Acute Cardiopulmonary Response of High-Intensity Interval Training with Elastic Resistance vs. High-Intensity Interval Training on a Treadmill in Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Cardiopulmonary Exercise Test (CPx)
2.4. Cardiopulmonary Exercise Test with Elastic Resistance (CPxEL)
2.5. High-intensity Interval Training (HIIT)
2.6. High-intensity Interval Training with Elastic Resistance (EL-HIIT)
2.7. Measurements
2.8. Statistical Analysis
3. Results
3.1. Cardiopulmonary Exercise Test (CPx) and Cardiopulmonary Exercise Test with Elastic Resistance (CPxEL)
3.2. Comparison of Exercise Sessions
3.2.1. Peak Values of the Exercise Sessions (Excluding Rest Intervals)
3.2.2. Average of the Exercise Sessions (Peak and Rest Intervals)
3.2.3. Entire Exercise Session (Baseline, Warm-Up, Each Work: Rest and Recovery)
4. Discussion
4.1. Peak and Average Values of Exercise Session
4.2. Entire Exercise Session (Baseline, Warm-Up, Each Work: Rest, and Recovery)
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, X.; Zhang, X.; Guo, J.; Roberts, C.K.; McKenzie, S.; Wu, W.; Liu, S.; Song, Y. Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2015, 4, e002014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, M.; Breen, L.; Hamilton, D.L.; Philp, A. Live Strong and Prosper: The Importance of Skeletal Muscle Strength for Healthy Ageing. Biogerontology 2016, 17, 497–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sport Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Methenitis, S. A Brief Review on Concurrent Training: From Laboratory to the Field. Sports 2018, 6, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacInnis, M.J.; Gibala, M.J. Physiological Adaptations to Interval Training and the Role of Exercise Intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, J.D.; Hwa Joo, C.; Jeong, T.-S.; Louhelainen, J.; Cochran, A.J.; Gibala, M.J.; Gregson, W.; Close, G.L.; Drust, B.; Morton, J.P. Matched Work High-Intensity Interval and Continuous Running Induce Similar Increases in PGC-1α MRNA, AMPK, P38, and P53 Phosphorylation in Human Skeletal Muscle. J. Appl. Physiol. 2012, 112, 1135–1143. [Google Scholar] [CrossRef] [Green Version]
- Winding, K.M.; Munch, G.W.; Iepsen, U.W.; Van Hall, G.; Pedersen, B.K.; Mortensen, S.P. The Effect on Glycaemic Control of Low-Volume High-Intensity Interval Training versus Endurance Training in Individuals with Type 2 Diabetes. Diabetes Obes. Metab. 2018, 20, 1131–1139. [Google Scholar] [CrossRef] [Green Version]
- Sabag, A.; Way, K.L.; Sultana, R.N.; Keating, S.E.; Gerofi, J.A.; Chuter, V.H.; Byrne, N.M.; Baker, M.K.; George, J.; Caterson, I.D.; et al. The Effect of a Novel Low-Volume Aerobic Exercise Intervention on Liver Fat in Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2020, 43, 2371–2378. [Google Scholar] [CrossRef]
- Wewege, M.; van den Berg, R.; Ward, R.E.; Keech, A. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Body Composition in Overweight and Obese Adults: A Systematic Review and Meta-Analysis. Obes. Rev. 2017, 18, 635–646. [Google Scholar] [CrossRef]
- Sabag, A.; Little, J.P.; Johnson, N.A. Low-volume High-intensity Interval Training for Cardiometabolic Health. J. Physiol. 2022, 600, 1013–1026. [Google Scholar] [CrossRef]
- Sharp, T.; Grandou, C.; Coutts, A.J.; Wallace, L. The Effects of High-Intensity Multimodal Training in Apparently Healthy Populations: A Systematic Review. Sport Med. Open 2022, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Mcrae, G.; Payne, A.; Zelt, J.G.E.; Scribbans, T.D.; Jung, M.E.; Little, J.P.; Gurd, B.J. Extremely Low Volume, Whole-Body Aerobic- Resistance Training Improves Aerobic Fitness and Muscular Endurance in Females. Appl. Physiol. Nutr. Metab. 2012, 37, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.F.; Evangelista, A.L.; Miranda, J.M.Q.; Teixeira, C.V.L.S.; Rica, R.L.; Lopes, C.R.; Figueira-Júnior, A.; Baker, J.S.; Bocalini, D.S. Description of Training Loads Using Whole-Body Exercise during High-Intensity Interval Training. Clinics 2018, 73, e516. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F. Very Intense Exercise-Training Is Extremely Potent and Time Efficient: A Reminder. J. Appl. Physiol. 2005, 98, 1983–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, M.S.; Little, J.P.; Tarnopolsky, M.A.; Myslik, F.; Gíbala, M.J.; Gibala, M.J. Low-Volume Interval Training Improves Muscle Oxidative Capacity in Sedentary Adults. Med. Sei. Sport Exerc. 2011, 43, 1849–1856. [Google Scholar] [CrossRef]
- Machado, A.F.; Reis, V.M.; Rica, R.L.; Baker, J.S.; Junior, A.J.F.; Bocalini, D.S. Energy Expenditure and Intensity of HIIT Bodywork® Session. Motriz. Rev. Educ. Fis. 2020, 26, 1–6. [Google Scholar] [CrossRef]
- Gasparini-Neto, V.H.; Caldas, L.C.; de Lira, C.A.B.; Carletti, L.; Leite, R.D.; Nikolaidis, P.T.; Knechtle, B.; Vancini, R.L. Profile of Blood Pressure and Glycemic Responses after Interval Exercise in Older Women Attending (in) a Public Health Physical Activity Program. J. Bodyw. Mov. Ther. 2021, 25, 119–125. [Google Scholar] [CrossRef]
- Mikesky, A.E.; Topp, R.; Wigglesworth, J.K.; Harsha, D.M.; Edwards, J.E. Efficacy of a Home-Based Training Program for Older Adults Using Elastic Tubing. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 316–320. [Google Scholar] [CrossRef]
- Mascarin, N.C.; De Lira, C.A.B.; Vancini, R.L.; Pochini, A.d.C.; da Silva, A.C.; Andrade, M.d.S. Strength Training Using Elastic Bands: Improvement of Muscle Power and Throwing Performance in Young Female Handball Players. J. Sport Rehabil. 2017, 26, 245–252. [Google Scholar] [CrossRef]
- Gasparini-Neto, V.H.; Neves, L.N.S.; Kalva-Filho, C.A.; Schwingel, P.A.; Leite, R.D.; Carletti, L. Cardiopulmonary Exercise Testing with Elastic Resistance: A New Reproducible Proposal for Determination of Ventilatory Thresholds and Maximum Oxygen Consumption. J. Sport Sci. Med. 2022, 21, 426–434. [Google Scholar] [CrossRef]
- Yoon, B.K.; Kravitz, L.; Robergs, R. , Protocol Duration, and the Plateau. Med. Sci. Sport Exerc. 2007, 39, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Slawinski, J.S.; Billat, V.L. Difference in Mechanical and Energy Cost between Highly, Well, and Nontrained Runners. Med. Sci. Sport Exerc. 2004, 36, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.L.; Harris, J.E.; Hernández, A.; Gladden, L.B. Blood Lactate Measurements and Analysis during Exercise: A Guide for Clinicians. J. Diabetes Sci. Technol. 2007, 1, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, J.P.; Safdar, A.; Wilkin, G.P.; Tarnopolsky, M.A.; Gibala, M.J. A Practical Model of Low-Volume High-Intensity Interval Training Induces Mitochondrial Biogenesis in Human Skeletal Muscle: Potential Mechanisms. J. Physiol. 2010, 588, 1011–1022. [Google Scholar] [CrossRef]
- Arney, B.E.; Glover, R.; Fusco, A.; Cortis, C.; de Koning, J.J.; van Erp, T.; Jaime, S.; Mikat, R.P.; Porcari, J.P.; Foster, C. Comparison of Rating of Perceived Exertion Scales during Incremental and Interval Exercise. Kinesiology 2019, 51, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Colado, J.C.; Garcia-Masso, X.; Travis Triplett, N.; Calatayud, J.; Flandez, J.; Behm, D.G.; Rogers, M.E. Construct and Concurrent Validation of a New Resistance Intensity Scale for Exercise with Thera-Band® Elastic Bands. J. Sport Sci. Med. 2014, 13, 758–766. [Google Scholar]
- Niven, A.; Thow, J.; Holroyd, J.; Turner, A.P.; Phillips, S.M. Comparison of Affective Responses during and after Low Volume High-Intensity Interval Exercise, Continuous Moderate- and Continuous High-Intensity Exercise in Active, Untrained, Healthy Males. J. Sport Sci. 2018, 36, 1993–2001. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.S.; Pollock, M.L. Practical Assessment of Body Composition. Phys. Sport 1985, 13, 76–90. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.C.; Dantas, T.C.B.; de Farias, L.F.; Frazão, D.T.; Prestes, J.; Moreira, S.R.; Ritti-Dias, R.M.; Tibana, R.A.; Duhamel, T.A. Inter- and Intra-Individual Analysis of Post-Exercise Hypotension Following a Single Bout of High-Intensity Interval Exercise and Continuous Exercise: A Pilot Study. Int. J. Sport Med. 2016, 37, 1038–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stork, M.J.; Gibala, M.J.; Ginis, K.A.M. Psychological and Behavioral Responses to Interval and Continuous Exercise. Med. Sci. Sport Exerc. 2018, 50, 2110–2121. [Google Scholar] [CrossRef] [PubMed]
- Falz, R.; Fikenzer, S.; Holzer, R.; Laufs, U.; Fikenzer, K.; Busse, M. Acute Cardiopulmonary Responses to Strength Training, High-Intensity Interval Training and Moderate-Intensity Continuous Training. Eur. J. Appl. Physiol. 2019, 119, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Cipryan, L.; Tschakert, G.; Hofmann, P. Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes. J. Sport Sci. Med. 2017, 16, 219–229. [Google Scholar]
- Hody, S.; Croisier, J.-L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef] [Green Version]
- Colado, J.C.; Mena, R.; Calatayud, J.; Gargallo, P.; Flández, J.; Page, P. Effects of Strength Training with Variable Elastic Resistance across the Lifespan: A Systematic Review. Cult. Cienc. Deporte 2020, 15, 147–164. [Google Scholar]
- le Scouarnec, J.; Samozino, P.; Andrieu, B.; Thubin, T.; Morin, J.-B.; Favier, F.B. Effects of Repeated Sprint Training with Progressive Elastic Resistance on Sprint Performance and Anterior-Posterior Force Production in Elite Young Soccer Players. J. Strength Cond. Res. 2022, 36, 1675–1681. [Google Scholar] [CrossRef]
- Scharhag-Rosenberger, F.; Meyer, T.; Gäßler, N.; Faude, O.; Kindermann, W. Exercise at given Percentages of VO2max: Heterogeneous Metabolic Responses between Individuals. J. Sci. Med. Sport 2010, 13, 74–79. [Google Scholar] [CrossRef]
- Gauthier, C.; Brosseau, R.; Hicks, A.L.; Gagnon, D.H. Feasibility, Safety, and Preliminary Effectiveness of a Home-Based Self-Managed High-Intensity Interval Training Program Offered to Long-Term Manual Wheelchair Users. Rehabil. Res. Pract. 2018, 2018, 8209360. [Google Scholar] [CrossRef] [Green Version]
- Wenger, H.A.; Bell, G.J. The Interactions of Intensity, Frequency and Duration of Exercise Training in Altering Cardiorespiratory Fitness. Sport Med. 1986, 3, 346–356. [Google Scholar] [CrossRef]
- Pinna, M.; Milia, R.; Roberto, S.; Marongiu, E.; Olla, S.; Loi, A.; Ortu, M.; Migliaccio, G.M.; Tocco, F.; Concu, A.; et al. Assessment of the Specificity of Cardiopulmonary Response during Tethered Swimming Using a New Snorkel Device. J. Physiol. Sci. 2013, 63, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Green, J.M.; Laurent, C.M.; Bacon, N.T.; ONeal, E.K.; Davis, J.K.; Bishop, P.A. Crossmodal Session Rating of Perceived Exertion Response at Low and Moderate Intensities. J. Strength Cond. Res. 2011, 25, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
Age and Anthropometric Parameters | |
---|---|
Age (years) | 27.6 ± 4.4 |
Height (cm) | 1.71 ± 0.10 |
Body Mass (kg) | 66.9 ± 10.6 |
BMI (kg·m−2) | 22.8 ± 2.3 |
Body Fat (%) | 14.5 ± 8.7 |
Physiological Parameters | |
HR (bpm) | 69 ± 9 |
(L·min−1) | 9.75 ± 3.16 |
(mL·kg−1·min−1) | 4.07 ± 1.27 |
(L) | 0.27 ± 0.10 |
(L) | 0.22 ± 0.08 |
RER | 0.79 ± 0.06 |
Lactate (mmol·L−1) | 0.97 ± 0.42 |
Physiological Parameters | CPx | CPxEL |
---|---|---|
HRmax (bpm) | 189 ± 9 | 182 ± 12 |
(L·min−1) | 106.10 ± 23.25 | 112.46 ± 24.43 |
(mL·kg·min−1) | 44.35 ± 5.83 | 40.86 ± 4.21 |
(L) | 2.97 ± 0.75 | 2.76 ± 0.59 |
(L) | 3.14 ± 0.81 | 2.88 ± 0.62 |
RERmax | 1.06 ± 0.04 | 1.05 ± 0.03 |
Lacpeak (mmol·L−1) | 10.12 ± 3.13 | 9.14 ± 2.63 |
Subjective Parameters | ||
BORG-CR10 (0–10) | 7.50 ± 1.87 | 8.45 ± 1.57 |
OMNI-RES EB (0–10) | 7.64 ± 1.68 | 8.59 ± 1.30 |
Physiological Parameters | HIIT | EL-HIIT | p | Cohen’s d [95% CI] |
---|---|---|---|---|
HR (bpm) | 158.79 ± 13.75 | 171.45 ± 15.93 | 0.013 * | 0.85 L [0.23 to 1.47] |
(L·min−1) | 70.51 ± 18.41 | 87.73 ± 24.56 | 0.000 * | 0.80 M [0.18 to 1.41] |
(mL·kg·min−1) | 34.98 ± 5.36 | 38.02 ± 5.06 | 0.000 * | 0.58 M [−0.02 to 1.19] |
(L) | 2.36 ± 0.65 | 2.56 ± 0.67 | 0.000 * | 0.30 S [−0.29 to 0.90] |
(L) | 1.97 ± 0.57 | 2.23 ± 0.65 | 0.000 * | 0.43 S [−0.17 to 1.02] |
RER | 0.83 ± 0.05 | 0.86 ± 0.04 | 0.362 | 0.66 M [0.06 to 1.27] |
Lac (mmol·L−1) | 3.49 ± 0.92 | 6.14 ± 2.87 | 0.656 | 1.24 L [0.60 to 1.89] |
Subjective Parameters | ||||
BORG-CR10 (0–10) | 3.47 ± 1.26 | 4.20 ± 1.17 | 0.039 * | 0.60 M [0.00 to 1.20] |
OMNI-RES EB (0–10) | 3.78 ± 1.41 | 4.89 ± 1.44 | 0.035 * | 0.78 M [0.17 to 1.39] |
Physiological Parameters | HIIT | EL-HIIT | p | Cohen’s d [95% CI] |
---|---|---|---|---|
HR (bpm) | 145 ± 15 | 158 ± 18 | 0.002 * | 0.78 M [0.17 to 1.40] |
(L·min−1) | 55.94 ± 13.29 | 70.99 ± 19.81 | 0.001 * | 0.89 L [0.27 to 1.51] |
(mL·kg·min−1) | 25.72 ± 3.42 | 28.70 ± 4.16 | 0.002 * | 0.21 S [−0.38 to 0.80] |
(L) | 1.73 ± 0.44 | 1.93 ± 0.53 | 0.000 * | 0.41 S [−0.19 to 1.01] |
(L) | 1.53 ± 0.41 | 1.83 ± 0.55 | 0.000 * | 0.62 M [0.01 to 1.22] |
RER | 0.92 ± 0.05 | 0.98 ± 0.05 | 0.166 | 1.20 L [0.56 to 1.84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, L.N.S.; Gasparini-Neto, V.H.; Leite, R.D.; Carletti, L. Acute Cardiopulmonary Response of High-Intensity Interval Training with Elastic Resistance vs. High-Intensity Interval Training on a Treadmill in Healthy Adults. Int. J. Environ. Res. Public Health 2023, 20, 6061. https://doi.org/10.3390/ijerph20126061
Neves LNS, Gasparini-Neto VH, Leite RD, Carletti L. Acute Cardiopulmonary Response of High-Intensity Interval Training with Elastic Resistance vs. High-Intensity Interval Training on a Treadmill in Healthy Adults. International Journal of Environmental Research and Public Health. 2023; 20(12):6061. https://doi.org/10.3390/ijerph20126061
Chicago/Turabian StyleNeves, Letícia Nascimento Santos, Victor Hugo Gasparini-Neto, Richard Diego Leite, and Luciana Carletti. 2023. "Acute Cardiopulmonary Response of High-Intensity Interval Training with Elastic Resistance vs. High-Intensity Interval Training on a Treadmill in Healthy Adults" International Journal of Environmental Research and Public Health 20, no. 12: 6061. https://doi.org/10.3390/ijerph20126061
APA StyleNeves, L. N. S., Gasparini-Neto, V. H., Leite, R. D., & Carletti, L. (2023). Acute Cardiopulmonary Response of High-Intensity Interval Training with Elastic Resistance vs. High-Intensity Interval Training on a Treadmill in Healthy Adults. International Journal of Environmental Research and Public Health, 20(12), 6061. https://doi.org/10.3390/ijerph20126061