A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems
Abstract
:1. Introduction
2. Existing Reviews
- RQ. 1: What are the existing privacy enhancement methods in FL in healthcare systems to make data more secure in the healthcare systems?
- RQ. 2: What are the strengths, weaknesses, and trade-offs of the existing privacy enhancement methods in FL in healthcare systems?
- RQ. 3: What is the future of privacy enhancement methods in FL in healthcare systems?
3. Methodology
4. Results
4.1. Research Question 1
- Differential Privacy
- Homomorphic Encryption
- Blockchain
- Hierarchical Approaches
- Peer-to-Peer Sharing
- Intelligence on the Edge Devices
- Mixed, Hybrid and Miscellaneous Approaches
4.1.1. Differential Privacy
4.1.2. Homomorphic Encryption
4.1.3. Blockchain
4.1.4. Hierarchical Approaches
4.1.5. Peer to Peer Sharing
4.1.6. Intelligence on the Edge Device
4.1.7. Mixed, Hybrid and Miscellaneous Approaches
- have employed multiple approaches for providing privacy to FL systems
- are different from other categories and due to being the only approach of its type cannot be placed in a separate category
4.2. Research Question 2
4.2.1. Differential Privacy
4.2.2. Homomorphic Encryption
4.2.3. Blockchain
4.2.4. Hierarchical Approaches
4.2.5. Peer to Peer Sharing
4.2.6. Intelligence on the Edge Device
4.2.7. Mixed, Hybrid and Miscellaneous Approaches
4.3. Research Question 3
4.3.1. Differential Privacy
4.3.2. Homomorphic Encryption
4.3.3. Blockchain
4.3.4. Hierarchical Approaches
4.3.5. Peer to Peer Sharing
4.3.6. Intelligence on the Edge Device
4.3.7. Mixed, Hybrid and Miscellaneous Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Rieke, N.; Hancox, J.; Li, W.; Milletari, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al. The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [Google Scholar] [CrossRef] [PubMed]
- Haritha, T.; Anitha, A. Asymmetric Consortium Blockchain and Homomorphically Polynomial-Based PIR for Secured Smart Parking Systems. Comput. Mater. Contin. 2023, 75, 3923–3939. [Google Scholar] [CrossRef]
- Thwal, C.M.; Thar, K.; Tun, Y.L.; Hong, C.S. Attention on personalized clinical decision support system: Federated learning approach. In Proceedings of the 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Republic of Korea, 17–20 January 2021; IEEE: Jeju Island, Republic of Korea, 2021; pp. 141–147. [Google Scholar]
- Oldenhof, M.; Ács, G.; Pejó, B.; Schuffenhauer, A.; Holway, N.; Sturm, N.; Dieckmann, A.; Fortmeier, O.; Boniface, E.; Mayer, C.; et al. Industry-Scale Orchestrated Federated Learning for Drug Discovery. arXiv 2022, arXiv:2210.08871. [Google Scholar] [CrossRef]
- Mohan, N.J.; Murugan, R.; Goel, T.; Roy, P. DRFL: Federated Learning in Diabetic Retinopathy Grading Using Fundus Images. IEEE Trans. Parallel Distrib. Syst. 2023; in press. [Google Scholar] [CrossRef]
- Dayan, I.; Roth, H.R.; Zhong, A.; Harouni, A.; Gentili, A.; Abidin, A.Z.; Liu, A.; Costa, A.B.; Wood, B.J.; Tsai, C.S.; et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 2021, 27, 1735–1743. [Google Scholar] [CrossRef]
- Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated learning for healthcare informatics. J. Healthc. Inform. Res. 2021, 5, 1–19. [Google Scholar] [CrossRef]
- Shyu, C.R.; Putra, K.T.; Chen, H.C.; Tsai, Y.Y.; Hossain, K.T.; Jiang, W.; Shae, Z.Y. A systematic review of federated learning in the healthcare area: From the perspective of data properties and applications. Appl. Sci. 2021, 11, 11191. [Google Scholar]
- Pfitzner, B.; Steckhan, N.; Arnrich, B. Federated learning in a medical context: A systematic literature review. ACM Trans. Internet Technol. 2021, 21, 50. [Google Scholar] [CrossRef]
- Kumar, Y.; Singla, R. Federated learning systems for healthcare: Perspective and recent progress. In Federated Learning Systems: Towards Next-Generation AI; Springer: Cham, Switzerland, 2021; pp. 141–156. [Google Scholar]
- Nguyen, D.C.; Ding, M.; Pham, Q.V.; Pathirana, P.N.; Le, L.B.; Seneviratne, A.; Li, J.; Niyato, D.; Poor, H.V. Federated learning meets blockchain in edge computing: Opportunities and challenges. IEEE Internet Things J. 2021, 8, 12806–12825. [Google Scholar] [CrossRef]
- Antunes, R.S.; da Costa, C.A.; Küderle, A.; Yari, I.A.; Eskofier, B. Federated learning for healthcare: Systematic review and architecture proposal. ACM Trans. Intell. Syst. Technol. 2022, 13, 54. [Google Scholar] [CrossRef]
- Chowdhury, A.; Kassem, H.; Padoy, N.; Umeton, R.; Karargyris, A. A review of medical federated learning: Applications in oncology and cancer research. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Proceedings of the 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, 27 September 2021; Revised Selected Papers, Part I; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–24. [Google Scholar]
- Ali, M.; Naeem, F.; Tariq, M.; Kaddoum, G. Federated learning for privacy preservation in smart healthcare systems: A comprehensive survey. IEEE J. Biomed. Health Inform. 2022; in press. [Google Scholar] [CrossRef]
- Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A survey on security and privacy of federated learning. Future Gener. Comput. Syst. 2021, 115, 619–640. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pham, Q.V.; Pathirana, P.N.; Ding, M.; Seneviratne, A.; Lin, Z.; Dobre, O.; Hwang, W.J. Federated learning for smart healthcare: A survey. ACM Comput. Surv. 2022, 55, 60. [Google Scholar] [CrossRef]
- Xu, G.; Li, H.; Liu, S.; Yang, K.; Lin, X. Verifynet: Secure and verifiable federated learning. IEEE Trans. Inf. Forensics Secur. 2019, 15, 911–926. [Google Scholar] [CrossRef]
- Bouacida, N.; Mohapatra, P. Vulnerabilities in federated learning. IEEE Access 2021, 9, 63229–63249. [Google Scholar] [CrossRef]
- Novikova, E.; Fomichov, D.; Kholod, I.; Filippov, E. Analysis of privacy-enhancing technologies in open-source federated learning frameworks for driver activity recognition. Sensors 2022, 22, 2983. [Google Scholar] [CrossRef]
- Liu, P.; Xu, X.; Wang, W. Threats, attacks and defenses to federated learning: Issues, taxonomy and perspectives. Cybersecurity 2022, 5, 4. [Google Scholar] [CrossRef]
- Gu, X.; Blackmore, K. Characterisation of academic journals in the digital age. Scientometrics 2017, 110, 1333–1350. [Google Scholar] [CrossRef]
- Jacsó, P. Google Scholar: The pros and the cons. Online Inf. Rev. 2005, 29, 208–214. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Wien, Austria, 24–28 October 2016; pp. 308–318. [Google Scholar]
- Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H.H.; Farokhi, F.; Jin, S.; Quek, T.Q.; Poor, H.V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3454–3469. [Google Scholar] [CrossRef]
- Ho, T.T.; Tran, K.D.; Huang, Y. FedSGDCOVID: Federated SGD COVID-19 Detection under Local Differential Privacy Using Chest X-ray Images and Symptom Information. Sensors 2022, 22, 3728. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; Moustafa, N.; Lynar, T.; Razzak, I. Edge Intelligence: Federated Learning-Based Privacy Protection Framework for Smart Healthcare Systems. IEEE J. Biomed. Health Inform. 2022, 26, 5805–5816. [Google Scholar] [CrossRef]
- Islam, T.U.; Ghasemi, R.; Mohammed, N. Privacy-Preserving Federated Learning Model for Healthcare Data. In Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 26–29 January 2022; pp. 0281–0287. [Google Scholar] [CrossRef]
- Cholakoska, A.; Pfitzner, B.; Gjoreski, H.; Rakovic, V.; Arnrich, B.; Kalendar, M. Differentially Private Federated Learning for Anomaly Detection in eHealth Networks. In Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, New York, NY, USA, 21–26 September 2021; pp. 514–518. [Google Scholar]
- Das, P.; Singh, M.; Roy, D.G. A secure softwarized blockchain-based federated health alliance for next generation IoT networks. In Proceedings of the 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Imtiaz, S.; Horchidan, S.F.; Abbas, Z.; Arsalan, M.; Chaudhry, H.N.; Vlassov, V. Privacy preserving time-series forecasting of user health data streams. Atlanta, GA, USA, 10–13 December 2020; IEEE: New York, NY, USA; pp. 3428–3437. [Google Scholar]
- Adnan, M.; Kalra, S.; Cresswell, J.C.; Taylor, G.W.; Tizhoosh, H.R. Federated learning and differential privacy for medical image analysis. Sci. Rep. 2022, 12, 1953. [Google Scholar] [CrossRef] [PubMed]
- Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A survey on homomorphic encryption schemes: Theory and implementation. ACM Comput. Surv. 2018, 51, 79. [Google Scholar] [CrossRef]
- Xie, Y.; Li, P.; Zhu, X.; Wu, Q. Federated Diabetes Mellitus Analysis via Homomorphic Encryption. Proc. J. Phys. Conf. Ser. IOP Publ. 2020, 1684, 012033. [Google Scholar] [CrossRef]
- Gandhi, N.; Mishra, S.; Bharti, S.K.; Bhagat, K. Leveraging towards Privacy-preserving using Federated Machine Learning for Healthcare Systems. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Ji, J.; Yan, D.; Mu, Z. Personnel status detection model suitable for vertical federated learning structure. In Proceedings of the 2022 6th International Conference on Machine Learning and Soft Computing, Haikou, China, 15–17 January 2022; pp. 98–104. [Google Scholar]
- Ma, Z.; Ma, J.; Miao, Y.; Liu, X.; Choo, K.K.R.; Deng, R.H. Pocket diagnosis: Secure federated learning against poisoning attack in the cloud. IEEE Trans. Serv. Comput. 2021, 15, 3429–3442. [Google Scholar] [CrossRef]
- Hao, M.; Li, H.; Xu, G.; Liu, Z.; Chen, Z. Privacy-aware and resource-saving collaborative learning for healthcare in cloud computing. In Proceedings of the ICC 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Shayan, M.; Fung, C.; Yoon, C.J.; Beschastnikh, I. Biscotti: A blockchain system for private and secure federated learning. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1513–1525. [Google Scholar] [CrossRef]
- Ali, M.; Karimipour, H.; Tariq, M. Integration of blockchain and federated learning for Internet of Things: Recent advances and future challenges. Comput. Secur. 2021, 108, 102355. [Google Scholar] [CrossRef]
- Qu, Y.; Uddin, M.P.; Gan, C.; Xiang, Y.; Gao, L.; Yearwood, J. Blockchain-enabled federated learning: A survey. ACM Comput. Surv. 2022, 55, 70. [Google Scholar] [CrossRef]
- Chang, Y.; Fang, C.; Sun, W. A blockchain-based federated learning method for smart healthcare. Comput. Intell. Neurosci. 2021, 2021, 376418. [Google Scholar] [CrossRef]
- Passerat-Palmbach, J.; Farnan, T.; McCoy, M.; Harris, J.D.; Manion, S.T.; Flannery, H.L.; Gleim, B. Blockchain-orchestrated machine learning for privacy preserving federated learning in electronic health data. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Toronto, ON, Canada, 3–6 May 2020; IEEE: New York, NY, USA, 2020; pp. 550–555. [Google Scholar]
- Salim, M.M.; Park, J.H. Federated learning-based secure electronic health record sharing scheme in medical informatics. IEEE J. Biomed. Health Inform. 2022, 27, 617–624. [Google Scholar] [CrossRef]
- Lakhan, A.; Mohammed, M.A.; Nedoma, J.; Martinek, R.; Tiwari, P.; Vidyarthi, A.; Alkhayyat, A.; Wang, W. Federated-learning based privacy preservation and fraud-enabled blockchain IoMT system for healthcare. IEEE J. Biomed. Health Inform. 2022, 27, 664–672. [Google Scholar] [CrossRef]
- Gupta, D.; Kayode, O.; Bhatt, S.; Gupta, M.; Tosun, A.S. Hierarchical Federated Learning based Anomaly Detection using Digital Twins for Smart Healthcare. In Proceedings of the 2021 IEEE 7th International Conference on Collaboration and Internet Computing (CIC), Atlanta, GA, USA, 13–15 December 2021; pp. 16–25. [Google Scholar] [CrossRef]
- Singh, P.; Gaba, G.S.; Kaur, A.; Hedabou, M.; Gurtov, A. Dew-Cloud-Based Hierarchical Federated Learning for Intrusion Detection in IoMT. IEEE J. Biomed. Health Inform. 2022, 27, 722–731. [Google Scholar] [CrossRef]
- Abdellatif, A.A.; Mhaisen, N.; Mohamed, A.; Erbad, A.; Guizani, M.; Dawy, Z.; Nasreddine, W. Communication-efficient hierarchical federated learning for IoT heterogeneous systems with imbalanced data. Future Gener. Comput. Syst. 2022, 128, 406–419. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Xu, G.; Zhang, Y.; Luo, X. Achieving privacy-preserving federated learning with irrelevant updates over e-health applications. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 20–23 October 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Wang, R.; Lai, J.; Zhang, Z.; Li, X.; Vijayakumar, P.; Karuppiah, M. Privacy-preserving federated learning for internet of medical things under edge computing. IEEE J. Biomed. Health Inform. 2022, 3, 1882. [Google Scholar] [CrossRef]
- Hakak, S.; Ray, S.; Khan, W.Z.; Scheme, E. A Framework for Edge-Assisted Healthcare Data Analytics using Federated Learning. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; IEEE: New York, NY, USA, 2020; pp. 3423–3427. [Google Scholar] [CrossRef]
- Wang, X.; Liang, Z.; Koe, A.S.V.; Wu, Q.; Zhang, X.; Li, H.; Yang, Q. Secure and efficient parameters aggregation protocol for federated incremental learning and its applications. Int. J. Intell. Syst. 2022, 37, 4471–4487. [Google Scholar] [CrossRef]
- Choudhury, O.; Gkoulalas-Divanis, A.; Salonidis, T.; Sylla, I.; Park, Y.; Hsu, G.; Das, A. A syntactic approach for privacy-preserving federated learning. In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), Santiago de Compostela, Spain, 29 August–8 September 2020; IOS Press: Amsterdam, The Netherlands, 2020; pp. 1762–1769. [Google Scholar]
- Darzidehkalani, E.; Ghasemi-Rad, M.; van Ooijen, P. Federated learning in medical imaging: Part I: Toward multicentral health care ecosystems. J. Am. Coll. Radiol. 2022, 19, 969–974. [Google Scholar] [CrossRef]
- Astillo, P.V.; Duguma, D.G.; Park, H.; Kim, J.; Kim, B.; You, I. Federated intelligence of anomaly detection agent in IoTMD-enabled Diabetes Management Control System. Future Gener. Comput. Syst. 2022, 128, 395–405. [Google Scholar] [CrossRef]
- Cellamare, M.; van Gestel, A.J.; Alradhi, H.; Martin, F.; Moncada-Torres, A. A federated generalized linear model for privacy-preserving analysis. Algorithms 2022, 15, 243. [Google Scholar] [CrossRef]
- Otoum, Y.; Wan, Y.; Nayak, A. Federated transfer learning-based ids for the internet of medical things (iomt). In Proceedings of the 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Chamikara, M.A.P.; Bertok, P.; Khalil, I.; Liu, D.; Camtepe, S. Privacy preserving distributed machine learning with federated learning. Comput. Commun. 2021, 171, 112–125. [Google Scholar] [CrossRef]
- Nguyen, T.; Dakka, M.; Diakiw, S.; VerMilyea, M.; Perugini, M.; Hall, J.; Perugini, D. A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data. Sci. Rep. 2022, 12, 8888. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Islam, M.N.; Sheils, N.E.; Buresh, J.; Schuemie, M.J.; Doshi, J.A.; Werner, R.M.; Asch, D.A.; Chen, Y. dPQL: A lossless distributed algorithm for generalized linear mixed model with application to privacy-preserving hospital profiling. J. Am. Med. Inform. Assoc. 2022, 29, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, Q.; Lou, J.; Xiong, L.; Ho, J.C. Communication efficient federated generalized tensor factorization for collaborative health data analytics. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; ACM: New York, NY, USA, 2021; pp. 171–182. [Google Scholar]
- Wu, C.; Wu, F.; Lyu, L.; Huang, Y.; Xie, X. Communication-efficient federated learning via knowledge distillation. Nat. Commun. 2022, 13, 2032. [Google Scholar] [CrossRef]
- Paragliola, G. Evaluation of the trade-off between performance and communication costs in federated learning scenario. Future Gener. Comput. Syst. 2022, 136, 282–293. [Google Scholar] [CrossRef]
- Han, B.; Jhaveri, R.; Wang, H.; Qiao, D.; Du, J. Application of robust zero-watermarking scheme based on federated learning for securing the healthcare data. IEEE J. Biomed. Health Inform. 2021, 27, 804–813. [Google Scholar] [CrossRef]
- Gong, Q.; Ruan, H.; Chen, Y.; Su, X. CloudyFL: A cloudlet-based federated learning framework for sensing user behavior using wearable devices. In Proceedings of the 6th International Workshop on Embedded and Mobile Deep Learning, Portland, OR, USA, 1–3 July 2022; ACM: New York, NY, USA, 2022; pp. 13–18. [Google Scholar]
- Siniosoglou, I.; Argyriou, V.; Lagkas, T.; Moscholios, I.; Fragulis, G.; Sarigiannidis, P. Unsupervised Bias Evaluation of DNNs in non-IID Federated Learning Through Latent micro-Manifolds. In Proceedings of the IEEE INFOCOM 2022—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), New York, NY, USA, 2–5 May 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [Google Scholar]
- Gouissem, A.; Abualsaud, K.; Yaacoub, E.; Khattab, T.; Guizani, M. Robust Decentralized Federated Learning Using Collaborative Decisions. In Proceedings of the 2022 International Wireless Communications and Mobile Computing (IWCMC), Dubrovnik, Croatia, 30 May–3 June 2022; IEEE: New York, NY, USA, 2022; pp. 254–258. [Google Scholar]
- Durga, R.; Poovammal, E. Federated learning model for healthchain system. In Proceedings of the 2021 6th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Kedah, Malaysia, 1–3 December 2021; IEEE: New York, NY, USA, 2021; Volume 6, pp. 1–6. [Google Scholar]
- Lee, J.Y. A decentralized token economy: How blockchain and cryptocurrency can revolutionize business. Bus. Horizons 2019, 62, 773–784. [Google Scholar] [CrossRef]
Paper | Key Topic | Highlights |
---|---|---|
Rieke et al. (2020) [1] | FL concept | Discussion on data heterogeneity, privacy and security, traceability and accountability, and system architecture in FL systems. |
Xu et al. (2021) [7] | FL concept | Solution on the statistical challenges, system challenges, and privacy issues including secure multi-party computation and differential privacy in FL systems. |
Shyu et al. (2021) [8] | FL concept | Evaluation on data partitioning characteristics, data distributions, data protection mechanisms, and benchmark datasets in FL systems. |
Kumar and Singla (2021) [10] | FL in EHR | Comparison between different FL algorithms for different health sectors by using parameters such as accuracy, precision, recall and F-score. |
Pfitzner et al. (2021) [9] | FL concept | Research into FL and its applicability for confidential healthcare datasets. Decentralized learning using a Blockchain or direct Peer-2-Peer network is excluded from the review. |
Mothukuri et al. (2021) [15] | Security threats of FL | Comparison between privacy-specific threats and security threats in FL systems. Discussion on the security vulnerabilities and threats and privacy threats with their mitigation techniques. |
Chowdhury et al. (2022) [13] | FL in Oncology | Discussion on FL applications and algorithms in the oncology space. |
Nguyen et al. (2022) [16] | FL for EHR | Discussion on FL design from resource-aware FL, secure FL, privacy-aware FL to incentive FL and personalized FL. |
Antunes et al. (2022) [12] | FL for EHR | Investigation on applications in the context of EHR, and further discussion on general architecture to FL with ML-enabled applications. |
Ali et al. (2022) [14] | FL for IoMT | Focus on the IoMT network from the perspective of privacy. Discussion on architectures, from privacy-enabled FL, incentive-enabled FL for IoMT and FL-enabled digital twin for IoMT. |
Our review | Privacy Enhancement for FL | Focus on the privacy enhancement methods used in FL in healthcare systems. |
Search Parameter | Target |
---|---|
Bibliography Data Source: | Scopus |
Article Type: | Journal articles, conference papers, working papers, book section |
Search On: | Title, Abstract, Keywords |
Sorting on Returns: | Sort by Relevance |
Publication Period: | Unlimited |
Search Date: | 28 August 2022 |
Component Index | Keywords |
---|---|
Component 1: | “federated learning” |
Component 2: | “ehealth” OR “health” |
Component 3: | “security” OR “privacy” OR “trust” |
Strength | DP | HE | BC | HA | P2PS | IE | HYA |
---|---|---|---|---|---|---|---|
Privacy | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Security | Partial | Partial | Yes | Yes | Yes | Yes | Yes |
Decentralization | Partial | Partial | Yes | Yes | Yes | Yes | Yes |
Transparency | Yes | Yes | Yes | Yes | Yes | Yes | |
Data Governance | Yes | Yes | Yes | Yes | Yes | Yes | |
Collaboration | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Scalability | Yes | Yes | Yes | Yes | Yes | Yes | |
Computational Capability | Yes | Yes | Yes | Yes | Yes | Yes | |
Data Transmission | Yes | Yes | Yes | Yes | |||
Fault Tolerance | Yes | Yes | Yes | Yes | Yes | ||
Energy Efficiency | Yes | Yes | |||||
Improved Robustness | Yes | Yes | |||||
Smart Contract Automation | Yes | Maybe | |||||
Geographical Distribution | Yes | Yes | Yes | Yes |
Weakness | DP | HE | BC | HA | P2PS | IE | HYA |
---|---|---|---|---|---|---|---|
Scalability | Yes | Yes | Yes | Yes | Yes | Yes | |
Computational Overhead | Yes | Yes | Yes | Maybe | Yes | Yes | |
Transmission Overhead | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Privacy Challenges | Partial | Partial | Yes | Partial | Yes | Yes | Yes |
Design Complexity | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Energy Consumption | Yes | Yes | Yes | Partial | Yes | No | Yes |
Governance | Yes | Yes | Yes | Yes | Yes | Yes | |
Heterogeneous Devices | Yes | Yes | Yes | ||||
Data/Device Imbalance | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Sabrina, F.; Fan, Z.; Sohail, S. A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems. Int. J. Environ. Res. Public Health 2023, 20, 6539. https://doi.org/10.3390/ijerph20156539
Gu X, Sabrina F, Fan Z, Sohail S. A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems. International Journal of Environmental Research and Public Health. 2023; 20(15):6539. https://doi.org/10.3390/ijerph20156539
Chicago/Turabian StyleGu, Xin, Fariza Sabrina, Zongwen Fan, and Shaleeza Sohail. 2023. "A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems" International Journal of Environmental Research and Public Health 20, no. 15: 6539. https://doi.org/10.3390/ijerph20156539
APA StyleGu, X., Sabrina, F., Fan, Z., & Sohail, S. (2023). A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems. International Journal of Environmental Research and Public Health, 20(15), 6539. https://doi.org/10.3390/ijerph20156539