Bioremediation of Automotive Residual Oil-Contaminated Soils by Biostimulation with Enzymes, Surfactant, and Vermicompost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining and Treatment of Feedstocks
2.2. Soil and Vermicompost Physical-Chemical Characterization
2.3. Bioremediation Tests
2.4. Calculation of the Percentage of Automotive Residual Oil Removal
2.5. Statistical Analysis
2.6. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
3. Results and Discussion
3.1. Influence of the Physical-Chemical Parameters of the Soil in the Bioremediation Tests
3.2. Results of the Automotive Residual Oil Removal
3.3. Results of the Analysis of Variance ANOVA
3.4. Results of the Analysis of FTIR
3.5. Comparison with Other Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Truskewycz, A.; Gundry, T.D.; Khudur, L.S.; Kolobaric, A.; Taha, M.; Aburto-Medina, A.; Ball, A.S.; Shahsavari, E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses. Molecules 2019, 24, 3400. [Google Scholar] [CrossRef]
- Funtikova, T.V.; Akhmetov, L.I.; Puntus, I.F.; Mikhailov, P.A.; Appazov, N.O.; Narmanova, R.A.; Filonov, A.E.; Solyanikova, I.P. Bioremediation of Oil-Contaminated Soil of the Republic of Kazakhstan Using a New Biopreparation. Microorganisms 2023, 11, 522. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Yu, J.; Fang, K.; Dong, P.; Li, Z.; Zhang, W.; Liu, M.; Xiang, L.; Cai, J. Microbial Removal of Petroleum Hydrocarbons from Contaminated Soil under Arsenic Stress. Toxics 2023, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Abdulsalam, S.; Bugaje, I.M.; Adefila, S.S.; Ibrahim, S. Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. Int. J. Environ. Sci. Technol. 2011, 8, 187–194. [Google Scholar] [CrossRef]
- Gao, H.; Wu, M.; Liu, H.; Xu, Y.; Liu, Z. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. Environ. Pollut. 2022, 293, 118511. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; da Fonseca, M.M.R.; de Carvalho, C.C.C.R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 2011, 22, 231–241. [Google Scholar] [CrossRef]
- Eze, M.O. Metagenome analysis of a hydrocarbon-degrading bacterial consortium reveals the specific roles of BTEX biodegraders. Genes 2021, 12, 98. [Google Scholar] [CrossRef]
- Udume, O.A.; Abu, G.O.; Stanley, H.O.; Vincent-Akpu, I.F.; Momoh, Y.; Eze, M.O. Biostimulation of Petroleum-Contaminated Soil Using Organic and Inorganic Amendments. Plants 2023, 12, 431. [Google Scholar] [CrossRef]
- Abed, R.M.M.; Al-Sabahi, J.; Al-Maqrashi, F.; Al-Habsi, A.; Al-Hinai, M. Characterization of hydrocarbon-degrading bacteria isolated from oil-contaminated sediments in the Sultanate of Oman and evaluation of bioaugmentation and biostimulation approaches in microcosm experiments. Int. Biodeterior. Biodegrad. 2014, 89, 58–66. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, J.; Tang, Z.; Zhao, Y.; Wang, C. Vermiremediation of organically contaminated soils: Concepts, current status, and future perspectives. Appl. Soil Ecol. 2020, 147, 103377. [Google Scholar] [CrossRef]
- Parastesh, F.; Alikhani, H.A.; Etesami, H. Vermicompost enriched with phosphate-solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions. J. Clean. Prod. 2019, 221, 27–37. [Google Scholar] [CrossRef]
- Ritoré, E.; Coquelet, B.; Arnaiz, C.; Morillo, J.; Usero, J. Guidelines for surfactant selection to treat petroleum hydrocarbon-contaminated soils. Environ. Sci. Pollut. Res. Int. 2022, 29, 7639–7651. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, G.; Mukherji, S. Effect of an emulsifying surfactant on diesel degradation by cultures exhibiting inducible cell surface hydrophobicity. J. Chem. Technol. Biotechnol. 2007, 82, 1004–1011. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Moezzi, S.M.I.; Ravan, N.; Gholami, A.; Lai, C.W.; Chiang, W.H.; Omidifar, N.; Yousefi, K.; Behdubi, G. Recent advances in enzymes for the bioremediation of pollutants. Biochem. Res. Int. 2021, 2021, 5599204. [Google Scholar] [CrossRef]
- Eibes, G.; Arca-Ramos, A.; Feijoo, G.; Lema, J.M.; Moreira, M.T. Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Appl. Microbiol. Biotechnol. 2015, 99, 8815–8829. [Google Scholar] [CrossRef]
- Chen, Z.; Li, H.; Peng, A.; Gao, Y. Oxidation of polycyclic aromatic hydrocarbons by horseradish peroxidase in water containing an organic cosolvent. Environ. Sci. Pollut. Res. 2014, 21, 10696–10705. [Google Scholar] [CrossRef]
- Viswanath, B.; Rajesh, B.; Janardhan, A.; Kumar, A.P.; Narasimha, G. Fungal laccases and their applications in bioremediation. Enzym. Res. 2014, 2014, 21. [Google Scholar] [CrossRef]
- Di Martino, C.; López, N.I.; Raiger Iustman, L.J. Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Int. Biodeterior. Biodegrad. 2012, 67, 15–20. [Google Scholar] [CrossRef]
- Ghafil, J.A.; Hassan, S.S.; Zgair, A.K. Use of immobilized lipase in cleaning up soil contaminated with oil. World J. Exp. Biosci. 2016, 4, 53–57. [Google Scholar]
- Aguilera-Flores, M.M.; Sánchez-Castro, M.A.; Ávila-Vázquez, V.; Correa-Aguado, H.C.; García-Torres, J. Evaluation of the lipase from castor bean (Ricinus Communis L.) as a potential agent for the remediation of used lubricating oil contaminated soils. J. Environ. Health Sci. Eng. 2022, 20, 657–673. [Google Scholar] [CrossRef]
- Carmona-Galindo, V.D.; Hinton-Hardin, D.; Kagihara, J.; Pascua, M.R.T. Assessing the Impact of Invasive Species Management Strategies on the Population Dynamics of Castor bean (Ricinus communis L., Euphorbiaceae) at Two Southern California Coastal Habitats. Nat. Areas J. 2013, 33, 222–226. [Google Scholar] [CrossRef]
- Román-Figueroa, C.; Cortez, D.; Paneque, M.A. Comparison of Two Methodological Approaches for Determining Castor Bean Suitability in Chile. Agronomy 2020, 10, 1259. [Google Scholar] [CrossRef]
- Rico-Sánchez, A.E.; Haubrock, P.J.; Cuthbert, R.N.; Angulo, E.; Ballesteros-Mejia, L.; López-López, E.; Duboscq-Carra, V.G.; Nuñez, M.A.; Diagne, C.; Courchamp, F. Economic costs of invasive alien species in Mexico. In Advancing Research on Alien Species and Biological Invasions, 1st ed.; Zenni, R.D., McDermott, S., García-Berthou, E., Essl, F., Eds.; NeoBiota Pensoft: Sofia, Bulgaria, 2021; Volume 67, pp. 459–483. [Google Scholar]
- Avelar, M.H.M.; Cassimiro, D.M.J.; Santos, K.C.; Domingues, R.C.C.; de Castro, H.F.; Mendes, A.A. Hydrolysis of vegetable oils catalyzed by lipase extract powder from dormant castor bean seeds. Ind. Crops Prod. 2013, 44, 452–458. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 1–1264. [Google Scholar]
- Secretaría de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana NOM-021-SEMARNAT-2000 Que Establece las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos, Estudio, Muestreo y Análisis. Available online: https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf (accessed on 24 February 2023).
- Santos, K.C.; Cassimiro, D.M.J.; Avelar, M.H.M.; Hirata, D.B.; de Castro, H.F.; Fernandez-Lafuente, R.; Mendes, A.A. Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Ind. Crops Prod. 2013, 49, 462–470. [Google Scholar] [CrossRef]
- Alvarez-Bernal, D.; García-Díaz, E.L.; Contreras-Ramos, S.M.; Dendooven, L. Dissipation of polycyclic aromatic hydrocarbons from soil added with manure or vermicompost. Chemosphere 2006, 65, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Ramos, S.M.; Álvarez-Bernal, D.; Dendooven, L. Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida). Soil Biol. Biochem. 2008, 40, 1954–1959. [Google Scholar] [CrossRef]
- Di Gennaro, P.; Moreno, B.; Annoni, E.; García-Rodríguez, S.; Bestetti, G.; Benitez, E. Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompost-amended PAH-contaminated soils. J. Hazard. Mater. 2009, 172, 1464–1469. [Google Scholar] [CrossRef]
- Cecotti, M.; Coppotelli, B.M.; Mora, V.C.; Viera, M.; Morelli, I.S. Efficiency of surfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbon-contaminated soil: Link with bioavailability and the dynamics of the bacterial community. Sci. Total Environ. 2018, 634, 224–234. [Google Scholar] [CrossRef]
- Secretaría de Economía. Norma Mexicana NMX-AA-134-SCFI-2006 Suelos–Hidrocarburos fracción pesada por extracción y gravimetría–Método de prueba. Available online: http://104.209.210.233/gobmx/repositorio/FRACCION_I/NMX134SCFI2006IDROCARBUROSPESADO.pdf (accessed on 24 February 2023).
- Schwartz, G.; Ben-Dor, E.; Eshel, G. Quantitative Analysis of Total Petroleum Hydrocarbons in Soils: Comparison between Reflectance Spectroscopy and Solvent Extraction by 3 Certified Laboratories. Appl. Environ. Soil Sci. 2012, 2012, 751956. [Google Scholar] [CrossRef]
- Kebede, G.; Tafese, T.; Abda, E.M.; Kamaraj, M.; Assefa, F. Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. J. Chem. 2021, 2021, 9823362. [Google Scholar] [CrossRef]
- Ajona, M.; Vasanthi, P. Bioremediation of petroleum contaminated soils—A review. Mater. Today Proc. 2021, 45, 7117–7122. [Google Scholar] [CrossRef]
- Curiel-Alegre, S.; Velasco-Arroyo, B.; Rumbo, C.; Khan, A.H.A.; Tamayo-Ramos, J.A.; Rad, C.; Gallego, R.J.L.; Barros, R. Evaluation of biostimulation, bioaugmentation, and organic amendments application on the bioremediation of recalcitrant hydrocarbons of soil. Chemosphere 2022, 307, 135638. [Google Scholar] [CrossRef] [PubMed]
- Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Wiberg, D.; Henry, M.; Chiozza, F.; Yigini, Y.; Aksoy, E.; Batjes, N.; Boateng, E.; et al. Harmonized World Soil Database Version 2.0. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/3/cc3823en/cc3823en.pdf (accessed on 4 March 2023).
- Hajabbasi, M.A. Importance of soil physical characteristics for petroleum hydrocarbons phytoremediation: A review. Afr. J. Environ. Sci. Technol. 2016, 10, 394–405. [Google Scholar]
- Haghollahi, A.; Fazaelipoor, M.H.; Schaffie, M. The effect of soil type on the bioremediation of petroleum contaminated soils. J. Environ. Manag. 2016, 180, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Rubingh, D.N. The influence of surfactants on enzyme activity. Curr. Opin. Colloid Interface Sci. 1996, 1, 598–603. [Google Scholar] [CrossRef]
- Goswami, D. Lipase catalysis in presence of nonionic surfactants. Appl. Biochem. Biotechnol. 2020, 191, 744–762. [Google Scholar] [CrossRef]
- Farsang, E.; Gaál, V.; Horváth, O.; Bárdos, E.; Horváth, K. Analysis of non-ionic surfactant Triton X-100 using hydrophilic interaction liquid chromatography and mass spectrometry. Molecules 2019, 24, 1223. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1–114. [Google Scholar]
- Chang, R. Fisicoquímica, 3rd ed.; McGraw-Hill/Interamericana: Ciudad de Mexico, Mexico, 2008; pp. 724–725. [Google Scholar]
- Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principios de Análisis Instrumental, 6th ed.; Cengage Learning: Ciudad de Mexico, Mexico, 2008; pp. 461–463. [Google Scholar]
- Abdullah, S.R.S.; Al-Baldawi, I.A.; Almansoory, A.F.; Purwanti, I.F.; Al-Sbani, N.H.; Sharuddin, S.S.N. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere 2020, 247, 125932. [Google Scholar] [CrossRef]
- Stepanova, A.Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. Bioremediation of soil from petroleum contamination. Processes 2022, 10, 1224. [Google Scholar] [CrossRef]
- Liu, N.; Wang, L.; Cao, D.; Li, D.; Zhu, Y.; Huang, S.; Shi, J. Remediation of petroleum contaminated soil by persulfate oxidation coupled with microbial degradation. J. Environ. Chem. Eng. 2023, 11, 109910. [Google Scholar] [CrossRef]
- Mohammadi-Moghadam, F.; Khodadadi, R.; Sedehi, M.; Arbabi, M. Bioremediation of Polycyclic Aromatic Hydrocarbons in Contaminated Soils Using Vermicompost. Int. J. Chem. Eng. 2022, 2022, 5294170. [Google Scholar] [CrossRef]
- Li, X.; Wu, B.; Zhang, Q.; Liu, Y.; Wang, J.; Xu, D.; Li, F.; Ma, F.; Gu, Q. Effects of soil properties on the remediation of diesel-contaminated soil by Triton X-100-aided washing. Environ. Sci. Pollut. Res. 2020, 27, 23323–23330. [Google Scholar] [CrossRef] [PubMed]
Test | Time (Days) | pH and Temperature Conditions 1 | Biostimulation with Enzyme and Vermicompost 2 | Biostimulation with Enzyme and Surfactant 3 |
---|---|---|---|---|
1 | 14 | Ideal | Absent | Absent |
2 | 14 | Ideal | Absent | Absent |
3 | 14 | Ambient | Absent | Absent |
4 | 14 | Ambient | Absent | Absent |
5 | 49 | Ideal | Absent | Absent |
6 | 49 | Ideal | Absent | Absent |
7 | 49 | Ambient | Absent | Absent |
8 | 49 | Ambient | Absent | Absent |
9 | 14 | Ideal | Present | Absent |
10 | 14 | Ideal | Present | Absent |
11 | 14 | Ambient | Present | Absent |
12 | 14 | Ambient | Present | Absent |
13 | 49 | Ideal | Present | Absent |
14 | 49 | Ideal | Present | Absent |
15 | 49 | Ambient | Present | Absent |
16 | 49 | Ambient | Present | Absent |
17 | 14 | Ideal | Absent | Present |
18 | 14 | Ideal | Absent | Present |
19 | 14 | Ambient | Absent | Present |
20 | 14 | Ambient | Absent | Present |
21 | 49 | Ideal | Absent | Present |
22 | 49 | Ideal | Absent | Present |
23 | 49 | Ambient | Absent | Present |
24 | 49 | Ambient | Absent | Present |
25 | 14 | Ideal | Present | Present |
26 | 14 | Ideal | Present | Present |
27 | 14 | Ambient | Present | Present |
28 | 14 | Ambient | Present | Present |
29 | 49 | Ideal | Present | Present |
30 | 49 | Ideal | Present | Present |
31 | 49 | Ambient | Present | Present |
32 | 49 | Ambient | Present | Present |
Parameter | Value | Unit | |
---|---|---|---|
pH | 7.01 | - | |
Bulk density | 1.45 | g/mL | |
Moisture retention | 41.54 | % | |
Organic matter content | 0.04 | % | |
Inorganic nitrogen content | 7.00 | mg/kg | |
C/N ratio | 57.1 | - | |
Texture | Clay content | 14.92 | % |
Silt content | 16.00 | % | |
Sand content | 69.08 | % |
Test | Automotive Residual Oil Removal (%) | Test | Automotive Residual Oil Removal (%) |
---|---|---|---|
1 | 18.68 | 17 | 16.02 |
2 | 8.82 | 18 | 16.22 |
3 | 2.50 | 19 | 8.45 |
4 | 6.51 | 20 | 6.91 |
5 | 94.38 | 21 | 87.75 |
6 | 94.30 | 22 | 88.57 |
7 | 17.78 | 23 | 72.15 |
8 | 13.44 | 24 | 74.51 |
9 | 28.24 | 25 | 29.81 |
10 | 28.72 | 26 | 30.83 |
11 | 13.79 | 27 | 13.96 |
12 | 13.98 | 28 | 13.34 |
13 | 99.90 | 29 | 98.57 |
14 | 99.90 | 30 | 99.19 |
15 | 78.67 | 31 | 86.71 |
16 | 78.58 | 32 | 83.43 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F Value | p-Value Prob > F | Significance |
---|---|---|---|---|---|---|
Model | 38,689.55 | 4 | 9672.39 | 52.62 | <0.0001 | Significant |
Factor A | 31,944.44 | 1 | 31,944.44 | 173.80 | <0.0001 | Significant |
Factor B | 3942.50 | 1 | 3942.50 | 21.45 | <0.0001 | Significant |
Factor C | 2288.77 | 1 | 2288.77 | 12.45 | 0.0015 | Significant |
Factor D | 513.84 | 1 | 513.84 | 2.80 | 0.1061 | Not significant |
Residual | 4962.59 | 27 | 183.80 | |||
Total | 43,652.13 | 31 |
Remediation Technology | Treatment Conditions | Automotive Residual Oil Concentration (mg/kg) | Treatment Time (Days) | Removal Efficiency (%) | Reference |
---|---|---|---|---|---|
Biostimulation with Ricinus communis L. enzymes at ambient conditions | Enzymes: 3% w/v pH: 7.01 Temperature: room temperature | 10,000 | 49 | 17.78 | This study (Test 7) |
Biostimulation with Ricinus communis L. enzymes and vermicompost at ambient conditions | Enzymes: 3% w/v Vermicompost: 5% w/w pH: 7.01 Temperature: room temperature | 10,000 | 49 | 78.67 | This study (Test 15) |
Biostimulation with Ricinus communis L. enzymes at ideal conditions | Enzymes: 3% w/v pH: 4.5 Temperature: 37 °C | 10,000 | 49 | 94.38 | This study (Test 5) |
Biostimulation with Ricinus communis L. enzymes and vermicompost at ideal conditions | Enzymes: 3% w/v Vermicompost: 5% w/w pH: 4.5 Temperature: 37 °C | 10,000 | 49 | 99.90 | This study (Test 14) |
Bioremediation with Ricinus communis L. enzymes | Enzymes: 3% w/v pH: 4.5 Temperature: 37 °C | 10,000 | 49 | 94.3 | [20] |
Remediation by persulfate oxidation coupled with microbial degradation | Persulfate dose: 1% Mixed bacteria used: Enterobacteriaceae, Stenotrophomonas, Pseudomonas, Acinetobacter, and Achromobacter | 12,835 | 187 | 80.05 | [48] |
Bioremediation using vermicompost | Vermicompost: 2, 4, and 6% w/w | 100, 200, and 300 | 45 | 83.00–89.00 | [49] |
Remediation by Triton X-100 aided washing | Stirring: 2000 rpm Temperature: 37 °C pH: 5.7 | 2206 | 1 | 90.36 | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Mata, O.; Aguilera Flores, M.M.; Ureño García, B.G.; Ávila Vázquez, V.; Cabañas García, E.; Franco Villegas, E.A. Bioremediation of Automotive Residual Oil-Contaminated Soils by Biostimulation with Enzymes, Surfactant, and Vermicompost. Int. J. Environ. Res. Public Health 2023, 20, 6600. https://doi.org/10.3390/ijerph20166600
Sánchez Mata O, Aguilera Flores MM, Ureño García BG, Ávila Vázquez V, Cabañas García E, Franco Villegas EA. Bioremediation of Automotive Residual Oil-Contaminated Soils by Biostimulation with Enzymes, Surfactant, and Vermicompost. International Journal of Environmental Research and Public Health. 2023; 20(16):6600. https://doi.org/10.3390/ijerph20166600
Chicago/Turabian StyleSánchez Mata, Omar, Miguel Mauricio Aguilera Flores, Brenda Gabriela Ureño García, Verónica Ávila Vázquez, Emmanuel Cabañas García, and Efrén Alejandro Franco Villegas. 2023. "Bioremediation of Automotive Residual Oil-Contaminated Soils by Biostimulation with Enzymes, Surfactant, and Vermicompost" International Journal of Environmental Research and Public Health 20, no. 16: 6600. https://doi.org/10.3390/ijerph20166600
APA StyleSánchez Mata, O., Aguilera Flores, M. M., Ureño García, B. G., Ávila Vázquez, V., Cabañas García, E., & Franco Villegas, E. A. (2023). Bioremediation of Automotive Residual Oil-Contaminated Soils by Biostimulation with Enzymes, Surfactant, and Vermicompost. International Journal of Environmental Research and Public Health, 20(16), 6600. https://doi.org/10.3390/ijerph20166600