Reactive Agility and Pitching Performance Improvement in Visually Impaired Competitive Italian Baseball Players: An Innovative Training and Evaluation Proposal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Participant Evaluations
2.3. Adapted Athletic Training Protocol
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourne, R.R.A.; Flaxman, S.R.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; Leasher, J.; Limburg, H.; et al. Magnitude, Temporal Trends, and Projections of the Global Prevalence of Blindness and Distance and near Vision Impairment: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2017, 5, e888–e897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esatbeyoglu, F.; Karacoban, L.; Akin, S.; Donmez, G. Exercise Programming for Individuals with Vision Loss. Turk. J. Sports Med. 2022, 57, 213–219. [Google Scholar] [CrossRef]
- Ardakani, M.K.; Shalamzari, M.H.; Mansori, M.H. Effect of Core Stability Training on Postural Control, Risk of Falling, and Function of the Blind: A Randomized Controlled Trial. Balt. J. Health Phys. Act. 2020, 12, 11–22. [Google Scholar] [CrossRef]
- Voss, P. Auditory Spatial Perception without Vision. Front. Psychol. 2016, 7, 1960. [Google Scholar] [CrossRef] [Green Version]
- Daneshmandi, H.; Noraseh, A.A.; Zarei, H. Balance in the Blind: A Systematic Review. Phys. Treat.-Specif. Phys. Ther. J. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Carretti, G.; Mirandola, D.; Sgambati, E.; Manetti, M.; Marini, M. Survey on Psychological Well-Being and Quality of Life in Visually Impaired Individuals: Dancesport vs. Other Sound Input-Based Sports. Int. J. Environ. Res. Public Health 2022, 19, 4438. [Google Scholar] [CrossRef]
- Iosa, M.; Fusco, A.; Morone, G.; Paolucci, S. Effects of Visual Deprivation on Gait Dynamic Stability. Sci. World J. 2012, 2012, 974560. [Google Scholar] [CrossRef] [Green Version]
- Hallemans, A.; Beccu, S.; Van Loock, K.; Ortibus, E.; Truijen, S.; Aerts, P. Visual Deprivation Leads to Gait Adaptations That Are Age- and Context-Specific: II. Kinematic Parameters. Gait Posture 2009, 30, 307–311. [Google Scholar] [CrossRef]
- Haibach, P.S.; Wagner, M.O.; Lieberman, L.J. Determinants of Gross Motor Skill Performance in Children with Visual Impairments. Res. Dev. Disabil. 2014, 35, 2577–2584. [Google Scholar] [CrossRef] [Green Version]
- Gori, M.; Amadeo, M.B.; Campus, C. Spatial Metric in Blindness: Behavioural and Cortical Processing. Neurosci. Biobehav. Rev. 2020, 109, 54–62. [Google Scholar] [CrossRef]
- Esposito, D.; Bollini, A.; Gori, M. Early Blindness Limits the Head-Trunk Coordination Development for Horizontal Reorientation. Front. Hum. Neurosci. 2021, 15, 699312. [Google Scholar] [CrossRef]
- Voss, P.; Tabry, V.; Zatorre, R.J. Trade-off in the Sound Localization Abilities of Early Blind Individuals between the Horizontal and Vertical Planes. J. Neurosci. 2015, 35, 6051–6056. [Google Scholar] [CrossRef] [Green Version]
- Kolarik, A.J.; Moore, B.C.J.; Cirstea, S.; Raman, R.; Gopalakrishnan, S.; Pardhan, S. Partial Visual Loss Disrupts the Relationship between Judged Room Size and Sound Source Distance. Exp. Brain. Res. 2022, 240, 81–96. [Google Scholar] [CrossRef]
- Surakka, A.; Kivelä, T. The Effect of a Physical Training Programme on Flexibility of Upper Body and Trunk in Visually Impaired and Deaf-Blind Persons. Eur. J. Adapt. Phys. Act. 2011, 4, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Maaswinkel, E.; van Drunen, P.; Veeger, D.-J.H.E.J.; van Dieën, J.H. Effects of Vision and Lumbar Posture on Trunk Neuromuscular Control. J. Biomech. 2015, 48, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Khani, M.K.; Ardakani, K.M.; Mansori, M.H. Investigating the Relationship Between Lower Limb Flexibility with Motor Function and Risk of Falling in Visually Impaired Individuals. Phys. Treat.-Specif. Phys. Ther. J. 2021, 11, 93–102. [Google Scholar]
- Li, Q.D.; Kuang, X.M.; Qi, J. Correlates of Physical Activity of Children and Adolescents with Visual Impairments: A Systematic Review. Curr. Pharm. Des. 2020, 26, 5002–5011. [Google Scholar] [CrossRef]
- Rogge, A.-K.; Hamacher, D.; Cappagli, G.; Kuhne, L.; Hötting, K.; Zech, A.; Gori, M.; Röder, B. Balance, Gait, and Navigation Performance Are Related to Physical Exercise in Blind and Visually Impaired Children and Adolescents. Exp. Brain Res. 2021, 239, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
- Cullen, K.E.; Taube, J.S. Our Sense of Direction: Progress, Controversies and Challenges. Nat. Neurosci. 2017, 20, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Medendorp, W.P.; Selen, L.J.P. Vestibular Contributions to High-Level Sensorimotor Functions. Neuropsychologia 2017, 105, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seemungal, B.M.; Glasauer, S.; Gresty, M.A.; Bronstein, A.M. Vestibular Perception and Navigation in the Congenitally Blind. J. Neurophysiol. 2007, 97, 4341–4356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corazzini, L.L.; Tinti, C.; Schmidt, S.; Mirandola, C.; Cornoldi, C. Developing Spatial Knowledge in the Absence of Vision: Allocentric and Egocentric Representations Generated by Blind People When Supported by Auditory Cues. Psychol. Belg. 2010, 50, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Pasqualotto, A.; Proulx, M.J. The Role of Visual Experience for the Neural Basis of Spatial Cognition. Neurosci. Biobehav. Rev. 2012, 36, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.-Y.; Shi, B.; Wu, D.-M.; Zhang, L.; Weng, C.-S.; Zhang, L.-H. Effect of Vision Loss on Plasticity of the Head and Neck Proprioception. Int. J. Ophthalmol. 2021, 14, 1059–1065. [Google Scholar] [CrossRef]
- Salari, A.; Sahebozamani, M.; Daneshjoo, A.; Karimi, A.F. Assessment of Balance Recovery Strategies during Manipulation of Somatosensory, Vision, and Vestibular System in Healthy and Blind Women. JRSR 2019, 6, 123–129. [Google Scholar]
- Mohammadi, F.; Bayati, M.; Abbasi, H.; Allafan, N. Better Functioning of the Somatosensory System in Postural Control of Blind Athletes Compared to Non-Athletes. J. Rehab. Med. 2019, 8, 179–187. [Google Scholar]
- Marini, M.; Sarchielli, E.; Portas, M.F.; Ranieri, V.; Meli, A.; Piazza, M.; Sgambati, E.; Monaci, M. Can Baseball Improve Balance in Blind Subjects? J. Sports Med. Phys. Fit. 2011, 51, 227–232. [Google Scholar]
- da Silva, E.S.; Fischer, G.; da Rosa, R.G.; Schons, P.; Teixeira, L.B.T.; Hoogkamer, W.; Peyré-Tartaruga, L.A. Gait and Functionality of Individuals with Visual Impairment Who Participate in Sports. Gait Posture 2018, 62, 355–358. [Google Scholar] [CrossRef]
- Cheikh, Y.; Zenagui, S. The Effect of a Physical Fitness Program on the Health-Related Physical Fitness Components of Blind Male Students. Gazz. Med. Ital. Arch. Sci. Med. 2019, 178, 723–728. [Google Scholar] [CrossRef]
- Ilhan, B.; Idil, A.; Ilhan, I. Sports Participation and Quality of Life in Individuals with Visual Impairment. Ir. J. Med. Sci. 2021, 190, 429–436. [Google Scholar] [CrossRef]
- Winckler, O.; Ciro; Mataruna, L.; Squarisi Carvalho, A.J.; Ferreira Araújo, P.; Gavião Almeida, J.J. As Relações Do Jogo e o Desenvolvimento Motor Na Pessoa Com Deficiência Visual. Rev. Bras. Cienc. Esporte Camp. 2006, 27, 131–147. [Google Scholar]
- Talmachev, R.A. Present-Day Sports Activities among the Blind and Persons with Poor Vision in Different Countries of the World. Vestn. Oftalmol. 2003, 119, 43–46. [Google Scholar]
- Mann, D.L.; Ravensbergen, H.J.C. International Paralympic Committee (IPC) and International Blind Sports Federation (IBSA) Joint Position Stand on the Sport-Specific Classification of Athletes with Vision Impairment. Sports Med. 2018, 48, 2011–2023. [Google Scholar] [CrossRef] [Green Version]
- Mirandola, D.; Monaci, M.; Miccinesi, G.; Vannuzzi, A.; Sgambati, E.; Manetti, M.; Marini, M. Psychological Well-Being and Quality of Life in Visually Impaired Baseball Players: An Italian National Survey. PLoS ONE 2019, 14, e0218124. [Google Scholar] [CrossRef]
- Chen, C.C. Orientation and Mobility of the Visually Impaired in a Blind Baseball Training Method. J. Phys. Educ. Sport Manag. 2012, 3, 20–26. [Google Scholar]
- Finocchietti, S.; Gori, M.; Souza Oliveira, A. Kinematic Profile of Visually Impaired Football Players During Specific Sports Actions. Sci. Rep. 2019, 9, 10660. [Google Scholar] [CrossRef] [Green Version]
- Stratton, C.S.M.; Fagher, K.; Li, X.; Ottesen, T.D.; Tuakli-Wosornu, Y.A. Blind Sports’ Blind Spot: The Global Epidemiology of Visual Impairment against Participation Trends in Elite Blind Para Sport. J. Rehabil. Assist. Technol. Eng. 2022, 9, 20556683221122276. [Google Scholar] [CrossRef]
- WMA–The World Medical Association-Declaration of Helsinki. Available online: https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/ (accessed on 16 March 2022).
- AGENCY, L.W. Il Gioco e le Regole–Baseball x Ciechi–AIBXC. Available online: https://www.aibxc.it/giocoregole/ (accessed on 16 March 2022).
- Lopes, T.R.; Pereira, H.M.; Silva, B.M. Perceived Exertion: Revisiting the History and Updating the Neurophysiology and the Practical Applications. Int. J. Environ. Res. Public Health 2022, 19, 14439. [Google Scholar] [CrossRef] [PubMed]
- Tchórzewski, D.; Jaworski, J.; Bujas, P. Influence of Long-Lasting Balancing on Unstable Surface on Changes in Balance. Hum. Mov. 2010, 11, 144–152. [Google Scholar] [CrossRef]
- LIBRA–Dispositivo Per Rieducazione Propriocettiva. Easytech. Available online: https://easytechitalia.com/libra/ (accessed on 11 February 2022).
- Freitas, T.T.; Alcaraz, P.E.; Winckler, C.; Zabaloy, S.; Pereira, L.A.; Loturco, I. Differences in Strength, Speed, and Power Performance Between Visually Impaired Paralympic and Olympic Sprinters. Int. J. Sports Physiol. Perform. 2022, 17, 787–790. [Google Scholar] [CrossRef]
- Aggius-Vella, E.; Campus, C.; Finocchietti, S.; Gori, M. Audio Spatial Representation Around the Body. Front. Psychol. 2017, 8, 1932. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.; Graupera, L.; Vera, P. Kinematic and Kinetic Study of Running Technique at Different High Speeds in Blind Paralympic Athletes. In Proceedings of the 34 International Conference of Biomechanics in Sport (2016), Tsukuba, Japan, 18–22 July 2016; pp. 523–526. Available online: https://ojs.ub.uni-konstanz.de/cpa/article/view/752 (accessed on 16 March 2022).
- Kozina, Z.; Chaika, O.; Prokopenko, I.; Zdanyuk, V.; Kniaz, H.; Proskurnia, O.; Chernozub, A.; Shkrebtii, Y.; Romantsova, Y. Change in the Biomechanical Characteristics of Running as a Result of an Individual 1-Year Program for Training an Elite Athlete with visual impairment for Paralympic Games. Physiother. Quart. 2020, 28, 21–31. [Google Scholar] [CrossRef]
- Maćkowiak, Z.; Osiński, W.; Salamon, A. The Effect of Sensorimotor Training on the Postural Stability of Visually Impaired Women over 50 Years of Age. J. Women Aging 2015, 27, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.J.; Winkelmann, Z.K.; Powden, C.J.; Games, K.E. Proprioceptive Training for the Prevention of Ankle Sprains: An Evidence-Based Review. J. Athl. Train. 2017, 52, 1065–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavol, M.J.; Pai, Y.-C. Feedforward Adaptations Are Used to Compensate for a Potential Loss of Balance. Exp. Brain. Res. 2002, 145, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Behm, D.G. The Impact of Instability Resistance Training on Balance and Stability. Sports Med. 2005, 35, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Willson, J.D.; Dougherty, C.P.; Ireland, M.L.; Davis, I.M. Core Stability and Its Relationship to Lower Extremity Function and Injury. J. Am. Acad. Orthop. Surg. 2005, 13, 316–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, G.D.; Washington, J.K.; Barfield, J.W.; Gascon, S.S.; Gilmer, G. Quantitative Analysis of Proximal and Distal Kinetic Chain Musculature During Dynamic Exercises. J. Strength Cond. Res. 2018, 32, 1545–1553. [Google Scholar] [CrossRef]
- Meron, A.; Saint-Phard, D. Track and Field Throwing Sports: Injuries and Prevention. Curr. Sports Med. Rep. 2017, 16, 391–396. [Google Scholar] [CrossRef]
- Winters, E.; Doty, S.; Lott, M.; Baker, J. Neuromechanical Integration of Pelvic-Thoracic Rotation among Youth Baseball Throwers. Sports Med. Int. Open 2022, 6, E47–E52. [Google Scholar] [CrossRef]
- Mayes, M.; Salesky, M.; Lansdown, D.A. Throwing Injury Prevention Strategies with a Whole Kinetic Chain-Focused Approach. Curr. Rev. Musculoskelet. Med. 2022, 15, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, D.M.; Bassett, A.J.; Mayer, L.W.; Berkson, E.M. Kinematic Sequence Patterns in the Overhead Baseball Pitch. Sports Biomech. 2020, 19, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, P.N.; Wimmer, M.A.; Verma, N.N.; Cole, B.J.; Romeo, A.A.; Cvetanovich, G.L.; Pearl, M.L. The Relationship Between Pitching Mechanics and Injury: A Review of Current Concepts. Sports Health 2017, 9, 216–221. [Google Scholar] [CrossRef]
- Mercier, M.-A.; Tremblay, M.; Daneau, C.; Descarreaux, M. Individual Factors Associated with Baseball Pitching Performance: Scoping Review. BMJ Open Sport Exerc. Med. 2020, 6, e000704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Visually Impaired Athletes |
---|---|
Age (years), mean ± SD (range) | 25.4 ± 9.1 (14–40) |
Sex, n (%) | |
Male | 5 (62.5) |
Female | 3 (37.5) |
Blindness, n (%) | |
Congenital | 6 (75.0) |
Acquired | 2 (25.0) |
Visual disability level, n (%) | |
Blind | 3 (37.5) |
Severely sight-impaired | 3 (37.5) |
Mildly sight-impaired | 2 (25.0) |
ROM Degrees | Baseline Mean ± SD (SEM) | Post-AAT Mean ± SD (SEM) | p * |
---|---|---|---|
Right shoulder | |||
Flexion | 144.00 ± 13.56 (4.79) | 159.12 ± 19.35 (6.84) | 0.036 |
Abduction | 159.50 ± 24.12 (8.52) | 167.50 ± 19.08 (6.74) | 0.078 |
External rotation | 55.87 ± 14.96 (5.28) | 54.00 ± 12.95 (4.57) | 0.351 |
Left shoulder | |||
Flexion | 154.12 ± 13.98 (4.94) | 161.00 ± 17.01 (6.01) | 0.128 |
Abduction | 157.62 ± 30.25 (10.69) | 168.12 ± 18.88 (6.67) | 0.068 |
External rotation | 58.37 ± 8.99 (3.17) | 64.87 ± 6.87 (2.43) | 0.075 |
Right elbow | |||
Flexion | 137.87 ± 11.72 (4.14) | 143.12 ± 10.32 (3.65) | 0.172 |
Left elbow | |||
Flexion | 135.75 ± 10.29 (3.63) | 142.00 ± 7.32 (2.59) | 0.080 |
Right wrist | |||
Flexion | 66.50 ± 18.33 (6.48) | 76.50 ± 14.17 (5.01) | 0.042 |
Left wrist | |||
Flexion | 64.00 ± 20.79 (7.35) | 75.25 ± 13.59 (4.80) | 0.075 |
Right hip | |||
Flexion | 78.25 ± 12.60 (4.45) | 89.12 ± 15.41 (5.44) | 0.048 |
Extension | 26.75 ± 5.25 (1.85) | 31.87 ± 2.10 (0.74) | 0.027 |
Left hip | |||
Flexion | 77.37 ± 11.56 (4.08) | 89.62 ± 17.75 (6.27) | 0.046 |
Extension | 24.50 ± 6.23 (2.20) | 30.37 ± 2.55 (0.90) | 0.041 |
Right knee | |||
Flexion | 106.12 ± 18.02 (6.37) | 109.37 ± 21.61 (7.64) | 0.553 |
Left knee | |||
Flexion | 105.25 ± 24.84 (8.78) | 108.12 ± 13.87 (4.90) | 0.833 |
Variables | Baseline Mean ± SD (SEM) | Post-AAT Mean ± SD (SEM) | p * |
---|---|---|---|
Home plate–first base speed (m/s) | 4.41 ± 0.39 (0.13) | 4.53 ± 0.60 (0.21) | 0.400 |
Home plate–second base speed (m/s) | 4.38 ± 0.54 (0.19) | 4.14 ± 0.75 (0.26) | 0.161 |
Orthostatic pitching length (m) | 14.06 ± 3.43 (1.21) | 15.03 ± 3.38 (1.19) | 0.104 |
Kneeling pitching length (m) | 12.04 ± 3.99 (1.41) | 13.21 ± 3.43 (1.21) | 0.161 |
Libra CDG test (%) | |||
Bipodalic stance | 80.85 ± 10.52 (3.72) | 75.11 ± 9.39 (3.31) | 0.012 |
Right monopodalic stance | 77.91 ± 10.11 (3.57) | 72.67 ± 11.19 (3.95) | 0.017 |
Left monopodalic stance | 82.18 ± 5.40 (1.90) | 77.57 ± 4.74 (1.67) | 0.016 |
Borg CR10 scale | 8.37 ± 1.06 (0.37) | 7.25 ± 1.16 (0.41) | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carretti, G.; Bianco, R.; Sgambati, E.; Manetti, M.; Marini, M. Reactive Agility and Pitching Performance Improvement in Visually Impaired Competitive Italian Baseball Players: An Innovative Training and Evaluation Proposal. Int. J. Environ. Res. Public Health 2023, 20, 6166. https://doi.org/10.3390/ijerph20126166
Carretti G, Bianco R, Sgambati E, Manetti M, Marini M. Reactive Agility and Pitching Performance Improvement in Visually Impaired Competitive Italian Baseball Players: An Innovative Training and Evaluation Proposal. International Journal of Environmental Research and Public Health. 2023; 20(12):6166. https://doi.org/10.3390/ijerph20126166
Chicago/Turabian StyleCarretti, Giuditta, Raffaele Bianco, Eleonora Sgambati, Mirko Manetti, and Mirca Marini. 2023. "Reactive Agility and Pitching Performance Improvement in Visually Impaired Competitive Italian Baseball Players: An Innovative Training and Evaluation Proposal" International Journal of Environmental Research and Public Health 20, no. 12: 6166. https://doi.org/10.3390/ijerph20126166
APA StyleCarretti, G., Bianco, R., Sgambati, E., Manetti, M., & Marini, M. (2023). Reactive Agility and Pitching Performance Improvement in Visually Impaired Competitive Italian Baseball Players: An Innovative Training and Evaluation Proposal. International Journal of Environmental Research and Public Health, 20(12), 6166. https://doi.org/10.3390/ijerph20126166