Predicting and Moderating COVID-Fear and Stress among College Students in Argentina and the USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. COVID-19 Related Fears
2.2.2. Cognitive Emotion Regulation Questionnaire
2.2.3. MOS Social Support Survey
2.2.4. Perceived Stress Scale
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Preliminary Analyses
3.2. COVID-Fear: Cross-Sectional and Longitudinal Measurement Invariance
3.3. Differential Exposure: Predictors of COVID-Fear
3.4. Differential Reactivity: Moderating the Effects of COVID-Fear on Psychological Stress
3.5. Gender (Binary)
3.6. Positive Reframing
3.7. Rumination
3.8. Social Support
3.9. Summary
4. Discussion
4.1. Discussion
4.2. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smalley, A. National Conference of State Legislatures. Available online: https://www.ncsl.org/education/higher-education-responses-to-coronavirus-covid-19 (accessed on 22 March 2021).
- Coronavirus: Suspensión de Clases Presenciales 14 Días Consecutivos a Partir Del 16 de Marzo. Argentina.gob.ar. Available online: https://www.argentina.gob.ar/noticias/coronavirus-suspension-de-clases-presenciales-14-dias-consecutivos-partir-del-16-de-marzo (accessed on 22 March 2021).
- Argentina.gob.ar. Available online: https://www.argentina.gob.ar/sites/default/files/acerca_de_los_90.000_comercios_que_supuestamente_cerraron_0.pdf (accessed on 22 March 2021).
- Birmingham, W.C.; Wadsworth, L.L.; Lassetter, J.H.; Graff, T.C.; Lauren, E.; Hung, M. COVID-19 lockdown: Impact on college students’ lives. J. Am. Coll. Health 2021, 71, 1–15. [Google Scholar]
- Daniali, H.; Martinussen, M.; Flaten, M.A. A global meta-analysis of depression, anxiety, and stress before and during COVID-19. Health Psychol. 2023, 42, 124. [Google Scholar]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; McIntyre, R.S.; Choo, F.N.; Tran, B.; Ho, R.; Sharma, V.K.; et al. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain. Behav. Immun. 2020, 87, 40–48. [Google Scholar]
- Coelho, C.M.; Suttiwan, P.; Arato, N.; Zsido, A.N. On the nature of fear and anxiety triggered by COVID-19. Front. Psych. 2020, 11, 581314. [Google Scholar]
- Hjorth, C.F.; Bilgrav, L.; Frandsen, L.S.; Overgaard, C.; Torp-Pedersen, C.; Nielsen, B.; Bøggild, H. Mental health and school dropout across educational levels and genders: A 4.8-year follow-up study. BMC Public Health 2016, 16, 1–12. [Google Scholar]
- Slominski, L.; Sameroff, A.; Rosenblum, K.; Kasser, T.I.M. Longitudinal predictors of adult socioeconomic attainment: The roles of socioeconomic status, academic competence, and mental health. Dev. Psychopathol. 2011, 23, 315–324. [Google Scholar]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/museum/timeline/covid19.html. (accessed on 22 March 2021).
- Huckins, J.F.; da Silva, A.W.; Wang, W.; Hedlund, E.; Rogers, C.; Nepal, S.K.; Wu, J.; Obuchi, M.; Murphy, E.I.; Meyer, M.L.; et al. Mental health and behavior of college students during the early phases of the COVID-19 pandemic: Longitudinal smartphone and Ecological Momentary Assessment Study. J. Med. Internet Res. 2020, 22, e20185. [Google Scholar]
- Son, C.; Hegde, S.; Smith, A.; Wang, X.; Sasangohar, F. Effects of COVID-19 on college students’ mental health in the United States: Interview survey study. J. Med. Internet Res. 2020, 22, e21279. [Google Scholar]
- Tang, W.; Hu, T.; Yang, L.; Xu, J. The role of alexithymia in the mental health problems of home-quarantined university students during the COVID-19 pandemic in China. Personal. Individ. Differ. 2020, 165, 110131. [Google Scholar]
- Majumdar, P.; Biswas, A.; Sahu, S. COVID-19 pandemic and lockdown: Cause of sleep disruption, depression, somatic pain, and increased screen exposure of office workers and students of India. Chronobiol. Int. 2020, 37, 1191–1200. [Google Scholar]
- Lazarus, R.S.; Folkman, S. Stress, Appraisal, and Coping; Springer: New York, NY, USA, 1984. [Google Scholar]
- Lazarus, R.S.; DeLongis, A.; Folkman, S.; Gruen, R. Stress and adaptational outcomes: The problem of confounded measures. Am. Psychol. 1985, 40, 770–779. [Google Scholar]
- Bibbey, A.; Carroll, D.; Roseboom, T.J.; Phillips, A.C.; Rooij, S.R. Personality and physiological reactions to acute psychological stress. Int. J. Psychophysiol. 2013, 90, 28–36. [Google Scholar]
- Chida, Y.; Hamer, M. Chronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: A quantitative review of 30 years of investigations. Psychol. Bull. 2008, 134, 829–885. [Google Scholar]
- Dickerson, S.S.; Kemeny, E. Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychol. Bull. 2004, 130, 355–391. [Google Scholar]
- Barbosa-Leiker, C.; Kostick, M.; Lei, M.; McPherson, S.; Roper, V.; Hoeskstra, T.; Wright, B. Measurement Invariance of The Perceived Stress Scale and Latent Mean Differences Across Gender and Time. Stress Health J. Int. Soc. Investig. Stress 2013, 29, 253–260. [Google Scholar]
- Nolen-Hoeksema, S. Gender differences in depression. Curr. Dir. Psychol. Sci. 2001, 10, 173–176. [Google Scholar]
- Bolger, N.; Zuckerman, A. A framework for studying personality in the stress process. J. Pers. Soc. Psychol. 1995, 69, 890–902. [Google Scholar]
- Ettman, C.K.; Abdalla, S.M.; Cohen, G.H.; Sampson, L.; Vivier, P.M.; Galea, S. Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic. JAMA 2020, 3, 1–12. [Google Scholar]
- Fitzpatrick, K.M.; Harris, C.; Drawve, G. Living in the midst of fear: Depressive symptomatology among US adults during the COVID-19 pandemic. Depress. Anxiety 2020, 37, 957–964. [Google Scholar]
- Cohen, S. Social relationships and health. Am. Psychol. 2004, 59, 676–684. [Google Scholar]
- Cohen, S.; Wills, T.A. Stress, social support, and the buffering hypothesis. Psychol. Bull. 1985, 98, 310–357. [Google Scholar]
- Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020, 27, 1–4. [Google Scholar]
- Gullo, S.S.; Gelo, O.C.G.; Bassi, G.; Lo Coco, G.; Lagetto, G.; Esposito, G.; Pazzagli, C.; Salcuni, S.; Freda, M.F.; Mazzeschi, C.; et al. The role of emotion regulation and intolerance to uncertainty on the relationship between fear of COVID-19 and distress. Curr. Psychol. 2022, 1–12. [Google Scholar]
- Zacher, H.; Rudolph, C.W. Individual differences and changes in subjective wellbeing during the early stages of the COVID-19 pandemic. Am. Psychol. 2020, 76, 50–62. [Google Scholar]
- Nolen-Hoeksema, S. Emotion regulation and psychopathology: The role of gender. Annu. Rev. Clin. Psychol. 2012, 8, 161–187. [Google Scholar]
- Maxwell, B. Translation and cultural adaptation of the survey instruments. In Third International Mathematics and Science Study (TIMSS), Technical Report, Volume I: Design and Development; Martin, M.O., Kelly, D.L., Eds.; Boston College: Chestnut Hill, MA, USA, 1996. [Google Scholar]
- Muñiz, J.; Hambleton, R.K. Directrices para la traducción y adaptación de los tests. Papeles Psicólogo 1996, 66, 63–70. [Google Scholar]
- Ho, S.; Cook, K.V.; Chen, Z.J.; Kurniati, N.M.T.; Suwartono, C.; Widyarini, N.; Wong, P.T.P.; Cowden, R.G. Suffering, psychological distress, and well-being in Indonesia: A prospective cohort study. Stress Health 2022, 38, 879–890. [Google Scholar]
- Boyraz, G.; Legros, D.N. Coronavirus disease (COVID-19) and traumatic stress: Probable risk factors and correlates of posttraumatic stress disorder. J. Loss Trauma 2020, 25, 503–522. [Google Scholar]
- Garnefski, N.; Kraaij, V. Cognitive emotion regulation questionnaire-development of a short 18-item version (CERQ-short). Personal. Individ. Differ. 2006, 41, 1045–1053. [Google Scholar]
- Medrano, L.A.; Moretti, L.; Ortiz, A.; Pereno, G. Validación del Cuestionario de Regulación Emocional Cognitiva en Universitarios de Córdoba. Argent. Psykhe 2015, 22, 83–96. [Google Scholar]
- Garnefski, N.; Kraaij, V.; Spinhoven, P. Negative life events, cognitive emotion regulation and emotional problems. Personal. Individ. Differ. 2001, 30, 1211–1327. [Google Scholar] [CrossRef]
- Sherbourne, C.D.; Stewart, A.L. The MOS social support survey. Soc. Sci. Med. 1991, 32, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Campelo, P.E.; Pérez-Moreno, E.M.; Burgos-Lunar, C.; Bragado-Álvarez, C.; Jiménez-García, R.; Salinero-Fort, M.Á. Psychometric properties of the eight-item modified Medical Outcomes Study Social Support Survey based on Spanish outpatients. Qual. Life Res. Int. J. Qual. Life Asp. Treat. Care Rehabil. 2014, 23, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Holden, L.; Lee, C.; Hockey, R.; Ware, R.S.; Dobson, A.J. Validation of the MOS Social Support Survey 6-item (MOS-SSS-6) measure with two large population-based samples of Australian women. Qual. Life Res. 2014, 23, 2849–2853. [Google Scholar] [CrossRef]
- Rodríguez, S.; Rodríguez, E.; Camelo, H. Validación Argentina del cuestionario MOS de apoyo social percibido. Psicodebate 2007, 7, 155–168. [Google Scholar] [CrossRef]
- Giangrasso, B.; Casale, S. Psychometric properties of the medical outcome study social support survey with a general population sample of undergraduate students. Soc. Indic. Res. 2014, 116, 185–197. [Google Scholar] [CrossRef]
- Baik, S.H.; Fox, R.S.; Mills, S.D.; Roesch, S.C.; Sadler, G.R.; Klonoff, E.A.; Malcarne, V.L. Reliability and validity of the Perceived Stress Scale-10 in Hispanic Americans with English or Spanish language preference. J. Health Psychol. 2019, 24, 62–639. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar]
- Cohen, S.; Williamson, G. Perceived stress in a probability sample of the United States. In The Claremont Symposium on Applied Social Psychology. The Social Psychology of Health; Spacapan, S.S., Oskamp, S., Eds.; Sage Publications, Inc.: Newbury Park, CA, USA, 1988; pp. 31–67. [Google Scholar]
- Roberti, J.W.; Harrington, L.N.; Storch, E.A. Further psychometric support for the 10-item version of the perceived stress scale. J. Coll. Couns. 2006, 9, 135–147. [Google Scholar]
- Smith, K.J.; Rosenberg, D.L.; Haight, T.G. An assessment of the psychometric properties of the Perceived Stress Scale-10 (PSS 10) with business and accounting students. Account. Perspect. 2014, 13, 29–59. [Google Scholar]
- Curran, P.G. Methods for the detection of carelessly invalid responses in survey data. J. Exp. Soc. Psychol. 2016, 66, 4–19. [Google Scholar] [CrossRef] [Green Version]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 1998. [Google Scholar]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research, 2nd ed.; The Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Schlomer, G.L.; Bauman, S.; Card, N.A. Best practices for missing data management in counseling psychology. J. Couns. Psychol. 2010, 57, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Glob. Health 2020, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Portillo, J.A.; Warner, C.M.; Kline, A.E.; Bixter, M.T.; Chu, B.C.; Miranda, R.; Nadeem, E.; Nickerson, A.; Peralta, A.O.; Reigada, L.; et al. The psychological, academic, and economic impact of COVID-19 on college students in the epicenter of the pandemic. Emerg. Adulthood 2022, 10, 473–490. [Google Scholar] [CrossRef]
- Sapolsky, R.M. Social status and health in humans and other animals. Annu. Rev. Anthropol. 2004, 33, 393–418. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.; Quick, J.C. The Handbook of Stress and Health: A Guide to Research and Practice; John Wiley & Sons: Chichester, UK, 2017. [Google Scholar]
- Banerjee, D. The COVID-19 outbreak: Crucial role the psychiatrists can play. Asian J. Psychiatry 2020, 50, 102014. [Google Scholar] [CrossRef]
- Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why does COVID-19 disproportionately affect older people? Aging 2020, 12, 9959–9981. [Google Scholar] [CrossRef]
- Observatorio Psicología Social Aplicada (2020). Crisis Coronavirus Estudio Nº 12: 180 Días De Cuarentena: Salud Mental, Economía y Gestión Política. Available online: https://www.psi.uba.ar/opsa/informes/Crisis_Coronavirus_Estudio_N_12.pdf (accessed on 1 January 2021).
- Taylor, S.; Landry, C.A.; Paluszek, M.M.; Fergus, T.A.; McKay, D.; Asmundson, G.J. COVID stress syndrome: Concept, structure, and correlates. Depress. Anxiety 2020, 37, 706–714. [Google Scholar] [CrossRef]
- Nolen-Hoeksema, S.; Wisco, B.E.; Lyubomirsky, S. Rethinking rumination. Perspect. Psychol. Sci. 2008, 3, 400–424. [Google Scholar] [CrossRef]
- Arana, F.G.; Rice, K.G. Cross-cultural validity of the Ruminative Responses Scale in Argentina and the United States. Assessment 2020, 27, 309–320. [Google Scholar] [CrossRef]
- García, F.E.; Duque, A.; Cova, F. The four faces of rumination to stressful events: A psychometric analysis. Psychol. Trauma Theory Res. Pract. Policy 2017, 9, 758–765. [Google Scholar] [CrossRef]
- Aldao, A.; Nolen-Hoeksema, S.; Schweizer, S. Emotion-regulation strategies across psychopathology: A meta-analytic review. Clin. Psychol. Rev. 2010, 30, 217–237. [Google Scholar] [CrossRef]
- Ottaviani, C.; Medea, B.; Lonigro, A.; Tarvainen, M.; Couyoumdjian, A. Cognitive rigidity is mirrored by autonomic inflexibility in daily life perseverative cognition. Biol. Psychol. 2015, 107, 24–30. [Google Scholar] [CrossRef]
- Kross, E.; Ayduk, O. Self-distancing: Theory, research, and current directions. In Advances in Experimental Social Psychology; Olson, J.M., Ed.; Elsevier Academic Press: Cambridge, MA, USA, 2017; pp. 81–136. [Google Scholar]
- Chiou, J.S. Horizontal and vertical individualism and collectivism among college students in the United States, Taiwan, and Argentina. J. Soc. Psychol. 2001, 141, 557–678. [Google Scholar] [CrossRef]
- Dillard, J.P.; Yang, C.; Li, R. Self-regulation of emotional responses to Zika: Spiral of fear. PLoS ONE 2018, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rachman, S. Neo-conditioning and the classical theory of fear acquisition. Clin. Psych. Rev. 1991, 11, 155–173. [Google Scholar] [CrossRef]
- Estudio Tiara. Primer Avance de Resultados. 2020. Available online: http://repositorio.cedes.org/handle/123456789/4534 (accessed on 1 January 2021).
- Facio, A.; Resett, S.; Micocci, F.; Mistrorigo, C. Emerging Adulthood in Argentina: An Age of Diversity and Possibilities. Child Dev. Perspect. 2007, 2, 115–118. [Google Scholar] [CrossRef]
- Green, J.; Huberty, J.; Puzia, M.; Stecher, C. The effect of meditation and physical activity on the mental health impact of COVID-19–related stress and attention to news among mobile app users in the United States: Cross-sectional survey. JMIR Ment. Health 2021, 8, 28479. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, S.L.; Azzara, S.; Argibay, J.C.; Arnaiz, M.L.; de Valle Carpineta, M.; Granchetti, H.; Lagomarsino, E. Psychological and physiological response of students to different types of stress management programs. Am. J. Health Promot. 2012, 26, 149–159. [Google Scholar] [CrossRef]
- Arnett, A.B.; Pennington, B.F.; Willcutt, E.; Dmitrieva, J.; Byrne, B.; Samuelsson, S.; Olson, R.K. A cross-lagged model of the development of ADHD inattention symptoms and rapid naming speed. J. Abnorm. Child Psychol. 2012, 40, 1313–1326. [Google Scholar] [CrossRef]
- Dimitrov, D.M. Testing for factorial invariance in the context of construct validation. Meas. Eval. Couns. Dev. 2010, 43, 121–149. [Google Scholar] [CrossRef]
- Grice, J.W. Computing and evaluating factor scores. Psychol. Methods 2001, 6, 430–450. [Google Scholar] [CrossRef] [PubMed]
- Kam, C.; Morin, A.J.S.; Meyer, J.P.; Topolnytsky, L. Are commitment profiles stable and predictable? A latent transition analysis. J. Manag. 2016, 42, 1462–1490. [Google Scholar] [CrossRef]
- Kang, Y.; McNeish, D.M.; Hancock, G.R. The role of measurement quality on practical guidelines for assessing measurement and structural invariance. Educ. Psychol. Meas. 2016, 76, 533–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, R.P.; Marsh, H.W. Choosing a multivariate model: Noncentrality and goodness of fit. Psychol. Bull. 1990, 107, 247–255. [Google Scholar] [CrossRef]
- Meade, A.W.; Johnson, E.C.; Braddy, P.W. Power and sensitivity of alternative fit indices in tests of measurement invariance. J. Appl. Psychol. 2008, 93, 568–592. [Google Scholar] [CrossRef] [PubMed]
- Morin, A.J.; Marsh, H.W. Disentangling shape from level effects in person-centered analyses: An illustration based on university teachers’ multidimensional profiles of effectiveness. Struct. Equ. Model. 2015, 22, 39–59. [Google Scholar] [CrossRef]
- Morin, A.J.; Boudrias, J.S.; Marsh, H.W.; Madore, I.; Desrumaux, P. Further reflections on disentangling shape and level effects in person-centered analyses: An illustration exploring the dimensionality of psychological health. Struct. Equ. Model. 2016, 23, 438–454. [Google Scholar] [CrossRef]
- Sass, D.A. Testing measurement invariance and comparing latent factor means within a confirmatory factor analysis framework. J. Psychoeduc. Assess. 2011, 29, 347–363. [Google Scholar] [CrossRef]
Model | χ2 | df | Δχ2 | Δdf | p | CFI | ∆CFI | MNCI | ΔMNCI | RMSEA | 90% CI | SRMR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cross-Sectional (Country) Invariance | ||||||||||||
Time 2 | ||||||||||||
Configural | 25.04 | 10 | 0.934 | 0.979 | 0.110 | 0.057, 0.165 | 0.044 | |||||
Metric | 25.20 | 14 | 1.22 | 4 | 0.875 | 0.951 | 0.017 | 0.984 | 0.005 | 0.080 | 0.023, 0.130 | 0.051 |
Scalar | 72.33 | 18 | 51.57 | 4 | <0.0001 | 0.761 | −0.190 | 0.961 | −0.058 | 0.156 | 0.119, 0.194 | 0.108 |
Partial Scalar a | 31.30 | 16 | 6.37 | 2 | 0.041 | 0.933 | −0.018 | 0.979 | −0.006 | 0.088 | 0.040, 0.133 | 0.064 |
Time 3 | ||||||||||||
Configural | 15.65 | 10 | 0.974 | 0.994 | 0.074 | 0.000, 0.142 | 0.036 | |||||
Metric | 16.55 | 14 | 1.00 | 4 | 0.909 | 0.988 | 0.014 | 0.986 | 0.008 | 0.042 | 0.000, 0.109 | 0.042 |
Scalar | 59.25 | 18 | 49.99 | 4 | <0.0001 | 0.808 | −0.180 | 0.904 | −0.090 | 0.150 | 0.109, 0.193 | 0.124 |
Partial Scalar a | 17.24 | 16 | 0.57 | 2 | 0.751 | 0.994 | 0.006 | 0.997 | 0.003 | 0.028 | 0.000, 0.098 | 0.043 |
Time 4 | ||||||||||||
Configural | 8.26 | 10 | 1.000 | 1.005 | 0.000 | 0.000, 0.104 | 0.029 | |||||
Metric | 12.06 | 14 | 3.94 | 4 | 0.414 | 1.000 | 0.000 | 1.006 | 0.001 | 0.000 | 0.000, 0.093 | 0.047 |
Scalar | 33.47 | 18 | 20.51 | 4 | <0.0001 | 0.920 | −0.800 | 0.954 | 0.102 | 0.102 | 0.045, 0.156 | 0.084 |
Partial Scalar a | 17.50 | 16 | 5.09 | 2 | 0.079 | 0.992 | −0.008 | 0.995 | −0.011 | 0.034 | 0.000, 0.110 | 0.051 |
Longitudinal Invariance | ||||||||||||
Configural | 101.43 | 72 | 0.964 | 0.947 | 0.039 | 0.019, 0.056 | 0.057 | |||||
Metric | 111.46 | 80 | 9.82 | 8 | 0.278 | 0.962 | −0.002 | 0.943 | −0.004 | 0.028 | 0.019, 0.054 | 0.062 |
Scalar | 130.66 | 88 | 19.01 | 8 | 0.015 | 0.948 | −0.014 | 0.924 | −0.019 | 0.042 | 0.026, 0.057 | 0.071 |
Partial Scalar a | 114.29 | 86 | 2.64 | 6 | 0.852 | 0.966 | 0.004 | 0.949 | 0.006 | 0.035 | 0.014, 0.051 | 0.063 |
Primary Moderator/Predictors | B | SE | p |
---|---|---|---|
Gender (Binary) | |||
COVID-fear | 0.34 | 0.10 | <0.0001 |
Gender | −0.41 | 0.19 | 0.034 |
Country | 0.001 | 0.15 | 0.995 |
COVID-fear X Gender | 0.17 | 0.20 | 0.399 |
COVID-fear X Country | −0.39 | 0.15 | 0.01 |
Gender X Country | 0.19 | 0.25 | 0.440 |
COVID-fear X Gender X Country | 0.28 | 0.26 | 0.282 |
Positive Reframing | |||
COVID-fear | 0.44 | 0.09 | <0.0001 |
Positive Reframing | −0.17 | 0.09 | 0.047 |
Country | −0.04 | 0.11 | 0.683 |
COVID-fear X Positive Reframing | 0.09 | 0.09 | 0.312 |
COVID-fear X Country | −0.10 | 0.13 | 0.429 |
Positive Reframing X Country | 0.51 | 0.13 | <0.0001 |
COVID-fear X Positive Reframing X Country | −0.38 | 0.13 | 0.003 |
Rumination | |||
COVID-fear | 0.41 | 0.08 | 0.000 |
Rumination | 0.00 | 0.09 | 0.963 |
Country | −0.01 | 0.11 | 0.908 |
COVID-fear X Rumination | −0.16 | 0.09 | 0.081 |
COVID-fear X Country | −0.20 | 0.15 | 0.177 |
Rumination X Country | 0.09 | 0.16 | 0.554 |
COVID-fear X Rumination X Country | 0.26 | 0.21 | 0.198 |
Social Support | |||
COVID-fear | 0.39 | 0.08 | 0.000 |
Social Support | 0.05 | 0.10 | 0.621 |
Country | 0.02 | 0.11 | 0.834 |
COVID-fear X Social Support | 0.34 | 0.10 | 0.001 |
COVID-fear X Country | −0.13 | 0.13 | 0.328 |
Social Support X Country | 0.14 | 0.17 | 0.405 |
COVID-fear X Social Support X Country | −0.45 | 0.20 | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rice, K.G.; Arana, F.; Wetstone, H.; Aiello, M.; Durán, B. Predicting and Moderating COVID-Fear and Stress among College Students in Argentina and the USA. Int. J. Environ. Res. Public Health 2023, 20, 6510. https://doi.org/10.3390/ijerph20156510
Rice KG, Arana F, Wetstone H, Aiello M, Durán B. Predicting and Moderating COVID-Fear and Stress among College Students in Argentina and the USA. International Journal of Environmental Research and Public Health. 2023; 20(15):6510. https://doi.org/10.3390/ijerph20156510
Chicago/Turabian StyleRice, Kenneth G., Fernán Arana, Hannah Wetstone, Michelle Aiello, and Barbara Durán. 2023. "Predicting and Moderating COVID-Fear and Stress among College Students in Argentina and the USA" International Journal of Environmental Research and Public Health 20, no. 15: 6510. https://doi.org/10.3390/ijerph20156510
APA StyleRice, K. G., Arana, F., Wetstone, H., Aiello, M., & Durán, B. (2023). Predicting and Moderating COVID-Fear and Stress among College Students in Argentina and the USA. International Journal of Environmental Research and Public Health, 20(15), 6510. https://doi.org/10.3390/ijerph20156510