed objectives
is necessary. This requires an in-depth study of the evolutionary characteristics of carbon
emissions in Northeast China and an analysis of the differences in the spatial structure.
Previous studies on the evolutionary characteristics of carbon emissions are mostly based
on energy balance sheets provided by statistical yearbooks to calculate carbon emissions
from energy consumption. Still, county-level statistics are limited to the total statistical
energy consumption of industries above the scale, which cannot be accurately calculated
by separating energy species in detail. Due to the lack of statistical data, the obtained data
do not have spatial and temporal continuity. The above problems bring greater difficulties
in calculating counties’ carbon emissions [6,7].

The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor has gradually become
an essential tool for monitoring the spatial and temporal evolution of spatial information
and for analyzing national economic development [8–10]; it is carried by the National
Polar-Orbiting Partnership (NPP), a US environmental monitoring satellite. It can detect
human nighttime activity lights in the wavelength range of 0.5 to 0.9 µm, including urban
nighttime lights and low-intensity nighttime lights generated by residential locations,
traffic, etc. [11–13]. The types of nighttime lights it contains roughly correspond to the
classification of production, building, and transportation sectors in the carbon emission
inventory compilation, which can effectively reflect the carbon emissions generated by
human activities. Many scholars in China and abroad have successfully applied nighttime
light data to carbon emission estimation. Elvidge [14] et al. were the first to determine
that they used time-series DMSP-OLS nighttime light images (day and night images
obtained by the Operational Line scan System (OLS)of the Defense Meteorological Satellite
Program (DMSP)) to identify greenhouse gas emissions associated with cities, towns, and
industrial sites.

Many scholars have used the Intergovernmental Panel on Climate Change (IPCC)
method to estimate carbon dioxide (CO2) emissions [15]. However, this method is based on
administrative regions as statistical units, which limits the estimation of carbon emissions
in prefecture level cities, county level cities, and smaller administrative divisions because
statistical data are generally based on national or provincial units.

Oda et al. [16] proposed to use DMSP-OLS data to simulate carbon emissions in urban
areas and population data to reflect carbon emissions in non-urban areas, resulting in a
global carbon emission grid with a spatial resolution of 1 km. Raupach et al. [17] and
Ghosh et al. [18] evaluated the spatiotemporal dynamics of carbon emissions from global
energy consumption. In addition, Wang et al. [19] inverted the spatial status of China’s
urban carbon emissions in 2013. At the same time, Meng [6] et al. also used a similar
method to analyze the temporal and spatial variation characteristics of carbon emissions in
urban areas of China. Relevant scholars have also conducted urban-scale carbon emission
estimation studies. Lu [20] used DMSP-OLS data to estimate the distribution of carbon
emissions in Hebei and Beijing based on human activity indices.

In terms of the factors influencing carbon emissions, relevant studies show that factors
such as the living standard of residents, population size, economic level, urbanization level,
and affluence are the main factors influencing the increase of regional carbon dioxide emis-
sions and they show a positive correlation with carbon emissions [21–26]. The improvement
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of regional science and technology is, to a certain extent, conducive to reducing regional
carbon emissions [27,28]. In addition, household carbon emissions also impact regional
carbon emissions; raising residents’ low-carbon awareness can help reduce regional carbon
emissions to a certain extent [29,30]. In terms of the level of influence of many factors
on carbon emissions, Wang [31] et al. found in their study that the degree of influence
on carbon emissions is population size, industrialization level, urbanization level, energy
structure, technology level, and trade level in descending order. In addition, the compact
urban form can reduce cities’ carbon emissions to some extent. On the contrary, loose urban
form can lead to the growth of urban carbon emissions [32–34]. Most studies stay at the
national and provincial levels, while there are fewer at the municipal and county levels.

Based on the SNPP-VIIRS (VIIRS is the Visible Infrared Imaging Radiometer Suite;
SNPP is the Suomi National Polar-orbiting Partnership [35]) for calibration and integration
data, this paper constructs a county carbon emission estimation model. It systematically
analyzes the spatial and temporal evolution characteristics of carbon emissions in county
towns and municipalities in Northeast China from 2012 to 2020. Based on this, the spatially
hierarchical differentiation and the introduction of geographic detector technology reveal
the factors influencing carbon emission spatial and temporal changes and the relationships
between them. This study analyzes the relevant factors affecting carbon emissions in detail,
considering various factors such as economic growth, industrial structure, population
size, urbanization level, fiscal revenue and expenditure, and added value of secondary
industry. The spatial-temporal evolution of carbon emissions in counties of Northeast
China is based on GIS. It provides data support for low-carbon development and decision
making in Northeast China. It provides a theoretical basis for counties in Northeast China
to achieve “smart shrinkage” further and to guide the concentration of population and
public resources in cities and towns.

2. Data Sources
2.1. Nighttime Lighting Data Source and Processing

This article’s 2012–2020 nighttime lighting data are from the SNPP/VIIRS nighttime
lighting annual data (annual VNL V2). The spatial resolution is 15 arcsec and the image
element radiation value is in nW/cm2/sr. The Earth Observation Group (EOG) EOG
by NOAA/NGDC is based on the global VIIRS monthly cloud-free DNB composite, fur-
ther filtered for extraneous features such as biomass burning, auroras, and background
noise [13].

2.2. Nighttime Lighting Data Calculation

In general, the total light (total intensity) or average light (light density) intensity of
an area can reflect the lighting characteristics of the area. This can be done by constructing
the Sum of nighttime Lights (SOL), calculated in Equation (1)

SOL =
n

∑
i=1

DNi (1)

where DNi is the image element radiation value of each raster cell in the region; n is the
number of raster cells in the region; SOL is the Sum of nighttime Lights in the region.

Although VIIRS/VNL/V2 (VNL2) has studied several issues dealing with satellite
imaging system data technology and has significantly developed to improve the quality of
nighttime light data information, the problem of gas combustion still needs to be solved.
Gas flaring is the brightest source of radiation among all surface sources on Earth [8]. A
large number of flares will be generated around it, which is undoubtedly a tremendously
disturbing factor for constructing stable nightlight data. In this paper, we first cropped
the VNL2 raster data of Northeast China to WGS84 vector maps using the geographic
coordinate system, then converted them to the Asia Lambert planar projection coordinate
system with the spatial resolution set to 500 m. By observing the nighttime light raster
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data of Northeast China for each year, we found a small number of negative values and
individual extreme anomalies that gas-burning radiant light sources might cause. In this
paper, we refer to the method of Elvidge [8] et al., to use 472.86 as the national cell image
radiance extremes and to remove the cells with negative image values.

The study was conducted on a county-by-county basis. To make the study feasible, we
combined the areas under the jurisdiction of each prefecture-level city into one whole. After
dealing with missing data from several counties due to administrative division adjustments
and missing data, one missing data from each of Heilongjiang, Jilin, and Liaoning. Namely,
Qianguolos Mongolian Autonomous County, Karachi Zuoyi Mongolian Autonomous
County, and Dulbert Mongolian Autonomous County. Finally, we counted the remaining
140 county research units. The county carbon emissions statistics do not include municipal
districts where carbon emissions statistics are conducted.

The processed VNL2 data were extracted from the county-level administrative bound-
ary vector maps to obtain the total light image element radiation. The sum of nightlight
radiation values and SOL values for 2012–2020 for 140 county-level administrative districts
in Northeast China (Figure 1) matched with the Gross Domestic Product (GDP) data for
2012–2020 for 140 county-level administrative districts counted in the statistical yearbook.
Correlation tests were performed, where the nominal GDP data for each county-level
neighborhood were used for each province GDP deflator and converted to 2010 prices. The
test results are shown in Figure 2. The coefficient of determination R2 of the fit between
northeast county GDP and county SOL is 0.76. Based on the fact that the smaller the
administrative range of the total light value extracted from satellite image data, the larger
the error of the data, and the existence of a significant statistical error in county GDP itself,
this paper considers that this coefficient of determination of 0.76 can already indicate a
high fit between the two, suggesting that the county lighting data can better represent the
economic development of each county-level administrative region.

Int. J. Environ. Res. Public Health 2023, 20, x  5 of 19 

 

 

   
(a) (b) 

Figure 1. Nighttime lighting data in Northeast China in 2012 (a) and 2020 (b). 

 
Figure 2. The fitting diagram of county GDP and county SOL in Northeast China from 2012 to 2020. 

2.3. Energy Statistics Sources 
Energy consumption data for Northeast China were obtained from the energy 

balance sheets of each region in the China Energy Statistical Yearbook (2013–2020); the 
average low calorific value NCV of various energy sources was obtained from the China 
Energy Statistical Yearbook 2017; the CO2 emission factor CEF of different energy sources 
was obtained from the 2006 National Greenhouse Gas Emissions Inventory Guide. The GDP 
of some counties and cities in Northeast China and the GDP index data of each province 
are from the China Statistical Yearbook (2013–2020). 

3. Research Methodology 
3.1. Calculation of Carbon Emissions from Energy Consumption 

y = 0.0992x
R² = 0.7577

0

2,000

4,000

6,000

8,000

10,000

12,000

0 20,000 40,000 60,000 80,000 100,000 120,000

Co
un

tie
s o

f N
or

th
ea

st 
Ch

in
a

SO
L 

(n
W

/c
m

2/
sr

)

County GDP of Northeast China  ( million yuan )

Figure 1. Nighttime lighting data in Northeast China in 2012 (a) and 2020 (b).
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Figure 2. The fitting diagram of county GDP and county SOL in Northeast China from 2012 to 2020.

2.3. Energy Statistics Sources

Energy consumption data for Northeast China were obtained from the energy balance
sheets of each region in the China Energy Statistical Yearbook (2013–2020); the average low
calorific value NCV of various energy sources was obtained from the China Energy Statistical
Yearbook 2017; the CO2 emission factor CEF of different energy sources was obtained from
the 2006 National Greenhouse Gas Emissions Inventory Guide. The GDP of some counties
and cities in Northeast China and the GDP index data of each province are from the China
Statistical Yearbook (2013–2020).

3. Research Methodology
3.1. Calculation of Carbon Emissions from Energy Consumption

Based on the energy balance obtained from the Chinese Energy Statistical Yearbook,
“Method 1” of IPCC (2006) and referring to Caiyi et al. [36], coal, coke, coke oven gas,
blast furnace gas, converter gas, other gas, crude oil, gasoline, kerosene, diesel, fuel oil,
natural gas, and LNG were selected from the energy balance. In total, 14 types of energy
are chosen, including coal, coke, coke oven gas, blast furnace gas, converter gas, other
gas, crude oil, gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas, natural gas,
and liquefied natural gas. Using these 14 types of energy consumption to calculate carbon
dioxide emissions in Northeast China from 2012 to 2020, the specific estimation formula is
shown in Equation (2).

C =
14

∑
i=1

Ci =
14

∑
i=1

Ni · NCVi · CEFi (2)

where C is the carbon dioxide emissions to be estimated; i denotes the 14 energy sources
selected; Ni represents the consumption of various energy sources; NCVi is the average low-
level heat generation of different energy sources that is used to convert the consumption of
various energy sources into energy units (TJ); CEFi denotes the carbon dioxide emission
factor of various energy sources. The specific parameter values are shown in Table 1.
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Table 1. NCV and CEF parameter values.

Energy
Name Coal Coke Coke Coke Oven

Gas
Blast

Furnace Gas
Converter

Gas Other Gas Crude Oil

NCV (kj/kg) 20,908 28,435 17,981 3855 8585 18,273.6 41,816
CEF (kg/TJ) 95,977 105,996 44,367 259,600 181,867 44,367 73,333

Energy
Name Gasoline Kerosene Diesel Fuel Oil

Liquefied
Petroleum

Gas
Natural Gas Liquefied

Natural Gas

NCV (kj/kg) 43,070 43,070 42,652 41,816 50,179 38,931 44,200
CEF (kg/TJ) 70,033 71,500 74,067 77,367 63,067 56,100 64,167

Sources: (1) NCV values from China Energy Statistical Yearbook 2017; LNG values from IPCC (2006). (2) CEF values
from IPCC (2006).

3.2. Carbon Emission Estimation Model Hypothesis

The previous section, according to the correlation test between the county lighting
data and the GDP, shows that lighting data analyses can better reflect the continuous
development of a country’s regional economy. Assuming that there is a linear correlation
between carbon emissions and SOL values, the greater the SOL value, the more carbon
there is. By constructing the linear equation of local carbon emission and lighting data,
when considering the accuracy problem of reducing the scale to raster cells this paper
refers to Du et al. [37–39]; it adopts the linear regression equation without intercept. The
expression is:

C = a× SOL (3)

where C is the estimated carbon emissions; SOL is the total value of nighttime lighting data;
a is the regression parameter.

3.3. Index Selection

This paper takes the value added of secondary industry, industrial structure, public
finance income, public finance expenditure, and the urbanization rate as independent
variables and regional carbon emissions as the dependent variable. This paper uses geo-
graphical detectors to explore the impact of various factors on carbon emissions. The main
factors consist of five dimensions and seven indicators, as shown in Table 2.

Table 2. Influencing factors.

Variable Type Variable Name Variable Meaning

Population POP Total population at the end of the year (10,000 people)

GDP per capita GDPP Per capita GDP (CNY)

Industrial structure
SE Secondary industry added value
SP Secondary industry added value/GDP

Financial revenue and expenditure INC Local fiscal revenue (CNY 10,000)
EX Local fiscal expenditure (CNY 10,000)

Urbanization rate UR County resident population/total population

The factors are Population (POP), GDP per capita (GDPP), the secondary industry as
a share of GDP (SP), secondary industry added value (SE), financial revenue (INC) and
financial expenditure (EX), and Urbanization Rate (UR). Due to the need for urban popula-
tion statistics in Northeast China, the calculation of the urbanization rate is complicated.
Therefore, the nighttime light index is chosen as an alternative indicator. The county-level
unit data sets for 2012, 2016, and 2020 were constructed.



Int. J. Environ. Res. Public Health 2023, 20, 829 7 of 17

3.4. Geographic Detector

First proposed by the Institute of Geographical Sciences and Resources, Chinese
Academy of Sciences, the advantage of geographic probes is that they can detect single-
factor or two-factor interactions on the dependent variable. The exchange is generally
identified by adding the product term of the two factors to the regression model and
testing its statistical significance. The geographic detector q-statistic, which can be used to
measure spatial heterogeneity, detect explanatory factors, and analyze interactions between
variables, has been applied in multiple natural and social sciences fields. By calculating
and comparing the q-values of every single aspect and the q-values of the superposition
of two elements, the geographic detector can determine whether there is an interaction
between two factors and the strength, direction, linearity, or nonlinearity of the interaction.

3.4.1. Divergence and Factor Detection

Detects the spatial heterogeneity of Y (dependent variable) and how much of attribute
Y’s spatial heterogeneity is explained by a specific factor X (independent variable). Using
the q-value metric, the expression is:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(4)

SSW = ∑L
h=1 Nhσ2

h , SST = Nσ2 (5)

where h = 1, . . . , L is the stratification (strata) of variable Y or factor X, i.e., classification
or partitioning; Nh and N are the number of cells in stratum h and the whole region,
respectively; σ2

h and σ2 are the variances of Y values in stratum h and the entire region,
respectively. SSW and SST are the sum of within-squares (Within the Sum of Squares) and
the total variance of the whole area (Total Sum of Squares), respectively. The value of q is in
the range [0, 1], and the larger the matter, the more significant the spatial heterogeneity of Y.
If the independent variable X generates the stratification, the larger the value of q indicates
the more substantial the explanatory power of the independent variable X on the attribute
Y, and the weaker indicates the opposite. In the extreme case, a q value of 1 indicates that
factor X completely controls the spatial distribution of Y, and a q value of 0 indicates that
factor X has no relationship with Y. A q value means that X explains 100 × q% of Y.

3.4.2. Interaction Detection

Interactive detection can quantitatively characterize the relationship between the two
influence factors on the dependent variable, such as the influence factors A and B, and
form a new influence factor C by the spatial superposition of A and B. The attributes of C
are determined by A and B together. By comparing the influence of the A and B impact
factors and the influence of impact factor C, it can be judged whether the influence of the
interaction of the two factors on the dependent variable and the influence of the single
factor on the dependent variable are stronger or weaker.

The interaction detection mainly has the following expressions: if P (A ∩ B) < min P (A),
P (B), it indicates that the nonlinearity is weakened after the interaction of factors A and B; if
min (P (A), P (B)) < P (A ∩ B) max (P (A), P (B)) and (A ∩ B) P (A) + P (B), the nonlinearity
is strengthened after the interaction of A and B; if P (A ∩ B) = P (A) + P (B), A and B are
independent of each other. The results are calculated using the geographic detector.

4. Results
4.1. Carbon Emission Estimation Model and Accuracy Check
4.1.1. Carbon Emission Estimation Model

Using nighttime lighting data and carbon emission statistics to construct a carbon
emission estimation model, the estimation results are shown in Figure 3, which shows that
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the total value of SOL of nighttime lighting data and carbon emission statistics of energy
consumption have a good linear correlation. The expression is:

C = 0.1217(0.0045)× SOL (6)
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The determination coefficient R2 of the regression equation is 0.7722, indicating that
there is a high correlation between carbon dioxide and nighttime light data and the pro-
portional coefficient is 0.1217. The estimated standard error is 0.0045, indicating that the
proportional coefficient is significantly positive at the level of 1%, which is consistent with
the expectation of this paper. Through the scale coefficient and the county light data, the
carbon dioxide emission level of Northeast China can be estimated.

4.1.2. Accuracy Check

To ensure the reliability of the carbon emission estimation model, the accuracy of the
estimation results is further tested. Comparing the estimated results with the statistical
carbon emissions, it can be found that the average relative error is 13.51%. See Table 3 for
relative errors for each province and region for 2012–2020. On average, more than 80%
of the provinces have an error value of less than 25%. They meet the estimation accuracy
requirements and can provide a reliable database for the spatial and temporal evolution
characteristics of carbon emissions in Northeast China.

Table 3. Relative error of carbon emission estimation model.

Region 2012 2013 2014 2015 2016 2017 2018 2019 2020

Liaoning Province 25% 29% 10% 6% 6% 1% 2% 3% 4%
Jilin Province 30% 28% 11% 5% 7% 24% 22% 19% 21%

Heilongjiang Province 14% 11% 11% 9% 9% 23% 25% 22% 23%
Northeast China 23% 24% 5% 1% 1% 14% 13% 20% 21%

4.2. General Characteristics of County Carbon Emissions in Northeast China

Figures 4 and 5 show the changes in carbon emissions, carbon intensity, and per capita
carbon emissions in the whole (statistics include municipal districts) and the counties
(statistics do not include municipal districts) of Northeast China. In Figure 4, the total
carbon emissions in Northeast China grew and then slowly declined from 875.291 million
tons in 2012 to 839.622 million tons in 2020. The average annual decline rate is 0.51%. In
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Figure 5, carbon emissions in the counties of Northeast China showed the same trend, with
an upward change from 2012 to 2014 and a flat decline from 2014 to 2020. It decreased
from 461.159 million tons in 2012 to 405.752 million tons in 2020, with an average annual
decline rate of 1.5%. The carbon emissions in the counties of Northeast China experienced
a two-stage evolution from 2012 to 2020: (1) from 2012 to 2014, carbon emissions rose,
reaching a maximum of 486.325 million tons in 2014; (2) from 2014 to 2020, carbon emissions
began to decline slowly, from 486.325 million tons in 2014 to 405.752 million tons in 2020.
The average annual decline rate was 2.76%.
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In Figure 5, the carbon emission per capita in the counties of Northeast China increased
from 9.01 tons per capita in 2012 to 9.72 tons per capita in 2014 and decreased to 7.91 tons
per capita in 2020. The average annual decline rate was 1.53%. Carbon emission intensity
showed fluctuating changes from 2012 to 2020, increasing from 2.02 tons per capita in
2012 to 2.36 tons per capita in 2020. The average annual growth rate was 2.11%. The
changes in per capita carbon emissions and carbon emissions showed different trends. The
main reason was the gradual increase in population loss in Northeast China since 2014.
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Population loss leads to a decline in regional vitality, which promotes carbon emission
reduction and per capita carbon emission increase.

4.3. Trends in Carbon Emissions by Region

Due to the different stages of economic development in each region, the county carbon
emissions, per capita county carbon emissions, and county carbon emission intensity in
each region showed specific stage differences.

Table 4 shows the county carbon dioxide emissions in Northeast China. From 2012
to 2020, the most significant county carbon dioxide emissions were in Liaoning Province.
In 2012, the county carbon emissions in Jilin Province were more significant than those in
Heilongjiang Province. From 2013 to 2017, the county carbon emissions in Heilongjiang
Province were more significant than those in Jilin Province. From 2017 to 2020, there were
subtle differences in county-level carbon emissions between Jilin and Heilongjiang.

Table 4. Natural emissions, carbon emissions per capita, and carbon emission intensity by province
over time 2012–2020.

Carbon Emissions
(Million Tons)

Carbon Emissions Per Capita
(Ton/Per Capita)

Carbon Emission Intensity
(Ton/Per CNY Ten Thousand)

Heilongjiang Jilin Liaoning Heilongjiang Jilin Liaoning Heilongjiang Jilin Liaoning

2012 112.750 131.543 216.867 7.393 8.650 11.002 1.872 2.087 2.110
2013 142.141 128.372 212.410 9.489 8.505 10.945 2.112 1.878 1.936
2014 143.099 130.219 213.008 9.564 8.675 10.930 2.154 1.954 2.240
2015 136.146 118.016 196.805 9.059 7.877 10.110 1.972 1.688 2.166
2016 141.537 120.532 200.112 7.734 8.190 10.398 2.046 1.836 3.096
2017 121.766 123.023 197.322 6.729 8.526 10.246 1.760 1.874 3.053
2018 120.985 118.180 190.874 6.745 8.254 9.928 1.757 1.865 2.732
2019 115.124 116.273 186.499 6.458 8.187 9.709 2.009 2.725 2.866
2020 109.263 114.366 182.123 6.175 8.065 9.496 1.828 2.547 2.719

Regarding per capita CO2 emissions in Northeast China counties from 2012 to 2020,
Liaoning Province had the largest per capita CO2 emissions in the counties. The trend
was slowly decreasing from 11.0 tons per capita in 2012 to 9.49 tons per capita in 2020.
The average annual decline rate was 1.71%. CO2 emissions per capita in Heilongjiang
Province showed a change of rising to a peak and then slowly decreasing. It grew from
11.01 tons per capita in 2012 to a maximum of 9.72 tons per capita in 2014. Then, it declined
to 7.91 tons per capita in 2020. The county per capita CO2 in Jilin Province showed three
stages: decreasing, increasing, and then slowly decreasing. It reduced from 8.65 tons per
capita in 2012 to the lowest value, of 7.81 tons per capita in 2015, then rose to 8.52 tons per
capita in 2017 and gradually and slowly decreased to 8.06 tons per capita in 2020.

The county carbon emission intensity in Liaoning Province increased from 2.1 tons
per CNY 10,000 in 2012 to a maximum of 3.09 tons per CNY 10,000 in 2016. It gradually
decreased to 2.71 tons per CNY 10,000 from 2016 to 2020. From 2012 to 2020, the average
annual growth rate was 3.61%. The carbon emission intensity of Jilin Province counties
decreased from 2.08 tons per CNY 10,000 in 2012 to 1.68 tons per CNY 10,000 in 2015,
reaching a minimum value. It reached a maximum value of 2.72 tons per CNY 10,000 in
2019. The average annual growth rate was 2.76% from 2012 to 2020. The changing trend of
carbon emission intensity in Heilongjiang Province counties was flat, reaching a maximum
value of 2.15 tons per CNY 10,000 in 2014 and a minimum value of 1.75 tons per CNY 10,000
in 2018. Respectively, carbon emission intensity changed from 1.87 tons per CNY 10,000 to
1.82 tons per CNY 10,000 from 2012 to 2020. The average annual decline rate was 0.29%.

4.4. Trends in Carbon Emissions of Counties and Cities in Northeast China

Figure 6 shows the spatial and temporal distribution of total carbon emissions in
Northeast China in 2012 and 2020. In 2012, the high-value and medium-high-value areas of
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county carbon emissions were mainly concentrated near the municipal districts of the three
provincial capitals and the southern coastal regions, while the medium-low- and low-value
areas accounted for most of the Heilongjiang and Jilin provinces. In 2020, the high-value
and medium-high-value regions of county carbon emissions showed a trend of gathering
along the capital cities of the three provinces. The medium-value areas of county carbon
emissions began to occupy most of Jilin Province and Liaoning Province. Most low and
medium carbon emission areas still exist in Heilongjiang Province. The reason may be the
gap between regional economic and technical levels, the degree of population loss gap, and
different industrial structures.
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In this paper, a breaking point model is used to classify the regional differences of
carbon emissions based on GIS. It classifies the trends of total carbon emission growth
of counties and cities from 2012 to 2020 into five types. These five types include low
development, medium-low growth, medium growth, medium-high growth, and high
growth, as shown in Figure 7. High-growth areas are concentrated in provincial capitals and
first-tier cities. Counties and cities with medium-high growth rates are mainly distributed
in the northern and coastal regions of Northeast China. They are characterized by gathering
within counties and cities with high growth rates. The counties and cities with medium-low
and low growth rates are mainly distributed in the southern part of Northeast China and
some underdeveloped areas in the north.

For regional carbon emission intensity and per capita income, the average emission
level of the counties in Northeast China is used as the origin of the two-dimensional axis
(i.e., the carbon emission intensity per unit of GDP is 2.18 tons per CNY 10,000 and the per
capita GDP is CNY 41,200), which is divided into four quadrants, with the first quadrant
characterized by low income and low carbon emission intensity. In contrast, the second
quadrant is characterized by low income and high carbon emission intensity. The third
quadrant is characterized by high income and high carbon emission intensity. In contrast,
the fourth quadrant is characterized by high income and low carbon emission intensity.
This distribution map divides all counties and cities in Northeast China into corresponding
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quadrants and the resulting distribution map is shown in Figure 8, where we can observe
the following four characteristics.
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The fourth quadrant is characterized by high income and low carbon emission intensity.
It is mainly located near the municipal districts of the capital cities of Northeast China
and the southern coastal areas. These are the earliest industrialized areas. These regions
may play a leading role in reducing carbon emissions in Northeast China, promoting
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the transformation of old and new kinetic energy, and promoting industrial optimization
and upgrading.

The third quadrant is characterized by relatively high income and high carbon emis-
sion intensity. It is mainly located in the southern areas of Northeast China. These areas
are now in the stage of rapid industrialization. The existing heavy chemical industry is
recommended to be upgraded through technology to improve energy efficiency in order to
make it a “green industry”.

The second quadrant is characterized by relatively low income but high carbon emis-
sion intensity. It is mainly distributed in Liaoning and Jilin provinces, with linear char-
acteristics. The rest of the quadrant is distributed in the northern part of Heilongjiang
Province. They are currently in the early stages of industrialization and the industrial base
is relatively weak. In the process of development, it is recommended to optimize the energy
structure and improve economic efficiency to adapt to the development stage.

The first quadrant is characterized by low income and low carbon emission intensity,
with a linear distribution in the central part of Northeast China that gradually extends to
the north. It is suggested to speed up the construction of a modern agricultural system
with regional characteristics with obvious advantages and outstanding benefits, promote
steady economic growth, and promote the continuous increase of residents’ income.

4.5. Analysis of Influencing Factors
4.5.1. Detection of Single Factor

As shown in Table 5, overall, in 2012, the detector q values are as follows: SE (0.568) >
INC (0.56) > EX (0.548) > POP (0.421) > UR (0.413) > SP (0.220) > GDPP (0.153). In 2020, the
detector q values are as follows: UR (0.648) > INC (0.551) > SE (0.494) > POP (0.409) > EX
(0.26) > SP (0.195) > GDPP (0.03). It can be seen that the greatest influence on the spatial
heterogeneity of carbon emissions shifted from SE in 2012 to UR in 2020. Affluence did not
have a significant effect on the growth of carbon emissions.

Table 5. Detection results for influencing factors.

Index
q

2012 2016 2020

POP 0.421 *** 0.410 *** 0.409 ***
GDPP 0.153 *** 0.305 *** 0.030

SE 0.568 *** 0.259 *** 0.494 ***
SP 0.220 *** 0.10 0.195 ***

INC 0.560 *** 0.374 *** 0.551 ***
EX 0.548 *** 0.288 *** 0.260 ***
UR 0.413 *** 0.714 *** 0.648 ***

Note: *** p < 0.01.

Population size had some explanatory power on the spatial divergence of carbon
emissions and showed a decreasing trend. q values of POP in 2012 and 2016 were 0.421 and
0.41, respectively, indicating that POP was the most explanatory factor in 2012 and 2016.
Subsequently, the value decreased to 0.409 in 2020, indicating that the explanatory power
of POP on the spatial divergence of carbon emissions decreased.

The explanatory power of GDP per capita (GDPP) for the spatial divergence of carbon
emissions showed a trend of increasing before decreasing, with the q-value increasing from
0.153 in 2012 to 0.305 in 2016 and finally reducing to 0.3 in 2020 and showing no correlation.
The increase in GDP per capita between 2016 and 2020 did not significantly lead to the rise
in carbon emissions of residents, probably due to the population continued loss of people
and a decrease in urban dynamics.

Overall, the spatial divergence of carbon emissions is explained by the value added of
secondary production (SE) relative to the share of value added of the secondary output in
GDP (SP). Both show a decreasing and increasing trend, but the value added of secondary
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production as a share of GDP (SP) decreased to 0.1 in 2016, showing no correlation. q values
for value-added secondary display in 2012 and 2020 were 0.568 and 0.494, respectively,
much more significant than 0.22 and 0.195 for the value-added of the secondary output as a
share of GDP (SP).

The influence of INC on carbon emissions was consistently more significant than that
of EX, which was relatively weak in explaining the spatial variation of carbon emissions.
The q-values for the three years of the study were 0.548, 0.288, and 0.26, respectively, with
relatively low overall values and a decreasing trend.

The explanatory power of UR on the spatial divergence of carbon emissions showed a
rise before a fall. The q-values of the three years were 0.413, 0.714, and 0.648, respectively,
and although it decreased to 0.648 in 2020, it maintained a high level of influence in general.
At this stage, the vast rural areas in Northeast China are more dependent on the primary
industry. They do not produce significant material carbon emissions, that are mainly
generated by the counties.

4.5.2. Detection Interactions

Table 6 summarizes the top 10 interaction factors in 2012, 2016, and 2020. The results
show a significant increase in the interactions between the factors. Four observations can
be drawn as follows: (1) Urbanization Rate (UR) and public revenue (INC), which have
high q-values when interacting with each other, indicate that affluence and urbanization
levels play a decisive role in the impact of carbon emissions in the region. For example,
in 2012, 2016, and 2020, the q-values when UR and INC interacted reached 0.87, 0.80, and
0.79, respectively, and maintained a high level of influence despite the decreasing trend.
(2) When the factors reflecting the economic level and population size interacted, the
q-values showed a decreasing trend and maintained a relatively low level of influence.
For example, the q-values for the three years in the study were 0.733, 0.69, and 0.666,
respectively. (3) Other factors had high q-values when they interacted with UR. For example,
the q-values of INC, SE, and SP interacting with UR in 2012 reached 0.87, 0.789, and
0.773, respectively. In 2016 and 2020, the top 10 interacting influences had as many as six
interacting influences with UR. (4) The degree of influence on carbon emission when the
two factors of population size and industrial structure interacted was maintained at a low
level; it decreased from 0.701 in 2012 to 0.687 in 2020.

Table 6. Detection results of interaction for influencing factors.

Interacting
Factors 2012 Interacting

Factors 2016 Interacting
Factors 2020

UR ∩ INC 0.870 UR ∩ GDPP 0.812 UR ∩ INC 0.799
UR ∩ SE 0.789 UR ∩ EX 0.804 UR ∩ SE 0.796
UR ∩ SP 0.773 UR ∩ INC 0.803 UR ∩ GDPP 0.796

POP ∩ INC 0.760 UR ∩ SP 0.782 UR ∩ SP 0.792
POP ∩ GDPP 0.733 UR ∩ SE 0.775 UR ∩ EX 0.788

POP ∩ SE 0.723 POP ∩ UR 0.761 POP ∩ SE 0.735
UR ∩ EX 0.710 GDPP ∩ SE 0.711 UR ∩ POP 0.720
POP ∩ SP 0.701 INC ∩ GDPP 0.710 POP ∩ INC 0.708
EX ∩ INC 0.696 EX ∩ GDPP 0.703 POP ∩ SP 0.687
SE ∩ EX 0.692 POP ∩ GDPP 0.690 POP ∩ GDPP 0.666

5. Policy Recommendations

(1) Through the study, it is found that the overall carbon emissions of counties in
Northeast China reached a peak by 2014. Still, there are significant differences in their
carbon emissions due to the different factors such as industrial structure, energy structure,
and economic level in other regions. Since 2012, the phenomenon of population loss in
Northeast China provinces has intensified rapidly and the phenomenon of urban contrac-
tion and county contraction has become more serious, especially in counties and towns.
The loss of population has led to a decline in regional vitality, but it is conducive to the
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reduction of carbon emissions. Therefore, in the context of carbon peak, we should strictly
control the scale of development, activate the stock, and improve the efficiency of resource
allocation.

(2) By studying the carbon emission influencing factors in counties in this paper, it is
found that urbanization rate and industrial structure have a greater degree of influence on
regional carbon emission. Urbanization means the formation of a dynamic and competitive
regional economy, implies the integration of regional resources, and has an essential impact
on regional economic development. Therefore, in the urbanization process, the Northeast
China provinces should optimize the layout, structure, function, and development mode of
infrastructure. The agglomeration effect is formed. We must strive to avoid the growth of
carbon emissions in the future urbanization rate. At the same time, we must also promote
industrial restructuring. We should improve the efficiency of the secondary industry while
actively developing the tertiary industry and stabilizing the primary industry.

(3) By analyzing the spatial and temporal distribution of county carbon emissions in
Northeast China from 2012 to 2020, this paper finds that high-carbon counties in Northeast
China were mainly concentrated in the surrounding areas of provincial capitals and coastal
areas in Northeast China from 2012 to 2020. Therefore, we should accelerate the promotion
of industrial agglomeration, enterprise concentration, and resource-intensive development.
The resources of counties are close to cities and the spatial layout of the region should be ad-
justed in a planned manner, which includes concentrated construction land, infrastructure,
etc. The waste of resources due to population loss and a series of problems such as low
vitality, low efficiency, and low living standards arising from the small size and scattered
distribution of counties must be avoided.

6. Conclusions

The conclusions of this paper are as follows:

(1) The accuracy of the county-level carbon emission inversion model in Northeast China
is relatively high. The determination coefficient R2 of the regression equation is 0.7722.
It indicates that there is a high correlation between carbon dioxide and nighttime
light data. The proportional coefficient is 0.1217. More than 80% of the provinces
have an error of less than 25%, meeting the estimation accuracy requirements. It
indicates that nighttime lighting can explain the carbon emission data of counties in
Northeast China.

(2) From 2012 to 2020, carbon emissions in county towns in Northeast China showed a
trend of rising before falling, increasing from 461.159 million tons in 2012 to 486.325
million tons in 2014 and slowly falling to 405.752 million tons in 2020. Per capita
carbon emissions show the same trend, increasing from 9.01 tons per capita in 2012
to 9.72 tons per capita in 2014. It then decreased to 7.91 tons per capita in 2020.
In conclusion, the carbon emissions in the counties of Northeast China showed a
convergence trend and reached a peak in 2014.

(3) High growth areas of carbon emissions are concentrated in provincial capitals and
first-tier cities. The counties with medium-high growth rate are mainly distributed in
the northern and coastal areas of Northeast China. These areas are characterized by
concentrated distribution around provincial capitals. The counties and towns with
medium-low and low growth rates are mainly distributed in the underdeveloped
areas in the north and south in Northeast China.

(4) This analysis analyzes the degree of single and interactive influences of economic
level, population size, urbanization rate, industrial structure, and public finance
revenue and expenditure on carbon emissions in the counties of Northeast China
using the geographic detector method. The results show that, under the single
influence factor, the most influential factor on county carbon emissions in 2012 was
the value added of secondary production. The most influential factor in 2016 and 2020
was the urbanization rate. Under the two-factor interaction, it is found by comparison



Int. J. Environ. Res. Public Health 2023, 20, 829 16 of 17

that other factors showed a higher level of influence on county carbon emissions when
interacting with the urbanization rate.
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