A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging
Abstract
:1. Introduction
- A machine learning model based on CNNs used to classify knee injuries from MRI is proposed;
- To the best of our knowledge, this is the first work to propose the use of a pre-processing phase to extend the channels of each MRI slice and create an enhanced version of the image useful for identifying knee injuries;
- Extensive experiments are conducted on a private dataset obtained following real-life imaging protocols, achieving remarkable results.
2. Materials and Methods
2.1. Data Pre-Processing
2.2. Proposed Method
2.3. Dataset
3. Results
3.1. Evaluation Protocol
- Meniscus: intact (normal, without degenerative notes, not broken but with degenerative notes) or tear (broken, radial, longitudinal, or fracture lines present in at least three slices or morphologic deformity);
- Bone Edema: intact (normal bone, not inflamed) or inflamed (signal hyperintensity in T2 stir, inflamed bone following direct trauma or sprain);
- Abnormality: intact (if both meniscus and bone edema are intact, and no other fractures are present in the knee) or abnormal (if any fracture is present)
3.2. Performance Metrics
3.3. Model Performance
3.4. Ablation Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ondresik, M.; Azevedo Maia, F.R.; da Silva Morais, A.; Gertrudes, A.C.; Dias Bacelar, A.H.; Correia, C.; Goncalves, C.; Radhouani, H.; Amandi Sousa, R.; Oliveira, J.M.; et al. Management of knee osteoarthritis. Current status and future trends. Biotechnol. Bioeng. 2017, 114, 717–739. [Google Scholar] [CrossRef] [PubMed]
- Muraki, S.; Oka, H.; Akune, T.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Suzuki, T.; Yoshida, H.; Ishibashi, H.; et al. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese populationbased cohorts: The ROAD study. Osteoarthr. Cartil. 2009, 17, 1137–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmander, L.S.; Englund, P.M.; Dahl, L.L.; Roos, E.M. The long-term consequence of anterior cruciate ligament and meniscus injuries. Am. J. Sport. Med. 2007, 35, 1756–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Englund, M.; Roemer, F.W.; Hayashi, D.; Crema, M.D.; Guermazi, A. Meniscus pathology, osteoarthritis and the treatment controversy. Nat. Rev. Rheumatol. 2012, 8, 412–419. [Google Scholar] [CrossRef]
- Ahmed, I.; Radhakrishnan, A.; Khatri, C.; Staniszewska, S.; Hutchinson, C.; Parsons, N.; Price, A.; Metcalfe, A. Meniscus tears are more common than previously identified, however, less than a quarter of people with a tear undergo arthroscopy. Knee Surg. Sport. Traumatol. Arthrosc. 2021, 29, 3892–3898. [Google Scholar] [CrossRef]
- Luvsannyam, E.; Jain, M.S.; Leitao, A.R.; Maikawa, N.; Leitao, A.E. Meniscus Tear: Pathology, Incidence, and Management. Cureus 2022, 14, e25121. [Google Scholar] [CrossRef]
- Lakhanpal, S.; Ginsburg, W.W.; Luthra, H.S.; Hunder, G.G. Transient regional osteoporosis. A study of 56 cases and review of the literature. Ann. Intern. Med. 1987, 106, 444–450. [Google Scholar] [CrossRef]
- Hofmann, S. The painful bone marrow edema syndrome of the hip joint. Wien. Klin. Wochenschr. 2005, 117, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Starr, A.M.; Wessely, M.A.; Albastaki, U.; Pierre-Jerome, C.; Kettner, N.W. Bone marrow edema: Pathophysiology, differential diagnosis, and imaging. Acta Radiol. 2008, 49, 771–786. [Google Scholar] [CrossRef]
- Bien, N.; Rajpurkar, P.; Ball, R.L.; Irvin, J.; Park, A.; Jones, E.; Bereket, M.; Patel, B.N.; Yeom, K.W.; Shpanskaya, K.; et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med. 2018, 15, e1002699. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.W.; Mansfield, L.T. Fool me twice: Delayed diagnoses in radiology with emphasis on perpetuated errors. AJR Am. J. Roentgenol. 2014, 202, 465–470. [Google Scholar] [CrossRef] [PubMed]
- European Society of Radiology (ESR); Codari, M.; Melazzini, L.; Morozov, S.P.; van Kuijk, C.C.; Sconfienza, L.M.; Sardanelli, F. Impact of artificial intelligence on radiology: A EuroAIM survey among members of the European Society of Radiology. Insights Into Imaging 2019, 10, 105. [Google Scholar]
- Avola, D.; Cannistraci, I.; Cascio, M.; Cinque, L.; Diko, A.; Fagioli, A.; Foresti, G.L.; Lanzino, R.; Mancini, M.; Mecca, A.; et al. A Novel GAN-Based Anomaly Detection and Localization Method for Aerial Video Surveillance at Low Altitude. Remote Sens. 2022, 14, 4110. [Google Scholar] [CrossRef]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Santilli, V.; Mangone, M.; Diko, A.; Alviti, F.; Bernetti, A.; Agostini, F.; Palagi, L.; Servidio, M.; Paoloni, M.; Goffredo, M.; et al. The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients. Int. J. Environ. Res. Public Health 2023, 20, 5575. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2. [Google Scholar]
- Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Volume 3951, pp. 430–443. [Google Scholar]
- Vidya, M.; Karki, M.V. Skin cancer detection using machine learning techniques. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July 2020; pp. 1–5. [Google Scholar]
- Nguyen, Q.H.; Muthuraman, R.; Singh, L.; Sen, G.; Tran, A.C.; Nguyen, B.P.; Chua, M. Diabetic retinopathy detection using deep learning. In Proceedings of the 4th International Conference on Machine Learning and Soft Computing, Haiphong City, Viet Nam, 17–19 January 2020; pp. 103–107. [Google Scholar]
- Nasrullah, N.; Sang, J.; Alam, M.S.; Mateen, M.; Cai, B.; Hu, H. Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors 2019, 19, 3722. [Google Scholar] [CrossRef] [Green Version]
- Avola, D.; Cinque, L.; Diko, A.; Fagioli, A.; Foresti, G.L.; Mecca, A.; Pannone, D.; Piciarelli, C. MS-Faster R-CNN: Multi-stream backbone for improved Faster R-CNN object detection and aerial tracking from UAV images. Remote Sens. 2021, 13, 1670. [Google Scholar] [CrossRef]
- Astuto, B.; Flament, I.; KNamiri, N.; Shah, R.; Bharadwaj, U.; MLink, T.; DBucknor, M.; Pedoia, V.; Majumdar, S. Automatic deep learning–assisted detection and grading of abnormalities in knee MRI studies. Radiol. Artif. Intell. 2021, 3, e200165. [Google Scholar] [CrossRef]
- Mustra, M.; Delac, K.; Grgic, M. Overview of the DICOM standard. In Proceedings of the 2008 50th International Symposium ELMAR, Borik Zadar, Croatia, 10–12 September 2008; Volume 1, pp. 39–44. [Google Scholar]
- Avola, D.; Cinque, L.; Fagioli, A.; Filetti, S.; Grani, G.; Rodolà, E. Multimodal feature fusion and knowledge-driven learning via experts consult for thyroid nodule classification. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 2527–2534. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Y.; Zhao, S.; Liu, J. Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 2009, 19, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Shensa, M.J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef] [Green Version]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.; Asari, V.K. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 161–168. [Google Scholar]
- Arbabshirani, M.R.; Fornwalt, B.K.; Mongelluzzo, G.J.; Suever, J.D.; Geise, B.D.; Patel, A.A.; Moore, G.J. Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit. Med. 2018, 1, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florkowski, C.; Don-Wauchope, A.; Gimenez, N.; Rodriguez-Capote, K.; Wils, J.; Zemlin, A. Point-of-care testing (POCT) and evidence-based laboratory medicine (EBLM)—Does it leverage any advantage in clinical decision making? Crit. Rev. Clin. Lab. Sci. 2017, 54, 471–494. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Lee, K.; Shin, E.; Choy, G.; Do, S. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv 2015, arXiv:1511.06348. [Google Scholar]
- Sessions, V.; Valtorta, M. The Effects of Data Quality on Machine Learning Algorithms. In Proceedings of the 11th International Conference on Information Quality, MIT, Cambridge, MA, USA, 10–12 November 2006; Volume 11, pp. 10–12. [Google Scholar]
- Roh, Y.; Heo, G.; Whang, S.E. A Survey on Data Collection for Machine Learning. IEEE Trans. Knowl. Data Eng. 2021, 33, 1328–1347. [Google Scholar] [CrossRef] [Green Version]
Statistics | Training Set | Testing Set |
---|---|---|
Number of exams | 466 | 98 |
Number of patients | 430 | 98 |
Number of female patients | 205 (46.9%) | 21 (21.4%) |
Mean age | 46.1 | 39.8 |
Number with abnormality | 335 (71.9%) | 66 (67.3%) |
Number with meniscus tears | 127 (27.3%) | 50 (51.0%) |
Number with bone edema | 132 (28.3%) | 30 (30.6%) |
Number with bone edema and meniscus tears | 38 (8.2%) | 14 (14.3%) |
Task | Accuracy | Sensitivity | Specificity |
---|---|---|---|
Abnormality | 83.7% | 90% | 73.3% |
Meniscus tears | 83.7% | 75% | 92% |
Bone edema | 81.3% | 93.3% | 65.2% |
Abnormality | Meniscus Tears | Bone Edema | |||||||
---|---|---|---|---|---|---|---|---|---|
Input | Acc. | Sens. | Spec. | Acc. | Sens. | Spec. | Acc. | Sens. | Spec. |
Coronal hybrid | 79.5% | 85.2% | 73.9% | 73.4% | 62.5% | 80.0% | 79.5% | 85.2% | 73.9% |
Axial T2 | 75.5% | 66.8% | 84.2% | 79.5% | 70.8% | 83.7% | 75.5% | 71.4% | 78.6% |
Sagittal T1 | 77.6% | 76.9% | 78.7% | 77.6% | 68.2% | 85.5% | 77.6% | 80.8% | 73.9% |
Sagittal T2 | 77.6% | 76.9% | 78.7% | 75.5% | 67.5% | 83.7% | 77.6% | 80.8% | 73.9% |
Coronal hybrid and sagittal (T1 and T2) | 81.6% | 86.7% | 73.7% | 83.7% | 75.5% | 92.0% | 81.6% | 93.3% | 65.2% |
Axial T2, coronal hybrid, and sagittal T1 | 83.7% | 90% | 73.7% | 79.9% | 70.5% | 87.99% | 79.9% | 85.2% | 73.9% |
Axial T2 and Sagittal (T1 and T2) | 79.5% | 80.3% | 78.7% | 81.7% | 82.8% | 80.8% | 77.6% | 78.3% | 75.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangone, M.; Diko, A.; Giuliani, L.; Agostini, F.; Paoloni, M.; Bernetti, A.; Santilli, G.; Conti, M.; Savina, A.; Iudicelli, G.; et al. A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging. Int. J. Environ. Res. Public Health 2023, 20, 6059. https://doi.org/10.3390/ijerph20126059
Mangone M, Diko A, Giuliani L, Agostini F, Paoloni M, Bernetti A, Santilli G, Conti M, Savina A, Iudicelli G, et al. A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging. International Journal of Environmental Research and Public Health. 2023; 20(12):6059. https://doi.org/10.3390/ijerph20126059
Chicago/Turabian StyleMangone, Massimiliano, Anxhelo Diko, Luca Giuliani, Francesco Agostini, Marco Paoloni, Andrea Bernetti, Gabriele Santilli, Marco Conti, Alessio Savina, Giovanni Iudicelli, and et al. 2023. "A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging" International Journal of Environmental Research and Public Health 20, no. 12: 6059. https://doi.org/10.3390/ijerph20126059
APA StyleMangone, M., Diko, A., Giuliani, L., Agostini, F., Paoloni, M., Bernetti, A., Santilli, G., Conti, M., Savina, A., Iudicelli, G., Ottonello, C., & Santilli, V. (2023). A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging. International Journal of Environmental Research and Public Health, 20(12), 6059. https://doi.org/10.3390/ijerph20126059